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Introduction

Hierarchical Modelling of Species Communities (HMSC) is a statistical framework for analysis of multivariate
data, typically from species communities. It uses Bayesian inference to fit latent-variable joint species
distribution models. The conceptual basis of the method is outlined in Ovaskainen et al. (2017).

Running a typical HMSC analysis with Hmsc includes five main steps: (1) Setting model structure and fitting
the model, (2) Examining MCMC convergence, (3) Evaluating model fit, (4) Exploring parameter estimates,
and (5) Making predictions. To demonstrate the workflow, we will here analyse a dataset of bird communities
in Finland. We fitted Hmsc models to count data on the 50 most common Finnish birds surveyed during 914
counts on 200 permanent transect routes during the years 2006-2014 (same routes counted multiple times; for
methodology see Lindström et al. (2015)).

(1) Setting model structure and fitting the model

Set directories and load packages

localDir = "."
dataDir = file.path(localDir, "data")
ModelDir = file.path(localDir, "models")
MixingDir = file.path(localDir, "mixing")
MFDir = file.path(localDir, "model_fit")
source("load_libraries.r")
library(knitr)

Read data matrices

The minimum data requirement for running a HMSC analysis is presence or abundance data of at least one
species (Y matrix), and a matrix of environmental covariates (X matrix). If presence or abundance data
are available for at least two species, the model can be fitted with no environmental covariates and then
corresponds to a model-based ordination analysis.

In addition, the HMSC framework allows including trait and phylogenetic data. These data are used to
inform the estimation of species’ responses to environmental covariates. The effects of traits (T matrix) are
modelled as linear regression slopes of environmental responses of each species on their trait values. The effect
of phylogeny (C matrix) is modelled assuming that species’ environmental responses follow a multivariate
normal distribution with a phylogenetic signal in the variance matrix. The phylogeny can be supplied directly
as a phylogenetic distance matrix, or as a phylogenetic tree.

To implement spatially explicit latent factors (Ovaskainen et al. 2016), we also need a matrix of geographical
coordinates for each site (xy).
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# SPECIES AND ENVIRONMENTAL DATA
data = read.csv(file.path(dataDir, "data.csv"))

# SPECIES DATA
Y = as.matrix(data[,10:59])

# ENVIRONMENTAL COVARIATES
XData = data[,c(5,6,7,8,9)]

# PHYLOGENY
phyloTree <- ape::read.tree(file.path(localDir,"data", "CTree.tre"))

# TRAITS
TrData = read.csv(file.path(dataDir, "traits.csv"))
TrData$LogMass = log(TrData$Mass)

Set up the model

Hmsc handles an arbitrary number of random effects that can be spatially explicit, hierarchical, or both. In
the current example there is one spatial random effect (Route). The dataframe studyDesign describes the
assignment of sampling units (rows in Y) to levels of each random effect. Further structure of each random
effect (e.g. spatial coordinates) are assigned using HmscRandomLevel. To avoid fitting excessive latent factors,
we constrain the minimum and maximum number of latent factors to 5 and 10, respectively.
# STUDY DESIGN
studyDesign = matrix(NA,nrow(Y),2)
studyDesign[,1] = sprintf('Route_%.3d',data$Route)
studyDesign[,2] = sprintf('Year_%.3d',data$Year)
studyDesign = as.data.frame(studyDesign)
colnames(studyDesign) = c("Route","Year")
studyDesign[,1]=as.factor(studyDesign[,1])
studyDesign[,2]=as.factor(studyDesign[,2])

# RANDOM EFFECT STRUCTURE, HERE ROUTE AS A SPATIAL LATENT VARIABLE
routes = levels(studyDesign[,1])
nroutes = length(routes)
xy = matrix(0, nrow = nroutes, ncol = 2)
for (i in 1:nroutes){

rows=studyDesign[,1]==routes[[i]]
xy[i,1] = mean(data[rows,]$x)
xy[i,2] = mean(data[rows,]$y)

