Supplementary Materials: Integrated Microfluidic Preconcentration and Nucleic Amplification System for Detection of Influenza a Virus H1N1 in Saliva

Yonghee Kim, Abdurhaman Teyib Abafogi, Buu Minh Tran, Jaewon Kim, Jinyeop Lee, Zhenzhong Chen, Pan Kee Bae, Kyoungsook Park, Yong-Beom Shin, Danny van Noort, Nae Yoon Lee and Sungsu Park

Materials	Molar Mass (g/mol)	Density (kg/m³)	Specific Heat Capacity (J/kg·K)	Thermal Conductivity (W/m·K)
Air	28.96	1.275	1.0044×10^{3}	2.61× 10 ⁻²
PCR fluid (Water)	10.82	997	4181.7	0.6069
PDMS (10:1)	1250	980	1100	0.18
Mineral oil	480	850	1670	0.14

Table 1. Material properties used in numerical analysis.

Figure S1. The 3D design (**a**, **c**, **e**) and their respective photographic images (**b**, **d**, **f**) of the master moulds for each layer: the lid (**a**, **b**), concentration (**c**, **d**), and PCR (**e**, **f**) layers.

Figure S2. A tailor-made flat heat block was used to conduct chip-based PCR, instead of using conventional heat block which contains either 48 or 96 wells to hold PCR tubes,