
DTD
Tutorial

Marian Schön1, Jakob Simeth1, Paul Heinrich1,
Franziska Görtler1, Stefan Solbrig2, Tilo Wettig2,

Peter J. Oefner3, Michael Altenbuchinger1, Rainer Spang1

marian.schoen@klinik.uni-regensburg.de

1 Statistical Bioinformatics, Institute of Functional Genomics,
University of Regensburg, Germany

2 Department of Physics, University of Regensburg, Germany
3 Institute of Functional Genomics, University of Regensburg, Germany

2019-12-03

Contents
Overview 1

Introduction to DTD 2

Data 2
Downloading . 2
Read in and preprocess . 3
Pheno information . 3
Single-Cell Profiles . 4
Reconstruct inferred bulk profiles . 4

DTD Analysis 6
Generate reference matrix X . 6
Generate training and test ‘in-silicio’ mixtures . 7
Assess the baseline deconvolution model . 8
Train a deconvolution model . 10
Assess the trained deconvolution model . 10
Deconvolute bulk profiles . 17

References 19

Overview
Loss-Function Learning (Görtler et al. 2018) allows to adapt a deconvolution model to a specific tissue
context. Here, we show an exemplary analysis using the R package DTD (Digital Tissue Deconvolution),
https://github.com/MarianSchoen/DTD,
and demonstrate how loss-function learning increases the deconvolution accuracy.
library(DTD)
for downloading an exemplary scRNA-Seq data set form ncbi:
library(GEOquery)
in order to show the runtime of our optimization:
library(tictoc)

1

mailto:marian.schoen@klinik.uni-regensburg.de
https://github.com/MarianSchoen/DTD

A complete DTD analysis consists of the following steps:

1. Preprocess labelled expression profiles (e.g. scRNA-Seq)
2. Generate a reference matrix and ‘in-silicio’ mixtures
3. Train the model
4. Assess the quality of the model
5. Deconvolute bulks to reconstruct their cellular composition

Introduction to DTD
The bulk gene expression profile of a tissue combines the expression profiles of all cells in this tissue. Digital
tissue deconvolution (DTD) addresses the inverse problem: Given the expression profile y of a tissue, what is
the cellular composition c of cells X in that tissue? The cellular composition c can be estimated by

arg min
c
||y −Xc||22.

This can be generalized by introducing a vector g

arg min
c
||diag(g)(y −Xc)||22. (2)

Every entry gi of g reflects importance of gene i for the deconvolution process. It can either be prior knowledge,
or learned on training data. Training data consists of artificial bulk profiles Y and their corresponding cellular
compositions C. We generate artificial mixtures Y and their quantities C with single-cell RNA-Seq profiles.
The underlying idea of loss-function learning DTD is to obtain the vector g by minimizing a loss function L
on the training set:

L = −
∑

j

cor(Cj,., Ĉj,.(g)),

subject to gi ≥ 0 and ||g||2 = 1.

Here, Ĉj,.(g) is the solution of formula (2). During training we iteratively adjust the g vector in the direction
of the gradient ∇L. The resulting g vector leads to cellular estimates Ĉ(g) that correlate best with the known
estimates C.

Data
DTD provides an algorithm to adapt a deconvolution model to its tissue context. For this, it requires labelled
data. The following sections show how to automatically download and process one data set, published by
(Tirosh et al. 2016). However, other scRNA-Seq data sets might be stored in different formats and, therefore,
need different processing scripts. Our R-package DTD focuses only on training a deconvolution model, not
on the preprocessing.
In this exemplary analysis we adapt a deconvolution model to a single-cell RNA-Seq data set of melanomas
(Tirosh et al. 2016). The data set can be downloaded via GEO entry ‘GSE72056’:

Downloading
Here, we download the complete supplement file, because it includes gene counts and cell labels (tumor, cell
type).
download the supplemental file:
raw <- getGEOSuppFiles(

GEO = "GSE72056"
)
the getGEOSuppFiles function creates a directory named "GSE72056",

