Appendix for

Structural and functional insights into a novel signaling network regulating biofilm formation

Gukui Chen^{1, #}, Jianhua Gan^{2, #}, Chun Yang², Yili Zuo¹, Juan Peng¹, Meng Li¹, Weiping Huo¹, Yingpeng Xie³, Yani Zhang¹, Tietao Wang¹, Xin Deng³ and Haihua Liang^{1,*}

¹ Key Laboratory of Resources Biology and Biotechnology in Western China, Ministry of Education, College of Life Sciences, Northwest University, Xi'an, ShaanXi, 710069, China

² Shanghai Public Health Clinical Center, State Key Laboratory of Genetic Engineering, Collaborative Innovation Center of Genetics and Development, School of Life Sciences, Fudan University, Shanghai 200438, China

³ Department of Biomedical Sciences, City University of Hong Kong, Hong Kong, People's Republic of China.

[#]These authors contributed equally to this work

*To whom correspondence should be addressed:

Dr. Haihua Liang

College of Life Science, Northwest University, No 229 Taibai Rd, Xi'an, ShaanXi 710069, China; Phone: (86) 29-88303662. Email: <u>lianghh@nwu.edu.cn</u>

Table of Contents

Appendix Figures S1 to S10 Appendix Tables S1 to S3 Appendix References

Appendix Figures

Appendix Figure S1. SiaB and SiaC regulates aggregates via c-di-GMP.

- A SDS-induced aggregates formation by PAO1/EV, Δ*siaC/EV*, Δ*siaB/EV* and the corresponding complemented strains. Strains were grown in M9 medium with 10 mM succinate or 0.1% SDS as the sole carbon source for 12 h at 37 °C with shaking at 200 rpm.
- B The mRNA levels of *cdrA* in PAO1, $\Delta siaC$, $\Delta siaB$ and the corresponding complemented strains were detected by qRT-PCR and normalized to the level of PAO1. The 30s ribosomal protein-encoding gene *rpsL* was used as an internal control.
- C Biofilm formation by the indicated strains was displayed with crystal violet staining (up) and quantified with optical density measurement (down). Error bars represent the means and SDs of three biological replicates. **P<0.01 and ***P<0.001 compared to WT based on one-way ANOVA test. EV represents the empty vector pUCP20 in this and subsequent assays.

Appendix Figure S2. SiaC is required for the DGC activity of SiaD.

- A Expression of *siaD* was decreased after *siaC* deletion. The mRNA levels of *siaD* in PAO1, $\Delta siaC$ and the corresponding complemented strains were detected by qRT-PCR and normalized to the level of PAO1.
- B The C-terminus FLAG tag did not influence the function of SiaD. Biofilm formation by the indicated strains was displayed with crystal violet staining (up) and quantified with optical density measurement (down).
- C SiaD was sufficiently expressed on the overexpressing plasmid. Expression levels of SiaD-Flag were tested by western blotting (up) and qRT (down). For western blotting assays, RNA polymerase alpha unit (α-RNAP) was used as a control for whole cells. For qRT-PCR assays, the 30s ribosomal protein-encoding gene *rpsL* was used as an internal control.
- D Deletion of SiaC did not influence SiaD stability. Wild type PAO1 and $\Delta siaC$ mutant carrying pUCP20-*siaD-flag* were cultured for 3 h. The 50 µg ml⁻¹ streptomycin was added to the medium. At the indicated time points, the protein levels of SiaD-FLAG were determined by western blotting assay. RNA polymerase alpha unit was used as an internal control.

E Production of c-di-GMP at the indicated time-point by SiaD^{R130G} with SiaC was determined by HPLC.

Appendix Figure S3. SiaC interacts with SiaB or SiaD.

- A Sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE) analysis of purified GST-SiaD, GST-SiaC and GST-SiaB.
- B GST pull down revealed direct interaction between SiaC and SiaD. Cell lysates of *P. aeruginosa* containing SiaC-Flag were incubated with GST and GST-SiaD individually, and protein complexes were captured by glutathione beads.
- C GST-pull down assays showed that SiaC failed to interact with itself. Cell lysates of *P. aeruginosa* containing SiaC-Flag were incubated with GST and GST-SiaC individually, and protein complexes were captured by glutathione beads. GST-SiaB was used as a positive control.
- D GST pull down assay showed no formation of SiaB-SiaC-SiaD complex. GST-SiaB was firstly incubated with purified SiaC-His. After SiaC-His binding, cell lysates of DH5α containing SiaD-Flag was added, and protein complex were captured by glutathione beads. GST protein was used as negative control.
- E SDS-induced aggregates formation by the indicated strains. Strains were grown in M9 medium with 10 mM succinate or 0.1% SDS as the sole carbon source for 12 h at 37 °C with shaking at 200 rpm.

Appendix Figure S4. SiaC is unable to promote the DGC activity of WspR.

