Supplementary Materials

Supplementary Methods

aROC curve analysis of winner's curse

We evaluated whether the estimated aAUC and aROC may be biased because of the "winner's curse" or using those metabolites most significantly associated with cancer.

We first performed stepwise selection to identify the peaks most strongly associated with liver cancer and, using those peaks, calculated the resulting aAUC and aROC. Note this is a slightly modified and simplified selection procedure and is intended only to evaluate the influence of the winner's curse.

We then estimated the bias in the above estimates of aAUC and aROC using the following steps. We split the data into training (90%) and test (10%) sets, selected metabolites and built the predictor using the training set and estimated the aAUC and aROC using the test set. We repeat this calculation 10x using 10 splits of the data and report the average aAUC and aROC (**Supplementary Figure 5**). Note, the difference between these averages and the overall estimates (based on the entire dataset) reflect the bias from potentially overfitting the model.

						P-value		
Compound #	ID (monoisotopic mass@RT)	Compound name	MSI identification confidence level	m/z	RT (min)	Coffee intake †	Liver cancer‡	Liver disease mortality‡
1	449.3132@6.451681*	Glycochenodeoxycholic acid	1	450.3205	6.451681	2.69x10 ⁻¹⁴	6.85X10 ⁻⁷	3.32x10 ⁻¹⁰
1	471.2943@6.4516096			472.3016	6.4516096	2.29x10 ⁻¹²	9.98x10 ⁻⁷	1.52x10 ⁻⁹
2	465.3082@6.1825604*	Glycocholic acid	1	466.3155	6.1825604	2.23x10 ⁻⁸	6.63x10 ⁻⁸	1.57x10 ⁻⁷
2	482.3352@6.181003			483.3425	6.181003	8.73x10 ⁻⁹	1.31x10 ⁻⁶	4.19x10 ⁻⁷
2	518.2202@6.1818233			519.2275	6.1818233	1.15x10 ⁻⁷	5.98x10 ⁻⁶	1.87x10 ⁻⁷
3	136.0382@0.86198366*	Hypoxanthine	1	137.0455	0.8620	1.05x10 ⁻⁷	1.19x10 ⁻⁷	1.98x10 ⁻⁶
4	159.0675@1.5374656*	Serotonin	1	160.0748	1.5374656	8.44x10 ⁻⁸	1.17x10 ⁻⁵	1.25x10 ⁻⁷
5	181.0767@1.275114*	Tyrosine	1	182.0840	1.2751	1.84x10 ⁻⁶	5.75x10 ⁻⁷	4.08x10 ⁻⁷
5	181.0766@0.86087453	-		182.0839	0.8609	4.75x10 ⁻⁸	3.91x10 ⁻⁸	3.23x10 ⁻⁹
5	135.0678@0.86145175			136.0751	0.8615	1.72x10 ⁻⁸	7.10x10 ⁻⁸	2.47x10 ⁻⁹
5	118.042@0.8618372			119.0493	0.8618	3.01x10 ⁻⁷	2.45x10 ⁻⁷	2.11x10 ⁻⁹
5	164.0467@0.86240983			165.0540	0.8624	1.25x10 ⁻⁹	4.89x10 ⁻⁸	8.78x10 ⁻¹⁰
5	135.0673@1.2750853			136.0746	1.2751	5.63x10 ⁻⁶	4.58x10 ⁻⁶	4.77x10 ⁻⁷
6	545.7893@6.9137807	LysoPC(18:2)	2	546.7966	6.9137807	9.08x10 ⁻¹¹	3.96x10 ⁻⁸	4.40x10 ⁻⁹
6	286.1276@6.9126344			287.1349	6.9126344	7.70x10 ⁻¹⁰	1.90x10 ⁻⁷	1.62x10 ⁻⁸
6	538.8086@6.914731*			539.8159	6.914731	1.39x10 ⁻⁸	4.06x10 ⁻⁷	5.31x10 ⁻¹⁰
6	806.4585@6.9148936			807.4658	6.9148936	1.45x10 ⁻⁷	8.19x10 ⁻⁸	4.10x10 ⁻⁹
6	538.3067@6.915277			539.3140	6.915277	1.58x10 ⁻⁶	1.24x10 ⁻⁶	4.43x10 ⁻⁶
6	805.9551@6.9153476			806.9624	6.9153476	4.72x10 ⁻¹⁰	2.64x10 ⁻⁷	4.39x10 ⁻⁹
6	798.4699@6.916353			799.4772	6.916353	3.59x10 ⁻¹⁰	5.30x10 ⁻⁸	3.65x10 ⁻⁹
6	797.9663@6.9167204			798.9736	6.9167204	6.44x10 ⁻¹¹	2.74x10 ⁻⁸	2.75x10 ⁻⁸
7	481.3229@6.8804502*	LysoPC(15:0)	2	482.3302	6.8804502	<1.11x10 ⁻¹⁶	4.33x10 ⁻⁸	5.96x10 ⁻¹⁰
8	479.3426@7.109446*	LysoPC(P-16:0)	2	480.3499	7.109446	4.82x10 ⁻¹¹	7.63x10 ⁻⁸	3.16x10 ⁻⁷
9	230.1626@2.280263*	Dipeptide: Leu-Val or isomer	3	231.1699	2.280263	4.32x10 ⁻⁷	1.15x10 ⁻⁵	1.07x10 ⁻⁶
10	481.3495@7.157514*	Unknown	4	482.3568	7.157514	5.77x10 ⁻¹⁵	1.01x10 ⁻⁷	1.57x10 ⁻⁷
11	124.0638@2.238123*	Unknown	4	125.0711	2.238123	<1.11x10 ⁻¹⁶	6.59x10 ⁻⁶	1.10x10 ⁻⁶
12	249.0052@2.7640297	Unknown	4	250.0125	2.7640297	<1.11x10 ⁻¹⁶	1.15x10 ⁻⁵	5.65x10 ⁻¹¹

