Table S1. Primers used to amplify the *OsNRT2.3b* open reading frame and identification primers of hygromycin.

Gene name	Primer	Sequence		
OsNRT2.3b	5' (F)	GAGATGGAGGCTAAGCCGGTGGCG		
OSINKI 2.30	5' (R)	TTCTTCACAC CCCGGCCGGC GACG		
	5'(F)	CTTCTGCGGGCGATTTGT		
Hygromycin	5"(R)	CAGCGTCTCCGACCTGAT		

Table S2. Primers used for quantitative real-time polymerase chain reaction.

Gene name	Forward primer (5'to 3')	Reverse primer (5'to3')		
HvActin	AGCAACTGGGATGACATGGAG	GGGTCATCTTCTCTGTTGGC		
OsNRT2.3b	GCCATCCACAAGATCGGTAG	TGTGGAGCTTCCCGTAGTTG		
HvNRT2.1	TTGTGCACTTCCCACAATGG	GACCCTTGGCTTTCTCCTCT		
HvNRT2.2	ACCCAGCTCATTATGCCACT	CCATCACCACGTGCATCATT		
HvNRT2.3	GTGCCCTTTGGAACATCTGG	AGGGTGCGACACCAAAGATA		
HvNAR2.3	AAGAAGGACAAGACCTGCCA	GTGATGCTGACGACGTTGAA		

Table S3. The effect of 0.2 mM NH_{4^+} treatment on the distribution of total N, P and Fe in shoots and roots.

0.2mM NH ₄ +							
Distribution ration of shoot (%)	WT	Ubi-1	Ubi-2	Ubi-3	RSs1-1	RSs1-2	RSs1-3
Total N	69.79a	72.48a	73.31a	78.63a	75.85a	71.30a	71.52a
Total P	56.07a	59.80a	62.80a	73.94a	70.27a	63.67a	60.61a
Total Fe	14.05b	9.73b	11.84b	26.25a	16.98b	17.11b	15.29b
Distribution ration of root (%)	WT	Ubi-1	Ubi-2	Ubi-3	RSs1-1	RSs1-2	RSs1-3
Total N	30.21a	27.52a	26.69a	21.37a	24.15a	28.70a	28.48a
Total P	43.93a	40.20a	37.20a	26.06a	29.73a	36.33a	39.39a
Total Fe	85.95a	90.27a	88.16a	73.75b	83.02a	82.89a	84.71a

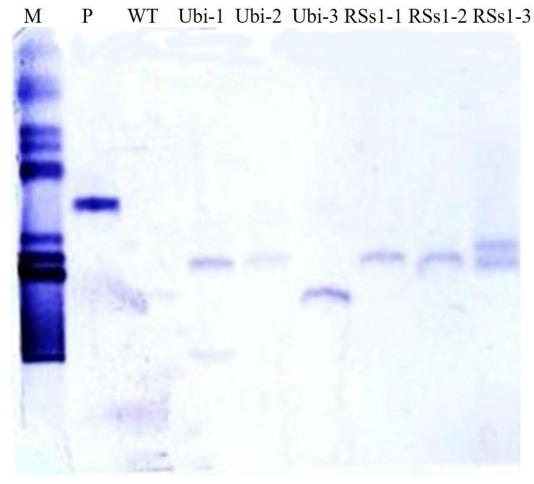

Table S3. The effect of 0.2 mM $\,^+$ treatment on the distribution of total N, P and Fe in shoots and roots. Significant differences between transgenic and WT lines are indicated by different letters (P < 0.05, one-way ANOVA).

Table S4. Comparison of the expression of *OsNRT2.3b* in transgenic barley driven by different promoters under 0.2mM NH₄+/NO₃- treatment.

Leaves	Ubi-1	Ubi-2	Ubi-3	RSs1-1	RSs1-2	RSs1-3
0.2mM NH ₄ ⁺	0.000958e	0.001218e	0.001239e	0.000788e	0.000822e	0.000499e
0.2mM NO ₃	0.018984c	0.035601b	0.079687a	0.009516d	0.009085d	0.013484d
Sheath	Ubi-1	Ubi-2	Ubi-3	RSs1-1	RSs1-2	RSs1-3
0.2mM NH ₄ ⁺	0.0000259d	0.000203d	0.000387d	0.000195d	0.000123d	0.000278d
0.2mM NO ₃	0.0217b	0.0439a	0.0123c	0.0149c	0.0149c	0.0148c
Root	Ubi-1	Ubi-2	Ubi-3	RSs1-1	RSs1-2	RSs1-3
0.2mM NH ₄ ⁺	0.0000477c	0.000253c	0.000271c	0.000126c	0.000126c	0.00005880
0.2mM NO ₃	0.00404ab	0.004614a	0.001561bc	0.0000219c	0.0000851c	0.000447c

Table S4. Comparison of the expression of *OsNRT2.3b* in transgenic barley driven by different promoters under 0.2mM NH₄+/NO₃-treatment. Significant differences between NO₃- and NH₄+ condition in transgenic lines are indicated by different letters (P < 0.05, two-way ANOVA).

Figure S1. Identification of transgenic barley lines by southern blot.

Fig. S1. Identification of transgenic barley lines by southern blot. Genomic DNA was isolated from WT and transgenic barley lines. Hybridization was performed using a hygromycin gene probe. M: maker, P: positive control.