- A The retained times of c-di-GMP (50 µM) standard
- B The retained time of GTP (50 μ M) standard.
- C-E The c-di-GMP levels produced by SiaC (C), WspR (D), or WspR with SiaC (E) after 3 h or 10 min reaction were determined.
- F Quantification analysis showed that SiaC did not promote WspR to produce more cdi-GMP production. Data are presented as the mean \pm s.d. of three independent experiments.

Appendix Figure S5. SiaA regulates aggregates formation via direct interaction with SiaC.

- A Predicted domain of SiaA.
- B GST pull-down assays showed no interaction between SiaA and SiaD. Cell lysates of *P. aeruginosa* expressing SiaA-Flag were incubated with GST and GST-SiaD individually, and protein complexes were captured by glutathione beads. GST-SiaC was used as a positive control.
- C GST pull down assay revealed formation of SiaA-SiaC-SiaB complex *in vitro*. GST-SiaA₃₈₆ was firstly incubated with purified SiaC-His. After SiaC-His binding, cell lysates of DH5α containing SiaB-Flag was added, and protein complex were captured by glutathione beads. GST protein was used as negative control.
- D GST pull down assay showed no formation of SiaA-SiaC-SiaD complex. GST-SiaA₃₈₆ was firstly incubated with purified SiaC-His. After SiaC-His binding, cell

lysates of DH5 α containing SiaD-Flag was added, and protein complex were captured by glutathione beads. GST protein was used as negative control.

E SDS-induced aggregates formation by the indicated strains. Strains were grown in M9 medium with 10 mM succinate or 0.1% SDS as the sole carbon source for 12 h at 37 °C with shaking at 200 rpm.

Appendix Figure S6. SiaB is a kinse that specifically phosphorylates SiaC.

- A Structure modeling of SiaB using online server Phyre 2.0.
- B SiaB retains ATP hydrolysis activity in the presence of EDTA. (-) and (+) represent reaction buffer (10 mM Tris-HCl, pH 8.0, 10 mM NaCl) with or without 1 mM EDTA.
- C SDS-induced aggregates formation by the indicated strains. Strains were grown in M9 medium with 10 mM succinate or 0.1% SDS as the sole carbon source for 12 h at 37 °C with shaking at 200 rpm.
- D Biofilm formation by the indicated strains was displayed with crystal violet staining (up) and quantified with optical density measurement (down).
- E Na⁺ ion is not strictly required for the ATP hydrolysis activity of SiaB. SiaB retains
 ATP hydrolysis activity in ammonium phosphate buffer without Na⁺ (50 mM ammonium phosphate, pH 7.5).

Appendix Figure S7. Dimerization of SiaB.

- A The overall conformation of SiaB dimer. The two SiaB molecules are shown as cartoons in blue and pink, respectively.
- B, C Detailed interactions between the two SiaB molecules.

Appendix Figure S8. Expression of SiaB and its mutants during biofilm formation. The biofilm formed by the indicated strains were scraped and subject to western blotting assay. The expression levels of SiaB-Flag or its mutants from these strains were determined. RNA polymerase alpha unit was used as an internal control.

Α

PA0171 PA0170 PA0169 PA0172

Pseudomonas aeruginosa PAO1 [NC_002516]

Pseudomonas denitrificans ATCC 13867 [NC_020829]

Achromobacter xylosoxidans A8 [NC_014640]

Pseudomonas stutzeri DSM 4166 [NC_017532]

Rubrivivax gelatinosus IL144 [NC_017075]

Bordetella avium 197N [NC_010645]

Oceanimonas sp. GK1 [NC_016745]

Pseudogulbenkiania sp. NH8B [NC_016002]

Azoarcus sp. KH32C [NC_020516]

Dechlorosoma suillum PS [NC_016616]

Aromatoleum aromaticum EbN1 [NC_006513]

Methylophaga sp. JAM7 [NC_017856]

В

83 81 78 H681_00785 H681 00770 63 62 68 56

AXYL 00579 AXYL 00582 63 71 63 54

PSTAA_0883 PSTAA_0880 57

RGE_14630 RGE_14660 60 61 70 53

BAV3028 BAV3025 52 02 60 48 GU3_05770 GU3_05785

56 64 47 49 NH8B_0122 NH8B_0125

46 53 63 10

AZKH_4537 AZKH_4540 47

ebA2797 ebA2804 50 40 42

Rhodospirillum photometricum DSM 122 [NC 017059]

Laribacter hongkongensis HLHK9 [NC_012559] Cyanobium gracile PCC 6307

[NC_019675]

Desulfohalobium retbaense DSM 5692 [NC_013223]

Geobacter sulfurreducens PCA [NC_002939]

Geobacter lovleyi SZ [NC_010814]

Azospirillum sp. B510 plasmid pAB510c [NC_013857]

Desulfovibrio alaskensis G20 [NC_007519]

Desulfovibrio magneticus RS-1 [NC_012796]

Azospirillum brasilense Sp245 [NC_016617]

Azospirillum sp. B510 [NC_013854]