}
colnames(xy) = c("x","y")
sRL = xy
rownames(sRL) = routes
rL = HmscRandomLevel(sData=sRL)
rL$nfMin = 5
rL$nfMax = 10

As environmental covariates (the matrix X) we included the categorical variable “habitat type” with the
five levels broadleaved forests (including mixed forest), coniferous forests, open habitats (mountains and
scrubland), urban habitats (human settlements and farmland) and wetlands (marine and inland water
ecosystems and peatlands), and the continuous covariate “spring temperature” (mean in April and May
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from European Agency of Climate; Haylock (2008)), for which we included also a squared term to allow for
intermediate niche optimum. Habitat data were based on Corine land cover data (European Environment
Agency (2016)) from years 2006 (used for study years 2006-2009) and 2012 (used for study years 2010-2014),
measured within 300 meters buffer from the census sites.

Covariates can be supplied as a user-formatted matrix X. Alternatively, a dataframe XData can be supplied
containing the variables to be included in the model, and possibly other variables not included in the model.
In the latter case, variables to be included are specified using familiar R formula syntax. Both X and Xdata
may contain continuous variables, categorical variables, and interactions. Here, AprMay is a continuous
covariate fitted with a linear term and a second-order polynomial term, and Habitat is a categorical variable.
XFormula = ~ Habitat + poly(AprMay, degree = 2, raw = TRUE)

Similarly, trait data can be supplied in the dataframe TrData, with the traits to be included in the model
specified using TrFormula. As species traits (the matrix T), we included the categorical variable “migration
strategy” with three levels (resident, short-distance migrant and long-distance migrant, see Saurola et al.
(2013; Valkama et al. 2014), and the continuous variable “body size” (log-transformed, according to Cramp
et al. 1977-1994). We included in the analyses a phylogenetic tree for the study species, acquired from
birdtree.org (Jetz et al. 2012).
TrFormula = ~Migration + LogMass

We fitted both a probit model to data truncated to presence-absence (Model PA), as well as a lognormal
Poisson model for the full count data including zeros and non-zeros (Model ABU). For both model types,
we considered three model variants that included either both environmental covariates and spatial latent
variables (XS), only environmental covariates (X), or only spatial latent variables (S). Thus, we fitted in total
the six models PA.XS, PA.X, PA.S, ABU.XS, ABU.X, and ABU.S.

To construct the model, we use the Hmsc function. We demonstrate model setup for the abundance model with
environmental and spatial predictors. The argument distr sets the error distribution of the analysis, here
lognormal Poisson. Binomial (distr = “probit”“) and Gaussian (distr =”normal“) errors are also available.

m = Hmsc(Y = Y,
XData = XData, XFormula = XFormula,
TrData = TrData, TrFormula = TrFormula,
phyloTree = phyloTree,
distr = "lognormal poisson",
studyDesign = studyDesign, ranLevels = list(Route=rL))

Run MCMC and save the model

The MCMC sampling scheme can be controlled by adjusting the desired number of posterior samples, the
thinning interval (number of steps of the MCMC chain between each sample), the length of the transient to
be cut from the chain before sampling, and the number of chains. adaptNf controls the number of iterations
during which the number of latent factors are adapted. Depending on the length of the chain and the
complexity of the model, it may take a long time to run. It is therefore always recommended to save the
outputs to a local file. A good strategy can be first to run the model with thin = 1 to obtain inital results
reasonably fast, and then increase the thinning interval (e.g. to 10 and then 100) until model convergence is
adequate and results stabilise.