2

in which the .txt.gz is stored. Read it in via:
tirosh.melanoma <- read.table(

file = "GSE72056/GSE72056_melanoma_single_cell_revised_v2.txt.gz",
stringsAsFactors = FALSE,
header = TRUE,
sep = "\t"

)

Read in and preprocess
Notice, that in the tirosh.melanoma object, the pheno information (tumor, malignant cell, and non-malignant
cell type) is combined with the count matrix.
We split tirosh.melanoma into a tm.pheno (tm for tirosh melanoma) and tm.expr object, respectively. In
the data set, the count matrix is stored as log2 values. DTD reconstructs bulks as a weighted sum of cell
profiles, therefore, the data must be stored in linear space.
The first 3 rows hold:
- "tumor"
- "malignant(1=no,2=yes,0=unresolved)",
- "non-malignant cell type (1=T,2=B,3=Macro.4=Endo.,5=CAF;6=NK)")
tm.pheno <- as.matrix(tirosh.melanoma[1:3, -1])
rownames(tm.pheno) <- tirosh.melanoma[1:3, 1]

workaround for the duplicated rownames:
row.names <- as.character(tirosh.melanoma[4:nrow(tirosh.melanoma), 1])
dupls.pos <- which(duplicated(row.names))
unique.names <- paste0(row.names[dupls.pos], "--2")
row.names[dupls.pos] <- unique.names
undo log transformation from tirosh (DTD works on an additive scale, not a multiplicative) ...
tm.expr <- as.matrix(2^(tirosh.melanoma[4:nrow(tirosh.melanoma), -1]) - 1)
... normalize each profile to a fixed number of counts...
tm.expr <- normalize_to_count(tm.expr)
... and reset the rownames.
rownames(tm.expr) <- row.names

Pheno information
The tm.pheno matrix holds 3 rows. The first row indicates the "tumor". Every single-cell profile with the
same "tumor" entry originates from the same sample. The second row holds the "malignant" information.
The third row gives the annotated cell type for each profile. All pheno entries are adapted from (Tirosh et al.
2016). In the raw data, "malignant" and "CellType" are given as numeric values. The following functions
map these numeric values to strings:
map.malignant <- function(x) {

if (x == 1) return("NOT_malignant")
if (x == 2) return("malignant")
if (x == 3) return("unresolved")
return("unassigned")

}
map.cell.type <- function(x) {

if (x == 1) return("T")
if (x == 2) return("B")
if (x == 3) return("Macro")
if (x == 4) return("Endo")

3

if (x == 5) return("CAF")
if (x == 6) return("NK")
return("unknown")

}
tm.pheno.readable <- data.frame(

"tumor" = tm.pheno["tumor",],
"malignant" = sapply(

tm.pheno["malignant(1=no,2=yes,0=unresolved)",],
map.malignant

),
"CellType" = sapply(

tm.pheno["non-malignant cell type (1=T,2=B,3=Macro.4=Endo.,5=CAF;6=NK)",],
map.cell.type

)
)
remove 'tm.pheno', only use 'tm.pheno.readable
rm(tm.pheno)

Single-Cell Profiles
In the data set there are 23686 features (rows), and 4645 single-cell profiles (columns). Each profile is
normalized to a fixed number of counts (via the DTD::normalize_to_count function, in the preprocess
section):
head(apply(tm.expr, 2, sum))

Cy72_CD45_H02_S758_comb CY58_1_CD45_B02_S974_comb
23686 23686
Cy71_CD45_D08_S524_comb Cy81_FNA_CD45_B01_S301_comb
23686 23686
Cy80_II_CD45_B07_S883_comb Cy81_Bulk_CD45_B10_S118_comb
23686 23686

Notice, that each row in the tm.expr matrix corresponds to a feature, and a column to a single-cell profile:
tm.expr[1:5, 1:2]

Cy72_CD45_H02_S758_comb CY58_1_CD45_B02_S974_comb
C9orf152 0.0000 0.00000
RPS11 140.7362 78.37141
ELMO2 0.0000 0.00000
CREB3L1 0.0000 0.00000
PNMA1 0.0000 0.00000