Heliobacterium modesticaldum Ice1 [NC_010337]

RSPPHO_00214 RSPPHO_00217

38 52 61 42 LHK 03196 LHK 03199

47 53 52 49 Cyagr_0668 Cyagr_0671

41

Dret_2356 Dret_2359

DMR_16590 DMR_16620 41

AZOBR_140042 AZOBR_140046 33 40 42 AZL_016490 AZL_016530

37 36 42

HM1_1584 HM1_1586

0.1

AZKH 4540(Azoarcus sp. KH32C - ebA2804/Aromatoleum aromaticum EbN1 NH8B_0125/Pseudogulbenkiania sp. NH8B RSPPHO_00217|Rhodospirillum photometricum DSM 122 - Dsui 1361/Dechlorosoma suillum PS – Q7C_325|Methylophaga sp. JAM7 – LHK_03199|Laribacter hongkongensis HLHK9 - Dde_3048[Desulfovbrio alaskensis G20 - DMR_16590|Desulfovibrio magneticus RS-1 AZL_c04680|Azospirillum sp. 8510 GSU1554|Geobacter sultured - Glov_2111|Geobacter lovleyi SZ GU3 05785iOceanimonas sp. GK1 AXYL_00582)Achromobacter xylosox BAV3025)Bordetella awum 197N e A8 Host Doolg seducininas situation Daini 4100
 A0160/Pseudomonas aeruginosa PAO1
 H681_00770/Pseudomonas denitrificans ATCC 13867
 Oyagr_0671(Cyanobium gracile PCC 6307
 Dret_2357/Desutfohalobium reti PADIR se DSM 5692

13

onas aeruginosa PAO1

- H681_00785|Pseudomonas denitrificans ATCC 13867

PA0172|Pseudor

0.1

NH8B_0124|Pseudogulbenkiania sp. NH8B Cyagr_0670[Cyanobium gracile PCC 6307
 AZKH_4539]Azoarcus sp. KH32C
 ebA2801]Aromatoleum aromaticum EbN1 - RSPPHO_00216|Rhodospinillum pho n DSM 122 — DSFIP Roce to reduce the second secon PA0170[Pseudomonas aeruginosa PA01 PA0170[Pseudomonas denitrificans ATCC 13867 LHK_03198]Laribacter hongkongensis HLHK9 RGE_14650[Rubriviex gelatinosus IL144 - GU3 05780[Oceanimonas sp. GK1 – Q7C_326|Methylophaga sp. JAM7 |Geobacter sulfurreducens PCA 00 Glov_2112(Geobacter lovleyi SZ AZL c04660IAzospirillum sp. B510 nmum pp. Bo10 HM1_1585/Heliobacterium modesticaldum loc1 Dde_3045/Desutlovibrio alaskensis G20 DMR_16620(Desutlovibrio magneticus RS-1 Dret_2359(Desutlovialobium retbaense DSM 5692 AZOBR_140043|Azospinillum brasilense AZL_016520|Azospinillum sp. 8510 se Sn245 100 H 0.1

Q7C_327 Q7C_324

Appendix Figure S9. Syteny and phylogeny of *siaABCD*.

- A Genetic organization and co-linear alignment of *siaABCD*-like homologues. Sequence identities of protein homologs respectively compared to *siaABCD* prototypes are indicated above corresponding genes.
- B The phylogeny relationships of SiaABCD protein homologs were conducted in MEGA 7 by using the NJ method (bootstrap: 1000 replicates). The percentage of consenus trees are shown close to the clades.

Appendix Figure S10. The activity of SiaD is independent on exopolysaccharide Psl. Biofilm formation by the indicated strains was displayed with crystal violet staining (up) and quantified with optical density measurement (down).

Appendix Tables

Structure	SiaB/SiaC complex	apo-SiaC
(PDB ID)	6KKO	6KKP
Data collection ^a		
Space group	P2 ₁	I222
Cell parameter		
a (Å)	75.6	35.6
b (Å)	42.0	72.1
c (Å)	96.6	96.1
β (°)	93.45	90.0
Wavelength (Å)	0.9793	0.9793
Resolution (Å)	39.6-2.1	30-2.5
Last shell (Å)	2.24-2.1	2.59-2.5
Completeness (%) ^a	98.7 (97.5)	98.5 (95.2)
Redundancy ^a	3.3(3.3)	6.4 (3.8)
$I/\sigma(I)^{a}$	9.4(2.0)	15.4 (4.5)
Rmerge (%) ^a	8.4/57.4	13.0/26.3
Refinement		
Resolution (Å)	37.7-2.1	30.0-2.5
R work (%) / R free (%)	23.2/27.8	20.9/25.1
No. of atoms		
Protein	4633	966
Ligand	54	0
water	135	11
R. m. s. deviations		
Bond length (Å)	0.005	0.007
Bond angle ()	0.757	1.164
Ramachandran plot (%)		

Appendix Table S1. Data collection and refinement statistics

Most favored	99.1	94.9
Additional allowed	0.9	5.1

^a: Values in parentheses are for the last resolution shell.