We applied the default priors in Hmsc (see Appendix S1). We sampled the posterior distribution with four
MCMC chains, each of which were run for 150,000 iterations, out of which the first 50,000 were removed as
burn-in and the remaining ones were thinned by 100 to yield 1000 posterior samples per chain, and thus 4000
posterior samples in total.
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thin = 100
samples = 1000
nChains = 4

set.seed(1)
ptm = proc.time()

m = sampleMcmc(m, samples = samples, thin = thin,
adaptNf = rep(ceiling(0.4*samples*thin),1),
transient = ceiling(0.5*samples*thin),
nChains = nChains, nParallel = nChains,
initPar = "fixed effects")

computational.time = proc.time() - ptm

filename = file.path(ModelDir, paste("model_", as.character(model), "_",
c("pa","abundance")[modeltype], "_thin_", ... = as.character(thin),
"_samples_", as.character(samples), ".Rdata", sep = ""))

save(m, file=filename, computational.time)

(2) Examining MCMC convergence

A key step in MCMC-based Bayesian analysis is to assess the performance of the sampling procedure by
evaluating chain mixing and convergence. This can be easily done in Hmsc using tools from the coda package.
Within Hmsc, the function convertToCodaObject converts the posterior distributions produced by Hmsc into
coda-format.

Compute mixing statistics

Chain mixing can be evaluated, for example, by assessing the effective size of the posterior sample, i.e. the
sample size controlled for autocorrelation among sequential posterior samples (Figure 1). The effective sample
size can be extracted using the coda::effectiveSize function. Here, we use for-loops to sequentially load
and process each of the six models.
thin = 100
samples = 1000
nChains = 4
comp.time = matrix(nrow=2, ncol=3)
for (modeltype in 1:2){

for (model in 1:3){
filename = file.path(ModelDir, paste("model_",as.character(model),"_",

c("pa","abundance")[modeltype],
"_chains_",as.character(nChains),

"_thin_", as.character(thin),"_samples_",
as.character(samples),
".Rdata",sep = ""))

load(filename)
comp.time[modeltype,model] = computational.time[1]

mpost = convertToCodaObject(m)

es.beta = effectiveSize(mpost$Beta)
ge.beta = gelman.diag(mpost$Beta,multivariate=FALSE)$psrf
es.gamma = effectiveSize(mpost$Gamma)
ge.gamma = gelman.diag(mpost$Gamma,multivariate=FALSE)$psrf
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es.rho = effectiveSize(mpost$Rho)
ge.rho = gelman.diag(mpost$Rho,multivariate=FALSE)$psrf
es.V = effectiveSize(mpost$V)
ge.V = gelman.diag(mpost$V,multivariate=FALSE)$psrf

if (model==2){
es.omega = NA
ge.omega = NA

} else {
es.omega = effectiveSize(mpost$Omega[[1]])
ge.omega = gelman.diag(mpost$Omega[[1]],multivariate=FALSE)$psrf

}

mixing = list(es.beta=es.beta, ge.beta=ge.beta,
es.gamma=es.gamma, ge.gamma=ge.gamma,
es.rho=es.rho, ge.rho=ge.rho,
es.V=es.V, ge.V=ge.V,
es.omega=es.omega, ge.omega=ge.omega)

filename = file.path(MixingDir, paste("mixing_",as.character(model),"_",
c("pa","abundance")[modeltype],
"_chains_",as.character(nChains),
"_thin_", as.character(thin),"_samples_",
as.character(samples),
".Rdata",sep = ""))

save(file=filename, mixing)
}}

The mixing of the MCMC chains was satisfactory but not ideal (Figure 1): the effective sample sizes for some
parameters were much below the theoretical optimum of 4000 samples. This is because posterior sampling
of non-normal models with MCMC for large and multidimensional data is highly challenging in general (L.
L. Duan, Johndrow, and Dunson 2018), and this is one key area where further methods development in
probabilistic modelling are required. In contrast, the mixing properties of Hmsc are much better for normally
distributed data, as shown by the simulated data examples in Appendix S3.

(3) Evaluating model fit

Explanatory power

The explanatory power of the model (Figure 2, grey bars) can be evaluated by different measures of model
fit, including RMSE (root mean square error), R2 (coefficient of determination), Tjur R2 (coefficient of
discrimination), and AUC (area under the receiver operating characteristic curve). In Hmsc, these are returned
by the evaluateModelFit function.