Reconstruct inferred bulk profiles
The data set consists of 4645 single-cell profiles from 19 tumors. In order to apply the model to bulk data,
we reconstruct the bulk profiles by summing up all single-cell profiles from the same tumor.
tumor.names <- as.character(unique(tm.pheno.readable$tumor))

initialize emtpy expression matrix ...
bulk.exprs <- matrix(NA,

nrow = nrow(tm.expr),
ncol = length(tumor.names)

)

4

rownames(bulk.exprs) <- rownames(tm.expr)
colnames(bulk.exprs) <- tumor.names

... and pheno matrix
bulk.pheno <- matrix(0,

nrow = length(tumor.names),
ncol = length(unique(tm.pheno.readable$CellType))

)
rownames(bulk.pheno) <- tumor.names
colnames(bulk.pheno) <- unique(tm.pheno.readable$CellType)

iterate over each tumor, and sum up all its profiles:
for (l.tumor in tumor.names) {

tmp.samples <- which(tm.pheno.readable$tumor == l.tumor)
bulk.exprs[, l.tumor] <- rowSums(tm.expr[, tmp.samples])

tmp.table <- table(tm.pheno.readable[tmp.samples, "CellType"])
bulk.pheno[l.tumor, names(tmp.table)] <- tmp.table / sum(tmp.table)

}
normalize the profiles:
bulk.exprs <- normalize_to_count(bulk.exprs)

We split the scRNA-Seq profiles into a training and test set based on the "tumor". For reproducibility, we
report test and training tumors.
split the melanoma data into a test and training set
(scRNA-Seq profiles of a melanoma are either in the
training, or in the test set)
set.seed(20)
train.pos <- sample(

x = 1:length(tumor.names)
, size = 0.5 * length(tumor.names)
, replace = FALSE
)

test.pos <- (1:length(tumor.names))[-train.pos]

cat("Training tumors: ", tumor.names[train.pos])

Training tumors: 89 84 80 53 60 75 58 72 81
cat("Test tumors: ", tumor.names[test.pos])

Test tumors: 71 74 79 82 59 67 65 78 88 94
train.melanomas <- tumor.names[train.pos]
test.melanomas <- tumor.names[test.pos]

train.profiles.pos <- which(tm.pheno.readable$tumor %in% train.melanomas)
train.pheno <- tm.pheno.readable[train.profiles.pos,]
notice, tm.expr and tm.pheno.readable are in the same order
=> therefore, subsetting by position in both objects is fine
train.profiles <- tm.expr[, train.profiles.pos]

test.profiles.pos <- which(tm.pheno.readable$tumor %in% test.melanomas)
test.pheno <- tm.pheno.readable[test.profiles.pos,]
test.profiles <- tm.expr[, test.profiles.pos]

5

DTD Analysis
All previous steps address the downloading and processing of exemplary data set. In this section, the DTD
analysis starts, all function calls are data-set independent.
Start your DTD analysis by constructing a vector that maps profiles to cell types, and choose which cell
types should be included in the reference matrix X. In the training data (and the bulk data) there might
be cell types that are not in the reference matrix, yet, the DTD algorithm finds the optimal g-vector to
deconvolute the present cell types. The effect can be seen by setting include.in.X to, e.g., c("B", "T") in
the following code chunk.
indicator.vector <- as.character(tm.pheno.readable$CellType)
names(indicator.vector) <- rownames(tm.pheno.readable)
indicator.train <- indicator.vector[train.profiles.pos]
indicator.test <- indicator.vector[test.profiles.pos]
include.in.X <- c("B", "CAF", "Macro", "NK", "T")

print(head(indicator.vector))

Cy72_CD45_H02_S758_comb CY58_1_CD45_B02_S974_comb
"B" "T"
Cy71_CD45_D08_S524_comb Cy81_FNA_CD45_B01_S301_comb
"unknown" "unknown"
Cy80_II_CD45_B07_S883_comb Cy81_Bulk_CD45_B10_S118_comb
"unknown" "unknown"
print(head(indicator.vector))