Strains or plasmids	Relevant characteristics or function	Reference or origin
Plasmids		
mini-CTX-lacZ	Integration plasmid; TcR ^a	(Becher & Schweizer,
		2000)
mini-CTX-lacZ-siaD-flag		This study
pEX18Tc	<i>oriT</i> + <i>sacB</i> + gene replacement vector with multiple-cloning	(Hoang, Karkhoff-
	site from pUC18; TcR	Schweizer et al., 1998)
pEX-siaC	siaC deletion plasmid; TcR	This study
pEX-siaB	siaB deletion plasmid; TcR	This study
pEX-siaB-C	<i>siaC-siaB</i> double deletion plasmid; Tc ^r	This study
pEX-siaA	<i>siaA</i> deletion plasmid, Tc ^r	This study
pEX-siaD	<i>siaD</i> deletion plasmid, Tc ^r	This study
pUCP20	Escherichia-Pseudomonas shuttle vector	(West, Schweizer et al.,
		1994)
pUCP20-siaC	pUCP20 derived plasmid expressing <i>siaC</i> ; Amp ^r	This study
pUCP20-siaC ^{T68A}	pUCP20 derived plasmid expressing <i>siaC^{T68A}</i> ; Amp ^r	This study
pUCP20-siaC ^{K72A}	pUCP20 derived plasmid expressing <i>siaC^{K72A}</i> ; Amp ^r	This study
pUCP20-siaCE33A	pUCP20 derived plasmid expressing <i>siaC</i> ^{E33A} ; Amp ^r	This study
pUCP20-siaC ^{Y65A}	pUCP20 derived plasmid expressing <i>siaC</i> ^{Y65A} ; Amp ^r	This study
pUCP20-siaC ^{N67A}	pUCP20 derived plasmid expressing <i>siaC</i> ^{N67A} ; Amp ^r	This study
pUCP20-siaC ^{R103A}	pUCP20 derived plasmid expressing <i>siaC</i> ^{R103A} ; Amp ^r	This study
pUCP20-siaCE110A	pUCP20 derived plasmid expressing <i>siaC</i> ^{E110A} ; Amp ^r	This study
pUCP20-siaB	pUCP20 derived plasmid expressing <i>siaB</i> ; Amp ^r	This study
pUCP20-siaBE32A	pUCP20 derived plasmid expressing <i>siaB</i> ^{E32A} ; Amp ^r	This study
pUCP20-siaBE61A	pUCP20 derived plasmid expressing <i>siaB</i> ^{E61A} ; Amp ^r	This study
pUCP20-siaB ^{Q64A}	pUCP20 derived plasmid expressing <i>siaB</i> ^{Q64A} ; Amp ^r	This study
pUCP20-siaBE61A-Q64A	pUCP20 derived plasmid expressing <i>siaB</i> ^{E61A-Q64A} ; Amp ^r	This study
pUCP20-siaBE61A-Q64A-R67A	pUCP20 derived plasmid expressing <i>siaB</i> ^{E61A-Q64A-R67A} ; Amp ^r	This study
pUCP20-siaB ^{N65A}	pUCP20 derived plasmid expressing <i>siaB</i> ^{N65A} ; Amp ^r	This study
pUCP20-siaB ^{Y69A}	pUCP20 derived plasmid expressing <i>siaB</i> ^{Y69A} ; Amp ^r	This study
pUCP20-siaB ^{N100A}	pUCP20 derived plasmid expressing <i>siaB</i> ^{N100A} ; Amp ^r	This study
pUCP20-siaB ^{L110A}	pUCP20 derived plasmid expressing <i>siaB</i> ^{L110AA} ; Amp ^r	This study
pUCP20-siaB ^{F174A}	pUCP20 derived plasmid expressing <i>siaB</i> ^{F174A} ; Amp ^r	This study
pUCP20-siaB ^{L110A-F174A}	pUCP20 derived plasmid expressing <i>siaB</i> ^{L110A-F174A} ; Amp ^r	This study
pUCP20-siaA	pUCP20 derived plasmid expressing <i>siaA</i> ; Amp ^r	This study
pUCP20-siaD	pUCP20 derived plasmid expressing <i>siaD</i> ; Amp ^r	This study

Appendix Table S2. Strains and plasmids used in this study.

