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In this Supporting Information we provide informa-
tion about (i) how the bulk-average frequency of the re-
sponse to a local pinch of the glass, denoted ωg in the
manuscript, was calculated, (ii) how the modes in Fig. 1
of the main text were calculated, and their size estimated,
and (iii) how we estimated the crossover length ξco and
the QLMs core size ξQLM, both appearing in Fig. 6 of the
main text.

We recall that lengths are expressed in terms of a0 ≡
V/N where V is the system’s volume, and N denotes
the number of particles. All particles share the same
mass m, which we set as our microscopic unit of mass.
Frequencies are expressed in terms of c∞/a0, where

c∞ ≡
√
G∞/ρ is the high-Tp shear wave-speed, with

G∞ denoting the high-Tp plateau of sample-to-sample
mean athermal shear modulus of inherent states (see in-
set of Fig. 3a of main text), and ρ≡mN/V denotes the
mass density. Temperatures are expressed in terms of the
crossover temperature Tonset, above which the sample-to-
sample mean athermal shear modulus saturates to a high-
temperature plateau, as seen in Fig. 4 of the main text,
and in [1]. In our system we find G∞a

3
0/kBTonset ≈ 17,

with kB denoting the Boltzmann constant.

S-1. The calculation of ωg(Tp)

Following [2], we define a local dipolar force as

d
(ij)
k ≡ ∂ϕij

∂xk
, (S1)

where Roman indices denote particle indices, ϕij is the
radially-symmetric pairwise potential between the ith and
jth particles, and xk denotes the d̄-dimensional coordi-
nate vector of the kth particle. The linear displacement
response to this force dipole reads

u
(ij)
k = H−1

k` · d
(ij)
` , (S2)

where repeated indices are understood to be summed
over, and

Hk` ≡
∂2U

∂xk∂x`
(S3)

is the Hessian of the potential energy U≡
∑

i<j ϕij . The
frequency associated with the response u is given by

ω(ij)
g ≡ 1√

m

(
u

(ij)
k ·Hk` · u(ij)

`

u
(ij)
k · u(ij)

k

)1/2

, (S4)

where m denotes the microscopic units of mass.

We next define the conditional average

ωg ≡ 〈ω(ij)
g 〉fij/(pa2

0)<10−2 , (S5)

where p is the glass pressure (recall that in our computer
glass particles interact via a purely repulsive pairwise in-
teraction), and the triangular brackets denote an average
taken over all interacting pairs i, j for which the dimen-
sionless pairwise force fij/(pa

2
0)<10−2.
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FIG. S1. (a) Scatter plot of ω
(ij)
g vs. the dimensionless pairwise

force fij/(pa
2
0), calculated in an ensemble of glassy solids quenched

from Tp =5/9. Results for other parent temperatures have similar
forms. At strong forces the stiffnesses associated with responses
to local pinches are substantially higher compared to those asso-
ciated with weak forces. We find a saturation of the statistics of
ω
(ij)
g at fij/(pa

2
0) . 10−2, marked by the vertical line. (b) & (c)

Comparison between the mean frequencies ωg calculated with and
without filtering by the pairwise forces; the two means differ by
≈40% consistently throughout the sampled temperature range.

The reason we chose to only consider weak forces in the
estimation of ωg can be understood by scatter-plotting

ω
(ij)
g vs. fij/(pa

2
0), as seen in Fig. S1a. We can clearly

see that two families of frequencies are generated by
pinching pairs between which strong or weak forces are
found. In particular, strongly-interacting pairs tend to
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generate much stiffer responses (note the logarithmic y-
axis). Since these responses are supposed to represent
soft, quasilocalized modes, we opt for filtering the re-
sponses according to the dimensionless forces fij/(pa

2
0).

Below the chosen threshold fij/(pa
2
0) < 10−2, that can

be clearly read off the scatter plot Fig. S1 (vertical yellow

line), the statistics of ω
(ij)
g appears to saturate.

In Fig. S1b,c we examine the effect of filtering interac-
tions by their force on the Tp dependence of ωg. We see
that the relative variation of the two mean frequencies is
very similar throughout the sampled parent-temperature
range.

S-2. Calculation of soft modes in 2D

In this Section we describe how the modes shown in
Fig. 1 of the main text were calculated. A detailed
description of this calculation will be presented else-
where [3], and see also [4]; here the main points are sum-
marized.