Figure S2. The seed concentrations of Mn and Mg in different barley lines.

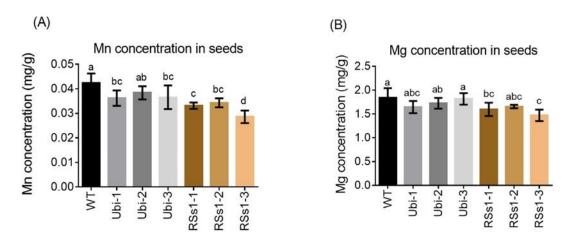
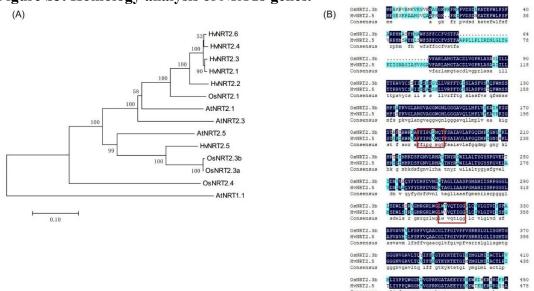



Fig. S2. The seed concentrations of Mn and Mg in different barley lines. (A) The concentration of Mn and (B) Mg in seeds. Significant differences between transgenic and WT lines are indicated by different letters (P < 0.05, one-way ANOVA). Error bars: standard error (n = 4 plants).

Figure S3. Homology analysis of NRT2s genes.

Fig. S3. Homology analysis of *NRT2s* **genes.** (A)The phylogenetic tree of the *NRT2* gene family in Arabidopsis, rice and barley. (B) HvNRT2.5 and OsNRT2.3b protein sequence alignment. The red box represented the pH sensing motif that was identified by OsNRT2.3b.

Figure S4. The relative expression of *HvNRT2s* in different plants parts under 0.2mM NH₄⁺ and 0.2mM NO₃⁻ treatments.

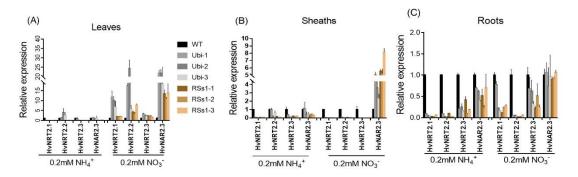


Fig. S4. The relative expression of HvNRT2s in different plants parts under 0.2mM NH₄⁺ and 0.2mM NO₃⁻ treatments. The relative expression of HvNRT2.1/2.2/2.3 and HvNAR2.3 in (A) leaves, (B) sheaths and (C) roots of all barley lines under 0.2mM NH₄⁺ and 0.2mM NO₃⁻ treatments. Significant differences between transgenic and WT lines are indicated by different letters (P < 0.05, one-way ANOVA). Error bars: standard error (n = 4 plants).

Figure S5. Phosphorus (P) and iron (Fe) concentrations in different plant parts under 0.2 mM NH₄⁺ and 0.2mM NO₃⁻ treatments.

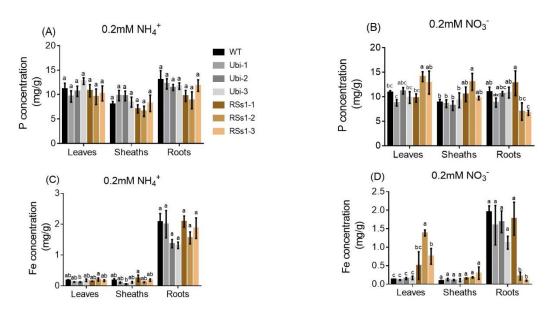


Fig. S5. Phosphorus (P) and iron (Fe) concentrations in different plant parts under 0.2 mM NH_4^+ and 0.2mM NO_3^- treatments. (A) The concentration of P and (C) Fe in leaves, sheaths and roots of all barley lines under 0.2 mM NH_4^+ condition. (B) The concentration of P and (D) Fe in leaves, sheaths and roots of all barley lines under 0.2mM NO_3^- condition. Significant differences between transgenic and WT lines are indicated by different letters (P < 0.05, one-way ANOVA). Error bars: standard error (n = 4 plants).

Figure S6. The characterization of all barley lines. Under 10 mM NH₄⁺ condition after 10 mM NH₄⁺/NO₃⁻ condition.

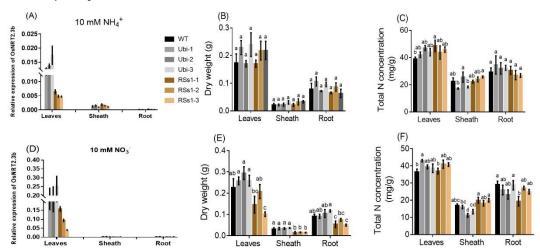


Fig. S6. The characterization of all barley lines. Under 10 mM NH₄+ condition after 10 mM NH₄+/NO₃-condition. (A–C) 10 mM NH₄+ (A) the relative expression of OsNRT2.3b, (B) the dry weights and (C) total N concentration of different plant parts. (D-F) 10 mM NO₃-, (D) the relative expression of OsNRT2.3b, (E) the dry weight and (F) total N concentration of different plant parts. Significant differences between transgenic and WT lines are indicated by different letters (P < 0.05, one-way ANOVA). Error bars: standard error (n = 4 plants).