• computePredictedValues returns model-predicted values for the original sampling units used in model
fitting.

• evaluateModelFit returns several measures of model fit, including RMSE (root mean square error),
R2 (coefficient of determination), Tjur R2 (coefficient of discrimination), and AUC (area under the
receiver operating characteristic curve).
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Figure 1: Distribution of effective sample sizes for multivariate parameters
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thin = 100
samples = 1000
nChains = 4
for(modeltype in c(1,2)){

for (model in c(1,2,3)){
filename = file.path(ModelDir, paste("model_",as.character(model),

c("_pa","_abundance")[modeltype],
"_chains_",as.character(nChains),

"_thin_", as.character(thin),
"_samples_", as.character(samples),
".Rdata",sep = ""))

load(filename)
set.seed(1)
predY = computePredictedValues(m, expected=FALSE)
MF = evaluateModelFit(hM=m, predY=predY)
filename = file.path(MFDir, paste("model_",as.character(model),

c("_pa","_abundance")[modeltype],
"_chains_",as.character(nChains),
"_thin_", as.character(thin),
"_samples_", as.character(samples),
".Rdata",sep = ""))

save(file=filename, MF)
}

}

Predictive power

The predictive power of the model (Figure 2, red bars) can be evaluated by cross-validation, where the
model is refitted to a subset of data and predictions made for sites not included in the model fit. The same
measures of model fit can be computed as for explanatory power. We use the createPartition function to
split the data into subsets (‘folds’, here 4) used sequentially in model fitting, and pass this as an argument to
computePredictedValues. The column argument controls which random factor (here ‘Route’) is sampled
for the partition. For each random level included in a given parition, all data (sampling units) are included.

For smaller data sets, it is feasible to perform leave-one-out cross-validation (nfolds = number of sampling
units), with predictions for each site made from a model excluding only the focal site. However, because
cross-validation involves refitting the model for each fold, this may not be computationally feasible for larger
data sets. On the other extreme, two-fold cross-validation (nfolds=2, half of the original data used for model
fitting) takes approximately as long as fitting the original model, but may be overly pessimistic in terms
of predictive power. One strategy is therefore to first perform two-fold cross-validation, then increase the
number of folds and assess how results change.
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Figure 2: Explanatory (grey bars) and predictive (red bars) power as evaluated by R2

for(modeltype in c(1,2)){
for (model in c(1,2,3)){

filename = file.path(ModelDir, paste("model_",as.character(model),
c("_pa","_abundance")[modeltype],
"_chains_",as.character(nChains),

"_thin_", as.character(thin),
"_samples_", as.character(samples),
".Rdata",sep = ""))

load(filename)
set.seed(1)
partition=createPartition(hM=m, nfolds=4, column="Route")
predY = computePredictedValues(m, expected=FALSE, partition=partition,

nCores = length(m$postList))
MFCV = evaluateModelFit(hM=m, predY=predY)
filename = file.path(MFDir, paste("model_CV_",as.character(model),

c("_pa","_abundance")[modeltype],
"_chains_",as.character(nChains),
"_thin_", as.character(thin),
"_samples_", as.character(samples),
".Rdata",sep = ""))

save(file=filename, MFCV)
}

}

As expected, the explanatory power of the models as evaluated by species-specific R2 values (Figure 2, grey
bars) are always higher than the predictive power (Figure 2, red bars), the latter of which are here based on
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Random: Route (mean = 88.1)
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Figure 3: Variance partitioning for the spatially explicit presence/absence model with covariates

four-fold cross-validation. We chose four-fold cross-validation as e.g. two-fold cross-validation would include
only half of the data for fitting, and thus potentially lead to compromised results, whereas e.g. leave-one-out
cross-validation would be computationally very demanding. While the models including spatial components
clearly had the highest explanatory power, their predictive power was approximately equal to that of the
models that included only environmental covariates, indicating less overfitting of the latter. The lognormal
Poisson models were almost equally good in separating presences from absences as the probit models, even
though the latter were specifically tailored for doing so. The spatial lognormal Poisson models had relatively
high explanatory power, but not predictive power, related to abundance variation (Figure 2).