Cy72_CD45_H02_S758_comb CY58_1_CD45_B02_S974_comb
"B" "T"
Cy71_CD45_D08_S524_comb Cy81_FNA_CD45_B01_S301_comb
"unknown" "unknown"
Cy80_II_CD45_B07_S883_comb Cy81_Bulk_CD45_B10_S118_comb
"unknown" "unknown"

Generate reference matrix X
Using the indicator.vector and the include.in.X vectors we can generate a reference matrix X. Here,
for every cell type in include.in.X we randomly select 20% of all cells of that type, and average them. All
samples that have been used in creating X must not be used any further, and have been excluded from the
expression matrix.
The 'sample_random_X' generates a reference matrix X,
by randomly selecting 'percentage.of.all.cells' per cell type,
and averaging over them.
sample.X <- sample_random_X(

included.in.X = include.in.X,
pheno = indicator.train,
expr.data = train.profiles,
percentage.of.all.cells = 0.2,
normalize.to.count = TRUE

)
the function returns the 'X.matrix' ...
X.matrix <- sample.X$X.matrix

6

.. and all profiles that have been used to generate X.
The already used profiles must not be used any further.
samples.to.remove <- sample.X$samples.to.remove

Hence, they must be removed from the 'train.profiles' ...
remaining.train.profiles <- train.profiles[,

-which(colnames(train.profiles) %in% samples.to.remove)]
... and the corresponding indicator vector.
remaining.indicator.train <- indicator.train[colnames(remaining.train.profiles)]

Next, we reduce the number of features. Loss-function learning digital tissue deconvolution performs a feature
selection, and we could start the algorithm on all 23686 features. In this example, due to run time, we
preselect a set of features. The preselection is done via standard deviation in the reference matrix X.
n.features <- 500

calculate standard deviation per feature in X:
sds.in.x <- rowSds(X.matrix)
names(sds.in.x) <- rownames(X.matrix)
sorted.sds.in.x <- sort(sds.in.x, decreasing = TRUE)
and select the top 'n.features':
selected.features <- names(sorted.sds.in.x)[1:n.features]

reduce the feature set for all expression matrices:
X.matrix <- X.matrix[selected.features,]
remaining.train.profiles <- remaining.train.profiles[selected.features,]
test.profiles <- test.profiles[selected.features,]
bulk.exprs <- bulk.exprs[selected.features,]

Generate training and test ‘in-silicio’ mixtures
Next, we randomly mix single-cell profiles, resulting in artificial ‘in-silicio’ bulks. We use the training set
to train the model, and after that validate it on a test set. To this end, split all remaining profiles in a
disjoint training and test set. Mix the sets with the DTD function mix_samples. The number of artificial
bulk samples can be set as an hyperparameter. The runtime of the optimization increases linear with the
number of training samples and the number of features. Another hyperparameter is the number of single-cell
profiles per ‘in-silicio’ mixture. This parameter depends on the dimension of the data set.
rule of thumb:
n.samples <- n.features
there are ~2000 SC profiles in the training set,
choose 'n.per.mixture' ~20% of that => 400
n.per.mixture <- 400

training.data <- mix_samples(
expr.data = remaining.train.profiles,
pheno = remaining.indicator.train,
included.in.X = include.in.X,
n.samples = n.samples,
n.per.mixture = n.per.mixture,
verbose = FALSE

)

generate test mixtures, using the test profiles
test.data <- mix_samples(

7

expr.data = test.profiles,
pheno = indicator.test,
included.in.X = include.in.X,
n.samples = n.samples,
n.per.mixture = n.per.mixture,
verbose = FALSE

)