pUCP20-siaD ^{G140A}	pUCP20 derived plasmid expressing <i>siaD</i> ^{G140A} ; Amp ^r	This study
pUCP20-siaC-siaD	pUCP20 derived plasmid expressing <i>siaC</i> and <i>siaD</i> ; Amp ^r	This study
pUCP20-siaC-siaDG140A	pUCP20 derived plasmid expressing $siaC$ and $siaD^{G140A}$;	This study
	Amp ^r	
pUCP20-sadC	pUCP20 derived plasmid expressing <i>sadC</i> ; Amp ^r	This study
pUCP20-PA2133	pUCP20 derived plasmid expressing PA2133; Amp ^r	This study
pUCP20-siaD-flag	pUCP20 derived plasmid expressing SiaD-FLAG, Amp ^r	This study
pMMB67EH	Escherichi-Pseudomonas Shuttle vector between; Ampr	S. Jin lab
pMMB67EH-Flag	pMMB67EH vector with FLAG tag coding sequence	This study
pMMB67EH-siaD-Flag	pMMB67EH-Flag derived plasmid expressing <i>siaD-flag</i>	This study
pMMB67EH-siaC-Flag	pMMB67EH-Flag derived plasmid expressing <i>siaC-flag</i>	This study
pMMB67EH-siaC ^{T68A} -Flag	pMMB67EH-Flag derived plasmid expressing <i>siaC</i> ^{768A} - <i>flag</i>	This study
pMMB67EH-siaB-Flag	pMMB67EH-Flag derived plasmid expressing <i>siaB-flag</i>	This study
pMMB67EH-siaA-Flag	pMMB67EH-Flag derived plasmid expressing <i>siaA-flag</i>	This study
pMMB67EH-siaA337-Flag	pMMB67EH-Flag derived plasmid expressing <i>siaA337-flag</i>	This study
pMMB67EH-siaA386-Flag	pMMB67EH-Flag derived plasmid expressing <i>siaA386-flag</i>	This study
pBT	p15A origin of replication, <i>lac-UV5</i> promoter, λ cI open	Agilent
	reading frame; Cm ^r	
pTRG	ColE1 origin of replication, <i>lpp</i> promoter, <i>lac-UV5</i>	Agilent
	promoter, α-RNAP open reading frame; Tc ^r	
pBT-LGF2	Interaction control plasmid encoding the dimerization	Agilent
	domain (40 amino acid residues) of the Gal4 transcriptional	
	activator protein; Cm ^r	
pTRG-Gal11	Interaction control plasmid encoding a domain (90 amino	Agilent
	acid residues) of the mutant form of the Gal11 protein; Tcr	
pTRG-siaD	pTRG vector inserted with siaD coding sequence	This study
pTRG-siaC	pTRG vector inserted with siaC coding sequence	This study
pTRG-siaA ₃₃₇	pTRG vector inserted with siaA337 coding sequence	This study
pTRG-siaA ₃₈₆	pTRG vector inserted with siaA386 coding sequence	This study
pBT-siaD	pBT vector inserted with siaD coding sequence	This study
pBT-siaC	pBT vector inserted with siaC coding sequence	This study
pBT-siaB	pBT vector inserted with siaB coding sequence	This study
pGEX-6p-1	Expression vector with N-terminal GST tag, Apr	Novagen
pGEX-siaD	Plasmid for GST-SiaD expression	This study
pGEX-siaC	Plasmid for GST-SiaC expression	This study
pGEX-siaB	Plasmid for GST-SiaB expression	This study
pET-siaC	Plasmid for SiaC-His expression	This study

pET-siaC ^{T68A}	Plasmid for SiaC ^{T68A} -His expression	This study
pET-Sumo	Plasmid for Sumo expression	(Yang, Wu et al., 2018)
pSumo-SiaA ₃₈₆	Plasmid for Sumo-SiaA ₃₈₆ expression	This study
pSumo-siaD	Plasmid for Sumo-SiaD expression	This study
pSumo-siaC	Plasmid for Sumo-SiaC expression	This study
pSumo- <i>siaC</i> ^{T68A}	Plasmid for Sumo-SiaC ^{T68A} expression	This study
pSumo- <i>siaC^{K72A}</i>	Plasmid for Sumo-SiaC ^{K72A} expression	This study
pSumo- <i>siaC</i> ^{E33A}	Plasmid for Sumo-SiaC ^{E33A} expression	This study
pSumo-siaB	Plasmid for Sumo-SiaB expression	This study
pSumo- <i>siaB</i> ^{E61A-Q64A-R67A}	Plasmid for Sumo-SiaB ^{E61A-Q64A-R67A} expression	This study
pSumo- <i>siaB</i> ^{L110A-F174A}	Plasmid for Sumo-SiaB ^{L110A-F174A} expression	This study
Strains		
P. aeruginosa		
PAO1	Wild type	This lab
$\Delta siaC$	siaC deletion mutant of PAO1	This study
$\Delta siaB$	siaB deletion mutant of PAO1	This study
$\Delta siaA$	siaA deletion mutant of PAO1	This study
$\Delta siaD$	siaD deletion mutant of PAO1	This study
$\Delta siaC\Delta siaB$	siaC-siaB double deletion mutant of PAO1	This study
$\Delta siaB\Delta siaC$	SiaB-siaC double deletion mutant of PAO1	
$\Delta sadC$	sadC deletion mutant of PAO1	This lab
E. coli		
DH5a	$F-\varphi 80 lacZ \Delta M15 \Delta (lacZYA-argF)U169 recA1 endA1$	Invitrogen
	hsdR17(rk-, mk+)phoA supE44 thi-1 gyrA96 relA1 tonA	
BL21(DE3)	F- $ompT hsdS_B(r_B m_B)$ gal dcm (DE3)	Invitrogen