(4) Exploring parameter estimates

Compute and plot variance partitioning

The total variance explained by the model can be partitioned into the contributions of each fixed effect (or
group of fixed effects) and each random effect using the computeVariancePartitioning function (Figure 3).
This function also returns the Trait r2, the proportion of variance explained by fixed effects explained by
traits included in the model.

Visualise effects of covariates

The plotBeta function plots heatmaps of parameter estimates or posterior support values of species’
environmental responses, i.e. how species in Y responds to covariates in X (Figure 4).

Basic parameters of plotBeta are

• post: Posterior summary of Beta obtained from getPostEstimate
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• param: Controls which parameter is plotted, current options include “Mean” for parameter estimates
and “Support” for posterior support.

Plots can be labeled by species and covariate names, numbers according to their order in Y and X, or both.

• spNamesNumbers: Logical of length 2, where first entry controls whether species names are added to
axes, and second entry controls whether species numbers are added.

• covNamesNumbers: Logical of length 2, where first entry controls whether covariate names are added
to axes, and second entry controls whether covariate numbers are added.

The order in which species and covariates are plotted can also be adjusted

• SpeciesOrder: Controls the ordering of species, current options are “Original”, “Tree”, and “Vector”.
If SpeciesOrder = “Vector”, an ordering vector must be provided (see SpVector). If plotTree = T,
SpeciesOrder is ignored.

• SpVector: Controls the ordering of species if SpeciesOrder = “Vector”. If a subset of
species are listed, only those will be plotted. For alphabetic ordering, try match(1:hM$ns,
as.numeric(as.factor(colnames(hM$Y))))

• covOrder: Controls the ordering of covariates, current options are “Original” and “Vector”. If covOrder
= “Vector”, an ordering vector must be provided (see covVector).

• covVector: Controls the ordering of covariates if covOrder = “Vector”. If a subset of covariates are
listed, only those will be plotted.

If phylogenetic information is included in the model, we can visualize phylogenetic patterns in environmental
responses by mapping them onto the phylogeny by setting plotTree=TRUE.
postBeta = getPostEstimate(m, parName="Beta")
plotBeta(m, post=postBeta, param="Support", plotTree=TRUE, spNamesNumbers=c(TRUE,FALSE))

## [1] 0.3 1.0 0.0 1.0

Visualise effects of traits

Similarly, the plotGamma function plots heatmaps of parameter estimates or posterior support values of the
effect of traits on species’ environmental responses, i.e. how species’ environmental responses (β) responds to
traits in T (Figure 5).
postGamma = getPostEstimate(m, parName="Beta")
plotGamma(m, post=postGamma, param="Support", trNamesNumbers=c(TRUE,TRUE))

Plot species associations

An advantage of HMSC and other joint species distribution models is that they allow estimating residual
covariances among species, after controlling for shared responses to the covariates. In Hmsc these associations
are given by the Ω matrix, and can be extracted using the computeAssociations function. For visual clarity,
we here plot only those associations with at least 95% posterior support, and order species into groups
associated positively and negatively (Figure 6).
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Figure 4: Posterior support values for species environmental responses
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Figure 5: Posterior support values for effects of traits on species’ environmental responses

OmegaCor = computeAssociations(m)

supportLevel = 0.95
for (r in 1:m$nr){

plotOrder = corrMatOrder(OmegaCor[[r]]$mean,order="AOE")
toPlot = ((OmegaCor[[r]]$support>supportLevel) +

(OmegaCor[[r]]$support<(1-supportLevel))>0)*OmegaCor[[r]]$mean
par(xpd=T)
colnames(toPlot)=rownames(toPlot)=gsub("_"," ",x=colnames(toPlot))
corrplot(toPlot[plotOrder,plotOrder], method = "color",

col=colorRampPalette(c("blue","white","red"))(200),
title="",type="lower",tl.col="black",tl.cex=.7, mar=c(0,0,6,0))