Supplementary Table 1. Identification of trigonelline and 38 features associated with liver cancer, liver disease mortality and coffee intake.

12	202.0168@2.7641954*			203.0241	2.7641954	<1.11x10 ⁻¹⁶	3.78x10 ⁻⁶	8.74x10 ⁻¹¹
13	242.1067@4.0267076*	Unknown	4	243.1140	4.0267076	5.01x10 ⁻¹⁴	1.05x10 ⁻⁵	1.13x10 ⁻⁸
14 14	278.076@4.280106* 238.0836@4.280605	Unknown	4	279.0833 239.0909	4.280106 4.280605	9.86x10 ⁻¹⁰ 9.15x10 ⁻¹⁰	1.65x10 ⁻⁶ 1.93x10 ⁻¹⁰	1.20x10 ⁻⁷ 1.04x10 ⁻⁹
15	356.1964@5.496086*	Unknown	4	357.2037	5.496086	<1.11x10 ⁻¹⁶	1.69x10 ⁻⁶	2.47x10 ⁻⁷
16	388.2573@6.339673*	Unknown	4	389.2646	6.339673	5.44x10 ⁻⁶	3.05x10 ⁻⁶	4.30x10 ⁻⁸
17	504.3029@6.8187194*	Unknown	4	505.3102	6.8187194	<1.11x10 ⁻¹⁶	5.46x10 ⁻⁶	6.31x10 ⁻¹²
18	793.9569@6.9292555*	Unknown	4	794.9642	6.9292555	1.23x10 ⁻¹¹	1.34x10 ⁻⁵	3.98x10 ⁻⁶
19	292.9962@0.6360238*	Unknown	4	294.0035	0.6360	2.76x10 ⁻¹⁰	1.68x10 ⁻⁶	7.99x10 ⁻⁸
20	162.0534@0.64166015*	Unknown	4	163.0607	0.6417	6.09x10 ⁻⁷	1.53x10 ⁻⁷	4.83x10 ⁻⁷
21	202.1313@0.8667429*	Unknown	4	203.1386	0.8667	2.76x10 ⁻¹⁰	3.53x10 ⁻⁶	2.30x10 ⁻⁶
22	159.0292@0.6753366*	Trigonelline	1	160.0365	0.6753	<1.11x10 ⁻¹⁶	4.68x10 ⁻⁵	3.07x10 ⁻⁸

* Indicates the main feature that was used to estimate associations with outcomes of interest.