We employed the two-dimensional version of the same
computer glass model used for our study; details about
the model can be found in [5]. Ensembles of glassy sam-
ples were quenched from equilibrium parent tempera-
tures of Tp = 7/9 (expressed in terms of the onset tem-
perature Tonset as described above) and Tp = 17/90. We
followed the framework put forward in [4, 6], and calcu-
lated solutions π to the equation

H · π =
π ·H · π

∂4U
∂x∂x∂x∂x :: ππππ

∂4U

∂x∂x∂x∂x
:·πππ , (S6)

where triple and quadruple contractions are denoted as :·
and ::, respectively, and particle indices were suppressed
for simplicity. Solutions π to Eq. (S6) were coined ‘quar-
tic modes’ [2, 4]; they represent soft quasilocalized exci-
tations that resemble low-frequency quasilocalized vibra-
tional modes seen below or in between phonon bands [6],
i.e. in the absence of hybridizations with phonons. Solu-
tions to Eq. (S6) were calculated by employing a standard
nonlinear conjugate gradient minimization algorithm to
find local minima of the cost function [6]

G(z) ≡ (z ·H · z)2

∂4U
∂x∂x∂x∂x :: zzzz

, (S7)

where z represents a displacement field in the N× d̄ di-
mensional configuration space of the glass. It is straight-
forward to show (see further details in [6]) that minima of
G correspond to solutions of Eq. (S6). Initial conditions
for the minimization of G were obtained by calculating
the linear displacement response to a dipolar force, as
given by Eq. (S2), for every pair of interacting particles
in the glass. In Fig. 1 of the main text, we only show
modes π for which ωπ ≡

√
π ·H·π/

√
m < ωg/3, where

ωg was calculated as described in the previous Section.

The area of the disordered core of each of the calculated
modes was estimated as Ne, with e denoting the partici-
pation ratio of the modes, defined for a normalized mode

ẑ as e=
(
N
∑

i(ẑi ·ẑi)2
)−1

. The participation ratio is a
proxy for the degree of localization of a mode; in particu-
lar, for a localized mode one expects e∼O(1/N), whereas
a spatially-extended mode would give e∼O(1). In Fig. 1
of the main text, the area of each blob that represents a
soft mode is proportional to Ne, and its color represents
its frequency ωπ, with dark (bright) colors representing
softer (stiffer) modes.

S-3. Estimation of the crossover length

In this Section we describe how we measured the
crossover length ξco between disorder-dominated re-
sponses near a local perturbation, to continuum,
Eshelby-like algebraic decays away from a local pertur-
bation. The crossover lengths ξco extracted from the fol-
lowing analysis are shown in Fig. 6 of the main text.
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FIG. S2. (a) Decay functions c(r) of the response to local pinches,
see text for precise definition. The different curves correspond
to measurements performed on glassy samples quenched from
Tp = 13/9, 10/9, 8/9, 7/9, 13/18, 2/3, 11/18, 5/9, 1/2, 4/9, 7/18,
from warm to cold colors. (b) Rescaling c(r) by r−6 allows to ro-
bustly identify the crossover length ξco between disorder-dominated
to continuum-like scaling. (c) & (d) The crossover lengths ξco and
the factors A1 used to collapse the curves in panel (b), plotted
against the parent temperature Tp.

In order to estimate the crossover length, we follow the
measurement scheme of [7]; this amounts to calculating
the response to local dipoles via Eq. (S2), still following
the dimensionless-force filtering scheme discussed above.
The fields are then normalized, namely for every pair
ij considered, we calculate û(ij) ≡ u(ij)/|u(ij)|. Then,
for each interaction k` 6= ij, we compute the square of
the projection of the normalized response û(ij) onto the

normalized dipole vector d̂(k`)≡d(k`)/|d(k`)|, i.e. we cal-
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culate

Cij,k` ≡
(
û(ij) · d̂(k`)

)2
. (S8)

Cij,k` generally depends on the distance rij,k` between
the interactions ij and k`, and on their relative orienta-
tion.

For each normalized response field û(ij), we bin Cij,k`

— calculated for all pairs k` 6= ij — over the distances
rij,k`, and calculate the median of Cij,k` over all pairs
k` located at similar distances r away from the excited
dipole dij ; the average over the excited dipole ij, and
over glassy samples, denoted below by 〈•〉ij , defines the
decay function c(r), namely

c(r) ≡
〈
mediank`
rij,k`≈r

(
Cij,k`

)〉
ij
. (S9)

The decay functions c(r) are plotted in Fig. S2a. Con-
tinuum elasticity would predict that c(r)∼ r−2d̄ [7]. We
therefore plot in Fig. S2b the rescaled decay functions
r6c(r)/A1 against the rescaled distance r/ξco with ξco(Tp)
denoting the parent-temperature dependent crossover
lengths, chosen to collapse the data, as are the con-
stants A1(Tp) reported in Fig. S2d. The crossover lengths
ξco(Tp) are plotted against the parent temperature Tp in
Fig. S2c.