Primer	Sequence (5'→3') ^a	Application
mini-siaD-F1	TTActcgagAACCGCCTCTGAGCGGGAT	For constructing mini-CTX-siaD-Flag
mini-siaD-R1	GCGCTCCAGCCGCACGGCTATCCCTATCAG	For constructing mini-CTX-siaD-Flag
mini-siaD-F2	CTGATAGGGATAGCCGTGCGGCTGGAGCGC	For constructing mini-CTX-siaD-Flag
mini-siaD-R2	CCCaagettGCGCGCTGGAGCCGGGCG	For constructing mini-CTX-siaD-Flag
pUC-siaC-F	AGCgaattcCGTGTTTTAGGAAGAACACCATC	For constructing pUCP-siaC
pUC-siaC-R	CCCaagettCTACTCGTCGTGGGGCCTG	For constructing pUCP-siaC
siaC-E33A –F	GGCGATTCCTACCCGGCAAACTCCTATGAACT	For siaC E33A mutation
siaC-E33A –R	AGTTCATAGGAGTTTGCCGGGTAGGAATCGCC	For siaC E33A mutation
siaC-Y65A –F	CGCCTGCTGGCCCTGAACACCAGTTCGAT	For siaC Y65A mutation
siaC-Y65A –R	ATCGAACTGGTGTTCAGGGCCAGCAGGCG	For siaC Y65A mutation
siaC-N67A –F	CTGTACCTGGCCACCAGTTCGATCAAGGCCAT	For siaC N67A mutation
siaC-N67A –R	ATGGCCTTGATCGAACTGGTGGCCAGGTACAG	For siaC N67A mutation
siaC-K72A –F	AACACCAGTTCGATCGCGGCCATGATGGACATC	For siaC K72A mutation
siaC-K72A –R	GATGTCCATCATGGCCGCGATCGAACTGGTGTT	For siaC K72A mutation
siaC-R103A –F	GACCGGCGCAACGAAGCGGTCGCCGAGCTGGC	For siaC R103A mutation
siaC-R103A –R	GCCAGCTCGGCGACCGCTTCGTTGCGCCGGTC	For siaC R103A mutation
siaC-E110A –F	GCCGAGCTGGCCGAGGCGTTCCGCGAGGACTGC	For siaC E110A mutation
siaC-E110A –R	GCAGTCCTCGCGGAACGCCTCGGCCAGCTCGGC	For siaC E110A mutation
pUC-siaB-F	AGCgaattcCCTTCCGATTCGACTAGGGG	For constructing pUCP-siaB
pUC-siaB-R	CCCaagettTCAGATCACGGCGCGCAG	For constructing pUCP-siaB
siaB-E61A-F	GTGTACATCGCCATGACCCAGAACATCCGC	For siaB-E61A mutation
siaB-E61A-F	GCGGATGTTCTGGGTCATGGCGATGTACAC	For siaB-E61A mutation
siaB-Q64A-F	GAGATGACCGCCAACATCCGCCACTACGCC	For siaB-Q64A mutation
siaB-Q64A-F	GGCGTAGTGGCGGATGTTGGCGGTCATCTC	For siaB-Q64A mutation
siaB-R67A-F	CAGAACATCGCCCACTACGCCAATCTCAAGGGCTA	For siaB-R67A mutation
siaB-R67A-F	TAGCCCTTGAGATTGGCGTAGTGGGCGATGTTCTG	For siaB-R67A mutation
siaB-N65A-F	TCGAGATGACCCAGGCCATCCGCCACTACGC	For siaB N65A mutation
siaB-N65A-R	GCGTAGTGGCGGATGGCCTGGGTCATCTCGA	For siaB N65A mutation
siaB-N100A-F	GTGGTGTCCGCCGGCGCCCTGGTGGAACGCGAC	For siaB N100A mutation
siaB-N100A-R	GTCGCGTTCCACCAGGGCGCCGGCGGACACCAC	For siaB N100A mutation
siaB-Y69A-F	CAGAACATCCGCCACGCCGCCAATCTCAAGGGC	For siaB Y69A mutation
siaB-Y69A-R	GCCCTTGAGATTGGCGGCGTGGCGGATGTTCTG	For siaB Y69A mutation
siaB-L110A-F	GACGACGGCCAGAGCGCGGGTGCGCAGCATCCAG	For siaB L110A mutation
siaB-L110A-R	CTGGATGCTGCGCACCGCGCTCTGGCCGTCGTC	For siaB L110A mutation

Table S3. Primes used in this study.