[†]P-values were estimated from linear regression models treating a given spectral feature as the (log₂-transformed) continuous response variable and coffee consumption (continuous, g/day) as the exposure variable. Models were adjusted for age, smoking intensity (cigarettes/day), run order and the surrogate variables identified by SVA and observations from both case-control sets was used (N=940). Statistical tests were two-sided.

P-values were estimated from conditional logistic regression models treating case status, liver cancer (n=221 cases; n=221 controls) or liver disease death (n=242 cases; n=242 controls), as the response variable and a given spectral feature as the (log₂-transformed) continuous exposure variable. Models were adjusted for age, smoking intensity (cigarettes/day) and run order. Statistical tests were two-sided.

Abbreviations: MSI, Metabolomics Standards Initiative; RT, retention time

Supplementary Table 2. Odds ratios and 95% confidence intervals for incident liver cancer comparing men in the 90th and 10th percentiles, based on the distribution in controls, for top unknown metabolites, using conditional logistic regression

Direction of				>0 to 10 years of	>10 years of follow-	Model 2
association	Metabolite No. (mass@RT)	Unadjusted model	Model 1 *	follow-up (model 1) † ‡	up (model 1) †§	(diet adjusted) †
Increased	Unknown 12 (202.0168@2.7641954)					
risk	OR (95% CI) *	3.71 (2.15-6.42)	3.61 (1.92-6.79)	7.02 (1.40-35.10)	3.26 (1.51-7.00)	3.05 (1.53-6.11)
	P-value [¶]	< 0.001	< 0.001	0.02	0.003	0.002
	Unknown 13 (242.1067@4.0267076)					
	OR (95% CI) *	3.23 (2.00-5.22)	2.93 (1.71-5.02)	3.58 (1.13-11.33)	3.66 (1.78-7.55)	2.55 (1.42-4.56)
	P-value [¶]	< 0.001	< 0.001	0.03	< 0.001	0.002
	Unknown 16 (388.2573@6.339673)					
	OR (95% CI) *	5.51 (2.75-11.07)	4.93 (2.32-10.48)	4.83 (1.04-22.43)	6.36 (2.35-17.20)	4.64 (2.04-10.57)
	P-value [¶]	< 0.001	< 0.001	0.04	< 0.001	< 0.001
	Unknown 17 (504.3029@6.8187194)					
	OR (95% CI) *	3.07 (1.90-4.94)	3.31 (1.87-5.86)	3.01 (0.87-10.36)	3.99 (1.89-8.44)	3.29 (1.73-6.24)
	P-value [¶]	< 0.001	< 0.001	0.08	< 0.001	< 0.001
	Unknown 19 (292.9962@0.6360238)					
	OR (95% CI) *	5.18 (2.82-9.51)	4.21 (2.15-8.23)	9.15 (1.73-48.34)	4.31 (1.88-9.88)	5.21 (2.40-11.34)
	P-value [¶]	< 0.001	< 0.001	0.01	< 0.001	< 0.001
	Unknown 20 (162.0534@0.64166015)					
	OR (95% CI)*	8.32 (3.96-17.46)	6.77 (2.94-15.56)	8.60 (1.79-41.45)	9.00 (3.07-26.38)	7.03 (2.91-16.97)
	P-value [¶]	< 0.001	< 0.001	0.01	< 0.001	< 0.001
Decreased	Unknown 10 (481.3495@7.157514)					
risk	OR (95% CI)*	0.08 (0.03-0.18)	0.12 (0.05-0.29)	0.004 (<0.001-0.08)	0.22 (0.08-0.61)	0.12 (0.04-0.32)
	P-value [¶]	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001
	Unknown 11 (124.0638@2.238123)					
	OR (95% CI)*	0.31 (19-0.51)	0.30 (0.17-0.55)	0.07 (0.01-0.40)	0.42 (0.21-0.83)	0.31 (0.15-0.66)
	P-value [¶]	< 0.001	< 0.001	0.003	0.01	0.002
	Unknown 14 (278.076@4.280106)					
	OR (95% CI)*	0.41 (0.29-0.58)	0.39 (0.26-0.57)	0.45 (0.22-0.92)	0.35 (0.21-0.57)	0.30 (0.19-0.47)
	P-value [¶]	< 0.001	< 0.001	0.03	< 0.001	< 0.001
	Unknown 15 (356.1964@5.496086)					
	OR (95% CI)*	0.31 (0.19-0.50)	0.27 (0.16-0.48)	0.27 (0.09-0.80)	0.24 (0.11-0.50)	0.29 (0.16-0.55)
	P-value [¶]	< 0.001	< 0.001	0.02	< 0.001	< 0.001
	Unknown 18 (793.9569@6.9292555)					
	OR (95% CI)*	0.26 (0.15-0.44)	0.28 (0.15-0.52)	0.03 (0.004-0.22)	0.48 (0.24-0.96)	0.31 (0.16-0.61)
	P-value [¶]	< 0.001	< 0.001	< 0.001	0.04	< 0.001
	Unknown 21 (202.1313@0.8667429)					
	OR (95% CI) *	0.22 (0.12-0.42)	0.20 (0.10-0.41)	0.21 (0.05-0.90)	0.14 (0.06-0.36)	0.20 (0.09-0.42)
	P-value	< 0.001	< 0.001	0.04	< 0.001	< 0.001