S-4. Estimation of QLMs core length

In stable glasses, it becomes difficult to sample many
QLMs using a harmonic analysis due to their stiffening
and depletion, discussed in length the main text. As a
result of these processes, characteristic frequencies of the
softest QLMs tend to overlap with the lowest phonon
frequencies, leading to hybridizations of phonons and
QLMs, and obscuring a clear picture of QLMs proper-
ties and statistics, as demonstrated in Fig. S3.

In order to reveal the properties of QLMs for glasses
quenched from all parent temperatures, including in sta-
ble glasses, we opt for calculating ‘quartic modes’ as rep-
resentatives of QLMs, since the former are known to be
indifferent to the presence of phonons with comparable
frequencies (they show no hybridizations with phonons,
as shown in [6] and in the left panel of Fig. S3). At the
same time, quartic modes feature frequencies that are in
excellent agreement with QLMs’ frequencies in the ab-
sence of hybridizations [6], as can also be seen in Fig. S3.

We first generated, for each of our glassy samples of
N=8000 particles, a quartic mode as discussed in length
in Sect. S-2. In this case, however, the initial conditions
for finding quartic modes were chosen to be the linear
displacement responses to the forces that arise due to im-
posing simple and pure shear [8] in all possible Cartesian
planes (i.e. x̂− ŷ, x̂− ẑ, . . .). Each such linear response
is then used as the initial condition for the minimiza-
tion of the cost function G, c.f. Eq. (S7). An ensemble of
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FIG. S3. Scatter plot of the participation ratio e — that quanti-
fies the degree of localization of a mode — vs. frequency, calculated
for harmonic (black symbols) and quartic (red symbols) modes in
glassy samples of N = 8000 particles quenched from Tp = 7/18
(left) and Tp = 13/9 (right). In the analyzed stable glassy sam-
ples (Tp = 7/18, left panel) phonons and QLMs dwell at similar
frequencies, leading to their hybridizations. Quartic modes appear
to be entirely indifferent to the presence of these phonons (see left
panel).

QLMs is constructed by only keeping and considering the
QLM π with the smallest frequency ωπ≡

√
π ·H·π/

√
m

amongst all those calculated for each individual sample,
leaving us with 1000 soft QLMs per parent tempera-
ture Tp.

In order to demonstrate the utility of quartic modes for
the assessment of the core size of QLMs, we scatter-plot
in Fig. S3 the participation ratio of both harmonic modes
(obtained by a partial diagonalization of the Hessian of
the potential energy), and quartic modes (obtained as
described above). We show that, at the very lowest fre-
quencies, each harmonic mode overlaps with a quartic
mode that our calculation produces, demonstrating that
our calculation captures well the QLM away from regimes
of strong hybridizations with phonons. These data show
that harmonic and quartic mode share very similar lo-
calization properties and frequencies, as also discussed in
length in [6], which motivates employing quartic modes
as faithful representitives of QLM.

In order to estimate the linear size of the cores of QLM,
each calculated QLM π as described above was normal-
ized π̂ ≡ π/|π|; we then identified the pair ij of inter-
acting particles that maximizes the difference squared
|π̂i− π̂j |2, and consider this pair as the center of the
QLM’s core. We calculated the spatial decay c(r) of
QLMs similarly to the procedure explained in the pre-
vious Section for analyzing the spatial decay of the re-
sponse to a local pinch, with the only differences being
that here that r represents the distance from the afor-
mentioned pair ij,

Cij,k` ≡
(
π̂ · d̂(k`)

)2
, (S10)
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FIG. S4. (a) Decay functions c(r) of QLMs calculated as explained
in this SI. The different curves correspond to measurements per-
formed on glassy samples quenched from the same parent temper-
atures Tp as spelled out in the caption of Fig. S2. (b) Rescaling
c(r) by r−6 allows to robustly identify the QLMs linear core size
ξQLM. (c) & (d) The QLM core length ξQLM and the factors A2

used to collapse the curves in panel (b), plotted against the parent
temperature Tp.

and

c(r) ≡
〈
mediank`
rij,k`≈r

(
Cij,k`

)〉
QLMs

, (S11)

where the average is taken over all calculated QLMs.

The results of this calculation are shown in Fig. S4,
see figure caption for further details. The lengths ξQLM

extracted from our analysis are shown in Fig. S4c, and
used in Fig. 6 of the main text.
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