siaB-F174A-R	AGCgaattcTCAGATCACGGCGCGCAGGCTGGCGAA GGCGCGCCCGTCGGG	For siaB F174A mutation
pUC-siaA-F	AGCgaattcCAACCTGCTCGCCGGCCT	For constructing pUCP-siaA
pUC-siaA-R	AGCaagettGTCCGTTGAAGCAGAGCAGGATG	For constructing pUCP-siaA
pUC-siaD-F	AGCgaattcGGACCTGCGCCTGCTGTACC	For constructing pUCP-siaD
pUC-siaD-R	CCCaagettTCAGCGCGCTGGAGCCGGG	For constructing pUCP-siaD
pUC-siaD-flag-R	CCCaagettTCACTTGTCATCGTCGTCCTTGTAG	For constructing pUCP-siaD-flag
	TCGCGCGCTGGAGCCGGG	
siaD-G-F	GCCGCTGGGGGCGCCGAGGAATTCCTC	For constructing pUCP-siaD ^{R130G}
siaD-G-R	GAGGAATTCCTCGGCGCCCCAGCGGC	For constructing pUCP-siaD ^{R130G}
pUC-sadC-F	AGCgaattc CAGTCGACGATCGAGTCGGAC	For constructing pUCP-sadC
pUC-sadC-R	CCCaagcttTCAGGCACTGGTGACCTCCC	For constructing pUCP-sadC
pUC-PA2133-F	AGCgaattcGTGAACGGTTCCCCACAGG	For constructing pUCP-PA2133
pUC-PA2133-R	AGCaagettTCACCCTGGCGGCTCGC	For constructing pUCP-PA2133
pmm-up	TGCctgcacaagcttGACTACAAGGACGACGATGA	For constructing pMMB67EH-Flag
	CAAGGATTACAAAGATGACGACGA	
pmm-down	GCAgatatcTCATTTATCATCATCGTCCTTATAG	For constructing pMMB67EH-Flag
	TCCTTATCGTCGTCATCTTTGTAAT	
pmm-siaC-F	AGCgaattcATGAGTGACCTGCACATACCCG	For constructing pMMB67EH-siaC-Flag
pmm-siaC-R	CCCaagcttCTCGTCGTGGGCCTGGAT	For constructing pMMB67EH-siaC-Flag
pmm-siaB-F	AGCgaattcATGGAAACGCTAGACCTGCTG	For constructing pMMB67EH-siaB-Flag
pmm-siaB-R	CCCaagcttGATCACGGCGCGCAGGCT	For constructing pMMB67EH-siaB-Flag
pmm-siaA-F	AGCgaattcATGGCGGCGAACTGGGGG	For constructing pMMB67EH-siaA-Flag
pmm-siaA-R	CCCaagcttGTCGAATCGGAAGGACAGGAT	For constructing pMMB67EH-siaA-Flag
pmm-siaD-F	AGCgageteATGCGGCTGGAGCGCATCG	For constructing pMMB67EH-siaD-Flag
pmm-siaD-R	CCCaagcttGCGCGCTGGAGCCGGGCG	For constructing pMMB67EH-siaD-Flag
pmm-siaA337-F	AGCgaattcCGCCTGCTGTTGCGCCCC	For constructing pMMB67EH-siaA ³³⁷ -Flag
pmm- siaA386-F	AGCgaattcCGGCACACCGCCGAGCTG	For constructing pMMB67EH-siaA ³⁸⁶ -Flag
ptrg-siaC-F	AGCggatccAGTGACCTGCACATACCCGG	For constructing pTRG-siaC
ptrg-siaC-R	AGCgaattcCTACTCGTCGTGGGGCCTGG	For constructing pTRG-siaC
ptrg-siaA337-F	AGCggatccCGCCTGCTGTTGCGCCCC	For constructing pTRG-siaA ³³⁷
ptrg-siaA337-R	AGCgaattcCTAGTCGAATCGGAAGGACAGG	For constructing pTRG-siaA ³³⁷
ptrg-siaA386-F	AGCggatccCGGCACACCGCCGAGCTG	For constructing pTRG-siaA ³⁸⁶
ptrg-siaA386-R	AGCgaattcCTAGTCGAATCGGAAGGACAGG	For constructing pTRG-siaA ³⁸⁶
siaD-bam-F	AGCggatccCGGCTGGAGCGCATCGCC	For constructing pBT-siaD and pTRG-siaD
siaD-sal1-R	CCGgtcgacTCAGCGCGCTGGAGCCGG	For constructing pBT-siaD and pTRG-siaD
pbt-siaB-F	AGCgaattccATGGAAACGCTAGACCTGCTG	For constructing pBT-siaB