* ORs for 221 liver cancer cases and 221 matched controls compare the 90th to the 10th percentile of metabolite values based on the distribution in the controls; letting X₉₀ and X₁₀, denote the 90th percentile and 10th percentile in controls, and β denoted the log(OR) from the conditional logistic regression model, the OR is $e^{\beta(X90-X10)}$

† Models adjusted for entry age (years), body mass index (kg/m²), smoking intensity (cigarettes/day), smoking duration (years), alcohol intake (none, <11.6 g/day, ≥ 11.6 g/day, or missing), self-reported diabetes status (yes or no), education (\leq or > elementary education), and run order

‡ n=146 (73 cases; 73 matched controls); missing alcohol assigned to highest frequency category owing to unstable risk estimates

§ n=296 (148 cases; 148 matched controls)

|| Models additionally adjusted for coffee intake (none, <1, 1 to <2, 2 to <3, or \geq 3 cups (8 oz) per day), fruit and vegetable intake (g/1000 kcal), red meat intake (g/1000 kcal), white meat intake (g/1000 kcal), processed meat intake (g/1000 kcal), fish intake (g/1000 kcal), saturated fat intake (g/1000 kcal), energy intake (kcal); subjects with missing FFQ data were grouped using an indicator variable for missing

 \P P-value for X² test obtained from conditional logistic regression model for a given metabolite (modeled on a continuous basis); all tests were two-sided.

Abbreviations: CI, confidence interval; OR, odds ratio; RT, retention time

Supplementary Table 3. Odds ratios and 95% confidence intervals for liver disease death comparing men in the 90th and 10th percentiles, based on the distribution in controls, for top unknown metabolites, using conditional logistic regression