}

Assessing parameter estimates numerically

For the univariate parameters α and ρ, we can assess parameter estimates and their associated uncertainty
by looking at the mean, standard deviations and quantiles of their posterior distributions (Table), returned
by summary().
mpost = convertToCodaObject(m)
print(summary(mpost$Rho))
summary(mpost$Alpha[[1]])
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Figure 6: Species associations
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Table 1: Mean, SD, SE, and quantiles for the phylogenetic signal
parameter Rho and the spatial scale parameter Alpha for the first
five spatial latent factors

Rho Alpha1[factor1] Alpha1[factor2] Alpha1[factor3] Alpha1[factor4] Alpha1[factor5]
Mean 0.0909 341.75 32.46 0.76 227.69 99.54
SD 0.1477 102.77 11.58 3.57 63.85 88.76
Naive SE 0.0023 1.62 0.18 0.06 1.01 1.40
Time-series SE 0.0023 4.85 0.36 0.07 1.13 1.61
2.5% 0.0000 203.42 12.71 0.00 127.14 38.14
25% 0.0000 266.99 25.43 0.00 177.99 50.86
50% 0.0000 317.85 25.43 0.00 216.14 76.28
75% 0.1600 394.13 38.14 0.00 266.99 101.71
97.5% 0.4800 597.55 63.57 12.71 381.42 343.59

(5) Making predictions

Visualize predicted variation over environmental gradients

An important feature of the HMSC model is the ability to predict community composition along environmental
gradients described by the covariates included in the model (X matrix). The constructGradient function is
built for this purpose. constructGradient takes as arguments a named focal variable, and a list of non-focal
variables. For each non-focal variable, details must be given about how the variable is to be treated, as
list(type,value), where value is needed only if type = 3.

• type = 1 fixes to the most likely value (defined as expected value for covariates, mode for factors)
• type = 2 fixes to most likely value, given the value of focal variable, based on a linear relationship
• type = 3 fixes to the value given

If a non-focal variable is not listed, type = 2 is used as default.

Fixing non-focal variables to the most likely value (type = 1) provides predictions for the marginal effect of
the focal variable, that is the effect of the focal variable independently of all non-focal variables. In contrast,
letting non-focal variables covary with the focal variable (type = 2) provides predictions for the net effect of
the focal variable, that is the total effect of the focal variable and any non-focal variables covarying with
the focal variable. Note that if the focal variable is continuous, selecting type 2 for a non-focal categorical
variable can cause abrupt changes in the predicted response. Fixing non-focal variables (type = 3) can be
useful e.g. for generating predictions for concrete ecological scenarios.

As an example, we construct a gradient over variation in AprMay, with Habitat fixed to urban (Figure 7),
and use the predictfunction to obtain predictions along the gradient.
thin = 100
samples = 1000
nChains = 4
model = 2
modeltype = 1
filename = file.path(ModelDir, paste("model_",as.character(model),

c("_pa","_abundance")[modeltype],
"_chains_",as.character(nChains),
"_thin_", as.character(thin),
"_samples_", as.character(samples),
".Rdata",sep = ""))

load(filename)
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Figure 7: Predicted values along a continuous gradient

Gradient = constructGradient(m, focalVariable="AprMay",
non.focalVariables=list(Habitat=list(3,"Urb")))

predY = predict(m, XData=Gradient$XDataNew, studyDesign=Gradient$studyDesignNew,
ranLevels=Gradient$rLNew, expected=TRUE)

The plotGradient function produces plots of predicted values along the gradient.