pbt-siaB-R	AGCggatccTCAGATCACGGCGCGCAG	For constructing pBT-siaB
pbt-siaC-F	AGCgaattccATGAGTGACCTGCACATACCCG	For constructing pBT-siaC
pbt-siaC-R	AGCggatccCTACTCGTCGTGGGCCTGG	For constructing pBT-siaC
siaA ₃₈₆ -ecor-F	AGCgaattcCACACCGCCGAGCTGGAA	For constructing pSumo-siaA386 and pGEX-
		siaA ₃₈₆
siaA ₃₈₆ -hind-R	CCCaagettCTAGTCGAATCGGAAGGACAGG	For constructing pSumo-siaA ₃₈₆
siaA ₃₈₆₋ xho-R	CCCctcgagCTAGTCGAATCGGAAGGACAGG	For constructing pGEX-siaA386
siaC-bam-F	TTAggatecGGCGGAGGAATGAGTGACCTGCAC	For constructing pET-siaC, pSumo-siaC and pGEX- siaC
siaC-eco-R	CCCgaattcCTACTCGTCGTGGGGCC	For constructing pET-siaC, pSumo-siaC and pGEX- siaC
siaB-bam-F	ATAggatccATGGAAACGCTAGACCTGCTGG	For constructing pSumo-siaB and pGEX-siaB
siaB-eco-R	CTAgaattcTCAGATCACGGCGCGCA	For constructing pSumo-siaB and pGEX-siaB
siaD-bam-F	ATAggatccGTGCGGCTGGAGCGCAT	For constructing pSumo-siaD and pGEX-siaD
siaD-sal-R	CCCgtcgacGCGCGCTGGAGCC	For constructing pSumo-siaD and pGEX-siaD
siaB-H1F	AGCgaattcTGGCTGCTGAAGGAAGACG	For construction of pEX-siaB-H
siaB-H1R	TGCtctagaCAGCAGGTCTAGCGTTTCCAT	For construction of pEX-siaB-H
siaB-H2F	TGCtctagaTACAAGGAGCAGCTACGCCG	For construction of pEX-siaB-H
siaB-H2R	CCCaagettAGGGACAGGACATGGACTGC	For construction of pEX-siaB-H
siaC-H1F	AGCgaattcGGCCGCCAGCAACTCTTC	For construction of pEX-siaC-H
siaC-H1R	TGCtctagaCCGGGTATGTGCAGGTCACT	For construction of pEX-siaC-H
siaC-H2F	TGCtctagaGAGGACTGCAGCTTCCCCTT	For construction of pEX-siaC-H
siaC-H2R	CCCaagettACCCAGCACTACGCCGACT	For construction of pEX-siaC-H
siaD-H1F	AGCgaattcCATCCTGCTCTGCTTCAACG	For construction of pEX-siaD-H
siaD-H1R	TGCtctagaGGCGATGCGCTCCAGCCGCA	For construction of pEX-siaD-H
siaD-H2F	TGCtctagaCGCGACAAATGCGTGTTCG	For construction of pEX-siaD-H
siaD-H2D	CCCaagettTCACGCCGATGGAAACCTG	For construction of pEX-siaD-H
siaA-H1F	AGCgaattcGACCCGCTCAACGGCATC	For construction of pEX-siaA-H
siaA-H1R	TGCtctagaGGCACAGGCCAGCAACAG	For construction of pEX-siaA-H
siaA-H2F	TGCtctagaACTGACGGTTTCCTCGACCAG	For construction of pEX-siaA-H
siaA-H2R	CCCaagettCGATGCGGTGTTCGGTAAC	For construction of pEX-siaA-H
siaB-C-H1F-bam	AGCggatccCCTACATTCCCCAACTGCG	For construction of pEX-siaC-siaB-H
siaB-C-H1R-xba	TGCtctagaCAGCAGGTCTAGCGTTTCCAT	For construction of pEX-siaC-siaB-H
siaB-C-H2F-xba	TGCtctagaGACGAGTAGCCGACGATGAG	For construction of pEX-siaC-siaB-H
siaB-C-H2R-hind	CCCaagettAGGGACAGGACATGGACTGC	For construction of pEX-siaC-siaB-H

Reference

- Becher A, Schweizer HP (2000) Integration-proficient *Pseudomonas aeruginosa* vectors for isolation of single-copy chromosomal lacZ and lux gene fusions. *Biotechniques* 29: 948-50, 952
- Hoang TT, Karkhoff-Schweizer RR, Kutchma AJ, Schweizer HP (1998) A broad-hostrange Flp-FRT recombination system for site-specific excision of chromosomallylocated DNA sequences: application for isolation of unmarked *Pseudomonas aeruginosa* mutants. *Gene* 212: 77-86
- West SE, Schweizer HP, Dall C, Sample AK, Runyen-Janecky LJ (1994) Construction of improved *Escherichia-Pseudomonas* shuttle vectors derived from pUC18/19 and sequence of the region required for their replication in *Pseudomonas aeruginosa*. *Gene* 148: 81-6
- Yang C, Wu R, Liu H, Chen Y, Gao Y, Chen X, Li Y, Ma J, Li J, Gan J (2018) Structural insights into DNA degradation by human mitochondrial nuclease MGME1. *Nucleic Acids Res* 46: 11075-11088