Direction of				>0 to 10 years of	>10 years of follow-	Model 2
association	Metabolite No. (mass@RT)	Unadjusted model	Model 1 *	follow-up (model 1) †‡	up (model 1) †§	(diet adjusted) †
Increased	Unknown 12 (202.0168@2.7641954)					
risk	OR (95% CI)*	4.39 (2.82-6.81)	3.72 (2.34-5.93)	3.82 (1.95-7.50)	3.94 (1.91-8.13)	3.69 (2.18-6.26)
	P-value [¶]	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001
	Unknown 13 (242.1067@4.0267076)					
	OR (95% CI) *	3.69 (2.40-5.66)	3.41 (2.14-5.42)	3.04 (1.58-5.86)	3.84 (1.90-7.78)	3.04 (1.82-5.07)
	P-value¶	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001
	Unknown 16 (388.2573@6.339673)					
	OR (95% CI) *	7.92 (3.83-16.37)	10.01 (4.33-23.14)	59.98 (9.64-372.98)	4.85 (1.60-14.73)	9.91 (4.02-24.40)
	P-value¶	< 0.001	< 0.001	< 0.001	0.01	< 0.001
	Unknown 17 (504.3029@6.8187194)					
	OR (95% CI) *	5.43 (3.38-8.74)	4.61 (2.75-7.74)	2.83 (1.42-5.65)	8.41 (3.41-20.73)	4.03 (2.30-7.06)
	P-value¶	< 0.001	< 0.001	0.003	< 0.001	< 0.001
	Unknown 19 (292.9962@0.6360238)					
	OR (95% CI) *	5.26 (2.89-9.59)	5.06 (2.60-9.83)	5.84 (2.14-15.91)	5.73 (2.10-15.64)	5.04 (2.46-10.35)
	P-value¶	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001
	Unknown 20 (162.0534@0.64166015)					
	OR (95% CI) *	5.51 (2.90-10.47)	6.79 (3.24-14.22)	7.26 (2.58-20.46)	9.59 (2.64-34.82)	7.47 (3.28-17.06)
	P-value¶	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001
Decreased	Unknown 10 (481.3495@7.157514)					
risk	OR (95% CI) *	0.16 (0.08-0.31)	0.19 (0.09-0.40)	0.24 (0.08-0.69)	0.14 (0.05-0.43)	0.22 (0.10-0.50)
	P-value¶	< 0.001	< 0.001	0.01	< 0.001	< 0.001
	Unknown 11 (124.0638@2.238123)					
	OR (95% CI) *	0.31 (0.20-0.48)	0.37 (0.23-0.58)	0.55 (0.31-0.98)	0.22 (0.10-0.50)	0.40 (0.22-0.72)
	P-value¶	< 0.001	< 0.001	0.04	< 0.001	0.003
	Unknown 14 (278.076@4.280106)					
	OR (95% CI) *	0.47 (0.36-0.61)	0.50 (0.38-0.66)	0.48 (0.32-0.71)	0.44 (0.27-0.73)	0.50 (0.37-0.69)
	P-value¶	< 0.001	< 0.001	0.003	0.001	< 0.001
	Unknown 15 (356.1964@5.496086)					
	OR (95% CI) *	0.26 (0.16-0.43)	0.32 (0.19-0.54)	0.36 (0.15-0.84)	0.32 (.16-0.65)	0.41 (0.23-0.74)
	P-value¶	< 0.001	< 0.001	0.02	0.002	0.003
	Unknown 18 (793.9569@6.9292555)					
	OR (95% CI) *	0.34 (0.22-0.53)	0.38 (0.24-0.61)	0.29 (0.15-0.59)	0.49 (0.23-1.05)	0.42 (0.25-0.71)
	P-value [¶]	< 0.001	< 0.001	< 0.001	0.07	0.001
	Unknown 21 (202.1313@0.8667429)					
	OR (95% CI) *	0.32 (0.20-0.51)	0.33 (0.20-0.56)	0.41 (0.21-0.79)	0.28 (0.12-0.65)	0.40 (0.23-0.70)
	P-value	< 0.001	< 0.001	0.01	0.003	0.001

* ORs for 242 fatal liver disease cases and 242 matched controls compare the 90th to the 10th percentile of metabolite values based on the distribution in the controls; letting X₉₀ and X₁₀, denote the 90th percentile and 10th percentile in controls, and β denoted the log(OR) from the conditional logistic regression model, the OR is $e^{\beta(X90-X10)}$ † Models adjusted for entry age (years), body mass index (kg/m²), smoking intensity (cigarettes/day), smoking duration (years), alcohol intake (none, <11.6 g/day, ≥11.6 g/day, or missing), self-reported diabetes status (yes or no), education (\leq or > elementary education), and run order ‡ n=228 (114 cases; 114 matched controls) § n=256 (128 cases; 128 matched controls)

|| Models additionally adjusted for coffee intake (none, <1, 1 to <2, 2 to <3, or \geq 3 cups (8 oz) per day), fruit and vegetable intake (g/1000 kcal), red meat intake (g/1000 kcal), white meat intake (g/1000 kcal), processed meat intake (g/1000 kcal), fish intake (g/1000 kcal), saturated fat intake (g/1000 kcal), energy intake (kcal); subjects with missing FFQ data were grouped using an indicator variable for missing.