• measure = “S” plots species richness
• measure = “Y” plots the response of a species given by index
• measure = “T” plots community-weighed mean values of traits given by index

par(mfrow=c(1,3))
plotGradient(m, Gradient, pred=predY, measure="S", las=1,

showData = TRUE, main='Species richness (measure="S")')
plotGradient(m, Gradient, pred=predY, measure="Y", index=40, las=1,

showData = TRUE, main='Focal species occurrence (measure="Y")')
plotGradient(m, Gradient, pred=predY, measure="T", index=3, las=1,

showData = TRUE, main='Mean trait value (measure="T")')

Visualize spatial variation

For spatially explicit analyses, it can be interesting to visualize spatial patterns in the model estimates as
maps showing e.g. predicted species occurrence (Figure 8), or predicted species richness (Figure 9).

The following part of the code predicts the species occurrence matrix (predYR) and extracts xy-coordinates
(xy).
# READING THE GRID DATA
grid = read.csv(file.path(dataDir, "grid_10000.csv"))
grid = grid[!(grid$Habitat=="Ma"),]

# DEFINING THE NEW STUDY DESIGN
nyNew = nrow(grid)
StudyDesignNew = matrix(NA,nyNew,2, dimnames=list(NULL,names(m$studyDesign)))
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StudyDesignNew[,1] = sprintf('new_Route_%.3d',1:nyNew)
StudyDesignNew[,2] = sprintf('new_Year_%.3d',1:nyNew)
StudyDesignNew = as.data.frame(StudyDesignNew)
StudyDesignAll=rbind(m$studyDesign,StudyDesignNew)

# DEFINING RANDOM EFFECTS THAT INCLUDE BOTH OLD (USED FOR MODEL FITTING)
# AND NEW (THE GRID DATA) UNITS
rL1 = m$ranLevels[[1]]
xyold = rL1$s
xy = grid[,1:2]
rownames(xy) = StudyDesignNew[,1]
colnames(xy) = colnames(xyold)
xyall = rbind(xyold,xy)
rL1$pi = StudyDesignAll[,1]
rL1$s = xyall
if(FALSE){

predYR1 = predict(m, studyDesign=StudyDesignNew, XData=grid, ranLevels=list(Route=rL1),
expected=TRUE, predictEtaMean=TRUE)

predYR = apply(abind(predYR1,along=3),c(1,2),mean)
save(predYR,file="panels/predictions/predYR_thin_100_samples_1000_grid_10000.Rdata")

} else {
load("panels/predictions/predYR_thin_100_samples_1000_grid_10000.Rdata")
ta = 1:dim(predYR)[1]
predYR = predYR[ta,]
xy = grid[,1:2]
xy = xy[ta,]

}

# COMPUTE SPECIES RICHNESS (S), COMMUNITY WEIGHTED MEANS (predT),
# REGIONS OF COMMON PROFILE (RCP)
S=rowSums(predYR)
predT = (predYR%*%m$Tr)/matrix(rep(S,m$nt),ncol=m$nt)
RCP = kmeans(predYR, 7)
RCP$cluster = as.factor(RCP$cluster)

# EXTRACT THE OCCURRENCE PROBABILITIES OF ONE EXAMPLE SPECIES
pred_Cm = predYR[,50]

# MAKE A DATAFRAME OF THE DATA TO BE PLOTTED
mapData=data.frame(xy,S,predT,pred_Cm,RCP$cluster)

We are now ready to map the predicted values onto the map of Finland:
sp <- ggplot(data = mapData, aes(x=x, y=y, color=pred_Cm))+geom_point(size=1)
sp + ggtitle("Predicted Corvus monedula occurrence") +

xlab("East coordinate (km)") + ylab("North coordinate (km)") +
scale_color_gradient(low="blue", high="red", name ="Occurrence probability")

sp <- ggplot(data = mapData, aes(x=x, y=y, color=S))+geom_point(size=1)
sp + ggtitle("Predicted species richness") +

xlab("East coordinate (km)") + ylab("North coordinate (km)") +
scale_color_gradient(low="blue", high="red", name ="Species richness")
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Figure 8: Predicted occurrence probability of Corvus monedula
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