Assess the baseline deconvolution model
In this section, we show why adapting the deconvolution model to the tissue scenario is important. We
deconvolute the artificial test mixtures and the reconstructed bulk profiles with the baseline deconvolution
model. If gi = 1 for all genes i, the baseline deconvolution model can be seen in formula (2) - section
‘Introduction to DTD’. The following pictures show the deconvolution result per cell type for the baseline
model. For both, test set and bulk profiles, the deconvolution accuracy is low. On the y axis of the plot the
estimated cellular proportions are displayed, on the x axis the true proportions. We report a correlation per
cell type, and an overall correlation. The overall correlation averages cell type specific correlations. The
second plot shows the deconvolution results on the reconstructed bulks. Here, the training bulks are shown
as triangles and the test bulks as circles.
baseline.model <- rep(1, n.features)
names(baseline.model) <- selected.features
untrained.artificial.mixtures.pic <- ggplot_true_vs_esti(

DTD.model = baseline.model,
X.matrix = X.matrix,
test.data = test.data,
estimate.c.type = "direct",
title = " test bulks; baseline model: g=1"

)
print(untrained.artificial.mixtures.pic[[1]])
Here, we only show the first picture of the 'ggplot_true_vs_esti' plot list,
which is the plot gathering all cell types.
All following entries of 'untrained.art.mixtures.pic' hold a
true vs esti plot with only one cell type.

bulk.list <- list(
"mixtures" = bulk.exprs[selected.features,],
"quantities" = t(bulk.pheno[, colnames(X.matrix)])

)
untrained.bulk.deconvolution.pic <- ggplot_true_vs_esti(

DTD.model = baseline.model,
X.matrix = X.matrix,
test.data = bulk.list,
title = " reconstructed bulks; baseline model: g=1",
estimate.c.type = "direct",
shape.indi = ifelse(tumor.names %in% train.melanomas, "train", "test"),
show.legend = TRUE

)
print(untrained.bulk.deconvolution.pic[[1]])

8

B
Cor: 0.32

CAF
Cor: 0.06

Macro
Cor: 0.64

NK
Cor: 0.13

T
Cor: 0.09

0.
05

0.
07

0.
09

0.
11

0.
13

0.
01

0.
02

0.
03

0.
01

0.
02

0.
03

0.
04

0.
00

0

0.
00

5

0.
01

0

0.
01

5

0.
32

0.
36

0.
40

0.
44

−0.02

0.00

0.02

0.04

true

es
tim

at
ed

Overall Correlation: 0.25; test bulks; baseline model: g=1

B
Cor: 0.08

CAF
Cor: 0.34

Macro
Cor: 0.42

NK
Cor: 0.4

T
Cor: 0.26

0.
0

0.
1

0.
2

0.
3

0.
4

0.
00

0

0.
02

5

0.
05

0

0.
07

5

0.
10

0
0.

00

0.
05

0.
10

0.
15

0.
00

0.
02

0.
04

0.
06

0.
00

0.
25

0.
50

0.
75

1.
00

−1

0

1

true

es
tim

at
ed

shapeIndi

test

train

variable
B
Cor: 0.08
CAF
Cor: 0.34
Macro
Cor: 0.42
NK
Cor: 0.4
T
Cor: 0.26

Overall Correlation: 0.3; reconstructed bulks; baseline model: g=1

9

Train a deconvolution model
Using the train_deconvolution_model function a deconvolution model is adapted to the tissue. Hyperpa-
rameters can be set via '...'.
The train_deconvolution_model function adapts a DTD model to the training data, and afterwards au-
tomatically calls plot functions with default parameters, and stores the pictures in the pics entry of the
model list. We show the time consumption of our optimization using the R-package tictoc, even though the
runtime varies between workstations.
start.tweak <- rep(1, n.features)
names(start.tweak) <- selected.features
tic("time consumption of optimization: ")
model <- train_deconvolution_model(

tweak = start.tweak,
X.matrix = X.matrix,
train.data.list = training.data,
test.data.list = test.data,
estimate.c.type = "direct",
use.implementation = "cpp"
)

toc()

time consumption of optimization: : 1.026 sec elapsed

Assess the trained deconvolution model
In this section, we show visualizations of the training process of the model.