 \P P-value for X² test obtained from conditional logistic regression model for a given metabolite (modeled on a continuous basis); all tests were two-sided. Abbreviations: CI, confidence interval; OR, odds ratio; RT, retention time **Supplementary Table 4.** Odds ratios and 95% confidence intervals for sensitivity analyses of incident liver cancer comparing men in the 90th and 10th percentiles, based on the distribution in controls, for top metabolites, using conditional logistic regression, and excluding those with: 1) a self-reported history of diabetes or a baseline fasting glucose level \geq 126 mg/dl; 2) a seropositive hepatitis B or C test; or ICD9 code 155.2

		Exclusion Factor		
Chemical Class	Metabolite	Diabetes †	HCV or HBV ‡	ICD9:155.2 §
Alkaloid	Trigonelline			
	OR (95% CI) *	0.27 (0.08-0.87)	0.17 (0.05-0.56)	0.36 (0.19-0.66)
	P-value	0.01	0.004	0.001
Amino Acid	Tyrosine			
	OR (95% CI) *	2.92 (0.85-10.02)	7.18 (1.94-26.61)	4.37 (2.12-9.00)
	P-value	0.09	0.003	< 0.001
Indoleamine	Serotonin			
	OR (95% CI) *	0.17 (0.05-0.56)	0.34 (0.14-0.83)	0.33 (0.18-0.58)
	P-value	0.003	0.02	< 0.001
Dipeptide	Leucyl-valine			
	OR (95% CI) *	0.12 (0.03-0.45)	0.13 (0.04-0.42)	0.24 (0.13-0.45)
	P-value	0.002	< 0.001	< 0.001
Bile Acid	Glycochenodeoxycholic acid			
	OR (95% CI) *	2.08 (0.86-5.04)	3.70 (1.49-9.20)	4.29 (2.30-8.00)
	P-value	0.11	0.01	< 0.001
	Glycocholic acid			
	OR (95% CI) *	3.36 (1.19-9.55)	6.72 (2.20-20.60)	5.70 (2.88-11.28)
	P-value	0.02	<0.001	< 0.001
Glycerophospholipid	LysoPC(15:0)			
	OR (95% CI) *	0.14 (0.03-0.56)	0.22 (0.07-0.67)	0.17 (0.09-0.35)
	P-value	0.01	0.01	< 0.001
	LysoPC(P-16:0)			
	OR (95% CI) *	0.29 (0.07-1.21)	0.16 (0.05-0.55)	0.21 (0.10-0.42)
	P-value	0.09	0.004	< 0.001
	LysoPC(18:2)			
	OR (95% CI) *	0.27 (0.08-0.85)	0.08 (0.02-0.31)	0.24 (0.13-0.46)
	P-value	0.02	< 0.001	< 0.001
Purine derivative	Hypoxanthine			
	OR (95% CI) *	0.16 (0.04-0.63)	0.30 (0.11-0.86)	0.17 (0.08-0.36)
	P-value	0.01	0.03	<0.001

* ORs for liver cancer cases and matched controls compare the 90th to the 10th percentile of metabolite values based on the distribution in the controls; letting X₉₀ and X₁₀, denote the 90th percentile and 10th percentile in controls, and β denoted the log(OR) from the conditional logistic regression model, the OR is e^{β(X90-X10)}. Models adjusted for entry age (years), body mass index (kg/m²), smoking intensity (cigarettes/day), smoking duration (years), alcohol intake (none, <11.6 g/day, ≥11.6 g/day, or missing), self-reported diabetes status (yes or no; *if applicable*), education (\leq or > elementary education), and run order

[†] Analysis includes n=184 (92 cases; 92 matched controls) without a self-reported history of diabetes or a baseline fasting glucose level \geq 126 mg/dl; models are additionally adjusted for Homeostatic Model Assessment of Insulin Resistance (HOMA-IR)

 \ddagger Analysis includes n=184 (92 cases; 92 matched controls) without a positive hepatitis B or C test

§ Analysis includes n=408 (204 cases; 204 matched controls) without a liver cancer diagnosis code of 155.2 (not specified as primary or secondary liver cancer)
I P-value for X² test obtained from conditional logistic regression model for a given metabolite (modeled on a continuous basis); all tests were two-sided.
Abbreviations: CI, confidence interval; ICD, International Classification of Diseases; OR, odds ratio; RT, retention time

Supplementary Table 5. Odds ratios and 95% confidence intervals for sensitivity analyses of incident liver disease mortality comparing men in the 90th and 10th percentiles, based on the distribution in controls, for top metabolites, using conditional logistic regression, and excluding those with: (1) a self-reported history of diabetes or a baseline fasting glucose level \geq 126 mg/dl; (2) or a seropositive hepatitis B or C test