Optimization convergence

In the convergence entry, the visualization of the loss L against the iteration of the gradient descent is
shown. If the test.data is provided to the ggplot_convergence function, and all intermediate g vectors
are stored in the model, the test convergence is visualized as well. Notice, the optimization procedure uses
only the training data, and does not see the test data at any point. Therefore, a temporarily increasing loss
on the test data might occur.
print(model$pics$convergence)

10

−0.8

−0.6

−0.4

0 20 40 60 80
Iteration

Lo
ss

−
F

un
ct

io
n

variable

training

test

Loss−function curve during FISTA optimization

11

Regression path

In the path entry, the regression path of each gi is visualized over all iterations. Each line in the plot
corresponds to one gene. For gene i its line tracks gi over all iterations. On the y axis, the log10(g + 1) value
is shown. Notice, that by default, the legend is not plotted. In the ggplot_gpath function the parameter
show.legend can be set TRUE, then a legend is plotted as well.
print(model$pics$path)

below 33% Quantile below 67% Quantile below 100% Quantile

0 20 40 60 80 0 20 40 60 80 0 20 40 60 80

0.0

0.5

1.0

1.5

2.0

2.5

iteration

lo
g1

0(
g+

1)

path.with.legend <- ggplot_gpath(
DTD.model = model,
number.pics = 1,
subset = c("IGFBP7", "LYZ", "CTSW"),
show.legend = TRUE

)
print(path.with.legend$gPath)
plot(path.with.legend$legend)

12

below 100% Quantile

0 20 40 60 80

0.5

1.0

1.5

2.0

iteration

lo
g1

0(
g+

1)

geneName

IGFBP7

LYZ

CTSW

13

Distribution of g

The distribution of the g vector is visualized as a histogram in the histogram entry. Remark, by default, we
fix ||g||2 = #g, the number of features in g. If gene i is useful for deconvolution, its entry gi is high. As in
the plot before, we visualize log10(g + 1) instead of g.
print(model$pics$histogram)

0

30

60

90

0.0 0.5 1.0 1.5 2.0 2.5
log10(g+1)

co
un

t

14

Heatmap of X diag(g) x X

The effect of the g-vector on deconvolution can be visualized when plotting the reference matrix X, weighted
by g, as a heatmap. Plot it via the Xheatmap entry, or the ggplot_heatmap function. Rows and columns are
clustered hierarchically. The heatmap becomes more informative if only a subset of features is included. A
subset can be selected via the feature.subset parameter. If a vector of feature names is provided, only
these features are visualized. Alternatively, a number can be provided. Then, the ggplot_heatmap function
detects features that are important for deconvolution. This is done by iteratively removing one feature from
the trained model. Removing a feature, changes the deconvolutoin accuracy. The more important a removed
feature was, the lower the deconvolution accuracy gets. Based on this score, the ggplot_heatmap function
can visualize the most important deconvolution features. In the heatmap, bright yellow fields of the heatmap
show that the gene was highly expressed in this cell type. Notice, by default, the log2(expr + 1) is visualized.
Using this information, the algorithm can detect marker genes of cell types.
#print(model$pics$Xheatmap)
ggplot_heatmap(

DTD.model = model,
X.matrix = X.matrix,
test.data = test.data,
estimate.c.type = "direct",
title = "Heatmap of diag(g) x X",
feature.subset = 20

)

CAF

NK

T

B

Macro

C
O

L1
A

1

C
O

L1
A

2

D
C

N

C
D

3D

C
D

8A

K
LR

B
1

G
N

LY

K
LR

C
1

IL
2R

B

C
D

79
A

M
S

4A
1

C
D

74

C
D

79
B

C
D

52

C
C

L3

T
Y

R
O

B
P

F
C

E
R

1G

C
1Q

B

IF
I3

0

F
T

L

features

C
el

l t
yp

es

0

5

10

log2(expr)

Heatmap of diag(g) x X

15

True vs estimated proportions

The ‘true C versus estimated Ĉ(g)’ plot (as for the untrained model in section ‘Assess the baseline deconvolution
model’) is plotted. In the cell proportion estimates Ĉ(g) we do not enforce a ‘sum-to-one’ constraint per
mixture, as we expect cells in the bulks, for which we did not obtain a reference profile. Our correlation-based
loss function yields deconvolution results that ensure cell type fold changes are conserved in the estimated
proportions.
If cell type j in sample n has the proportion Cj,n and sample n′ has Cj,n′ with Cj,n′ = 2 ∗ Cj,n. Then, the
fold change for cell type j is

Cj,n

Cj,n′
= 1

2 .