		Exclusion Factor				
Chemical Class	Metabolite	Diabetes †	HCV or HBV ‡			
Alkaloid	Trigonelline					
	OR (95% CI) *	0.17 (0.07-0.39)	0.23 (0.11-0.48)			
	P-value	0.001	<0.001			
Amino Acid	Tyrosine					
	OR (95% CI) *	2.98 (1.25-7.10)	4.71 (2.26-9.84)			
	P-value	0.003	<0.001			
Indoleamine	Serotonin					
	OR (95% CI) *	0.31 (0.16-0.61)	0.35 (0.19-0.65)			
	P-value	< 0.001	<0.001			
Dipeptide	Leucyl-valine					
	OR (95% CI) *	0.29 (0.15-0.57)	0.34 (0.20-0.59)			
	P-value	< 0.001	<0.001			
Bile Acid	Glycochenodeoxycholic acid					
	OR (95% CI) *	4.83 (2.16-10.82)	7.25 (3.32-15.82)			
	P-value	< 0.001	<0.001			
	Glycocholic acid					
	OR (95% CI) *	2.79 (1.54-5.00)	5.10 (2.63-9.90)			
	P-value	< 0.001	<0.001			
Glycerophospholipid	LysoPC(15:0)					
	OR (95% CI) *	0.22 (0.10-0.49)	0.24 (0.12-0.48)			
	P-value	< 0.001	<0.001			
	LysoPC(P-16:0)					
	OR (95% CI) *	0.44 (0.19-1.01)	0.32 (0.16-0.65)			
	P-value	0.05	0.002			
	LysoPC(18:2)					
	OR (95% CI) *	0.15 (0.05-0.39)	0.16 (0.07-0.35)			
	P-value	< 0.001	<0.001			
Purine derivative	Hypoxanthine					
	OR (95% CI) *	0.38 (0.18-0.77)	0.38 (0.21-0.69)			
	P-value	0.01	0.001			

* ORs for fatal liver disease cases and matched controls compare the 90th to the 10th percentile of metabolite values based on the distribution in the controls; letting X₉₀ and X₁₀, denote the 90th percentile and 10th percentile in controls, and β denoted the log(OR) from the conditional logistic regression model, the OR is e^{β(X90-X10)}. Models are adjusted for entry age (years), body mass index (kg/m²), smoking intensity (cigarettes/day), smoking duration (years), alcohol intake (none, <11.6 g/day, ≥11.6 g/day, or missing), self-reported diabetes status (yes or no; *if applicable*), education (≤ or > elementary education), and run order

[†] Analysis includes n=330 (165 cases; 165 matched controls) without a self-reported history of diabetes or a baseline fasting glucose level \geq 126 mg/dl; models are additionally adjusted for Homeostatic Model Assessment of Insulin Resistance (HOMA-IR)

‡ Analysis includes n=360 (180 cases; 180 matched controls) without a positive hepatitis B or C test

P-value for X^2 test obtained from conditional logistic regression model for a given metabolite (modeled on a continuous basis); all tests were two-sided.

Abbreviations: CI, confidence interval; HBV, hepatitis B virus; HCV, hepatitis C virus; OR, odds ratio; RT, retention time

The PCA plot shows 14 observations that were excluded as extreme outliers (PC1>100) by case status and batch. Controls in batch 1 and 2 are highlighted in green and orange, respectively; cases in batch 1 and 2 are highlighted in blue and yellow, respectively. Abbreviations: PCA, principle components analysis.

(D)

Time (min)

0.5-

450 450.5

6.9

5.3 6.4 6.5 6.6 6 Counts vs. Acquisition Time (min) 6.1 6.2 6.3 6.7 6.8

453.3313 (M+H)+ (M+H)+ П 0. 451 451.5 452 452.5 Counts vs. Mass-to-Charge (m/z) 453 453.5

452 3284

- 414.2984 цL x10 ³ +ESI Product Ion (6.458 min) Frag=175.0V CID@5.0 (450.3217[z=1] -> **) 62... 432.3103 414.2995 **4**50.3204 50 75 100 125 150 175 200 225 250 275 300 325 350 375 400 425 450

-412.2837 -430.2945 447.2416

432.3095

66.3155

Counts vs. Mass-to-Charge (m/z)

(E)

1

0.5-

0.

(H)

(G)

Supplementary Figure 2. Chromatograms and spectra from representative study samples and pure chemical standards from IROA Technologies' Mass Spectrometry Metabolite Library (when available).

Chromatograms and isotope patterns were generated with Find Compounds by Formula in Agilent MassHunter Qualitative Analysis B.06.00 SP1. Isotope patterns, highlighted with red rectangles, represent an isotope pattern calculated from the elemental composition (shown in the title of each spectra), and bars inside the rectangles show the observed isotope peaks. For MS/MS spectra, the precursor ion is indicated with a blue dot above the ion, with collision energy labeled on top of the spectra. **Panels A-J** correspond to the following compounds: (A) Trigonelline (HMDB0000875, trigonelline was detected as [M+Na]+ (m/z 160.037). Chromatographic specificity was confirmed by identification with a pure chemical standard and by ensuring separation from the major potentially interfering compounds of identical elemental composition p-Aminobenzoic acid (RT: 2.33 min), anthranilic acid (RT: 3.52 min), and salicylamide (RT: 3.45 min)); (B) L-

Tyrosine (HMDB0000158, L-Tyrosine appeared as 2 strongly correlated (Pearson's r: 0.93) chromatographic peaks); (**C**) Hypoxanthine (HMDB0000157); (**D**) Serotonin (HMDB0000259, serotonin was detected as an in-source fragment $[M-NH_3+H]^+$ (m/z 160). The $[M+H]^+$ ion of serotonin (m/z 177) was not chromatographically separated from an interfering ion of identical mass but produced fragments specific to serotonin. The specificity of the ion m/z 160 was confirmed by comparing its retention time and MS/MS fragments against those from a pure serotonin standard.); (**E**) Glycocholic acid (HMDB0000138); (**F**) Glycochenodeoxycholic acid (HMDB0000637); (**G**) Leu-Val or isomer; (**H**) LysoPC(15:0) (HMDB0010381); (**I**) LysoPC(18:2) (Several ions were detected, with [2M+H+K]2+ (m/z 539.3146) being the most intense, from which MS/MS spectra were acquired.); (**J**) LysoPC(P-16:0) (HMDB0010407).

Distribution of trigonelline by liver cancer case status Distribution of trigonelline by fatal liver disease case status 25 20 20 15 15 Percent Percent 10 10 5 5 0 0 3.5 3.0 3.5 4.0 4.5 5.0 3.0 4.0 4.5 5.0 5.5 log2(peak vaue) log2(peak vaue) CASE 0 1 CASE 0 1

(A)

(C)

(F)

log2(peak vaue)

CASE 0 1

log2(peak vaue)

CASE 0 1

(G)

Supplementary Figure 3. Histograms of metabolites (log₂-transformed) by case type and status.

Histograms illustrate the distribution of each identified metabolite (log₂-transformed) among cases (red) and controls (blue) for the liver cancer and fatal liver disease case-control sets. Panels A-J correspond to the following compounds: (A) trigonelline, (B) hypoxanthine, (C) tyrosine, (D) leu-val, (E) glycocholic acid (GCA), (F) glycochenodeoxycholic acid (GCDCA), (G) serotonin, (H) lysoPC(15:0), (I) lysoPC(P-16:0), (J) lysoPC(18:2).

(I)

Supplementary Figure 4. Heatmap of metabolite correlations.

The heatmap was generated using hierarchical clustering of partial Spearman correlations, adjusted for case status and batch variables, between metabolite features that were statistically significantly associated with coffee drinking, liver cancer, and/or fatal liver disease.

We evaluated whether the estimated aAUC and aROC may be biased because of the "winner's curse" or using those metabolites most significantly associated with cancer. Panels A and B show the overall (aAUC = 0.81 (95% CI: 0.77-0.85) and unbiased estimate (aAUC = 0.72) for liver cancer, respectively. The liver cancer model includes glycocholic acid, leu-val, hypoxanthine, and lysoPC(18:2) Panels C and D show the overall (0.75 (95% CI: 0.71-0.80) and unbiased estimate (aAUC = 0.76) for liver disease mortality, respectively. The liver disease mortality model includes glycochenodeoxycholic acid, lysoPC(18:2), serotonin, and trigonelline.