Due to the correlation-based loss function, the estimated proportions show the same fold change

Ĉj,n

Ĉj,n′
= 1

2 .

We advise users not to interpret the absolute size of Ĉ nor to compare estimated cell proportions between
cell types.
print(model$pics$true_vs_esti[[1]])
trained.artificial.mixtures.pic <- ggplot_true_vs_esti(

DTD.model = model,
X.matrix = X.matrix,
test.data = test.data,
title = " trained model, test bulks",
estimate.c.type = "direct",

)
print(trained.artificial.mixtures.pic[[1]])

B
Cor: 0.74

CAF
Cor: 0.62

Macro
Cor: 0.83

NK
Cor: 0.55

T
Cor: 0.8

0.
05

0.
07

0.
09

0.
11

0.
13

0.
01

0.
02

0.
03

0.
01

0.
02

0.
03

0.
04

0.
00

0

0.
00

5

0.
01

0

0.
01

5

0.
32

0.
36

0.
40

0.
44

0.000

0.005

0.010

0.015

0.020

0.025

true

es
tim

at
ed

Overall Correlation: 0.71; trained model, test bulks

16

Deconvolute bulk profiles
A DTD model can be applied to estimate cellular compositions via the estimate_c function. As input, it
takes a reference matrix X, the data to be deconvoluted (notice, a expression matrix, not a list), and the
DTD model. The output is an estimated cellular composition matrix Ĉ(g). Results can be visualized with
the ggplot_true_vs_esti function. Pass, exemplary, the bulk.list to the test.data parameter. In the
following plot, we included both test and training bulks in the plots. Therefore, the shown correlation is
overoptimistic. For comparison, we show the deconvolution results using the baseline model on the bulk data
again.
estimate cellular compositions of bulk profiles:
estimated.c.bulk <- estimate_c(

X.matrix = X.matrix,
new.data = bulk.list$mixtures,
DTD.model = model

)
visualize true bulk C versus estimated bulk C:
trained.bulk.deconvolution.pic <- ggplot_true_vs_esti(

DTD.model = model,
X.matrix = X.matrix,
test.data = bulk.list,
title = " reconstructed bulks; trained model",
estimate.c.type = "direct",
shape.indi = ifelse(tumor.names %in% train.melanomas, "train", "test"),
show.legend = TRUE

)

print(trained.bulk.deconvolution.pic[[1]])
print(untrained.bulk.deconvolution.pic[[1]])

17

B
Cor: 0.68

CAF
Cor: 0.76

Macro
Cor: 0.94

NK
Cor: 0.77

T
Cor: 0.82

0.
0

0.
1

0.
2

0.
3

0.
4

0.
00

0

0.
02

5

0.
05

0

0.
07

5

0.
10

0
0.

00

0.
05

0.
10

0.
15

0.
00

0.
02

0.
04

0.
06

0.
00

0.
25

0.
50

0.
75

1.
00

0.00

0.25

0.50

0.75

1.00

true

es
tim

at
ed

variable
B
Cor: 0.68
CAF
Cor: 0.76
Macro
Cor: 0.94
NK
Cor: 0.77
T
Cor: 0.82

shapeIndi

test

train

Overall Correlation: 0.79; reconstructed bulks; trained model

B
Cor: 0.08

CAF
Cor: 0.34

Macro
Cor: 0.42

NK
Cor: 0.4

T
Cor: 0.26

0.
0

0.
1

0.
2

0.
3

0.
4

0.
00

0

0.
02

5

0.
05

0

0.
07

5

0.
10

0
0.

00

0.
05

0.
10

0.
15

0.
00

0.
02

0.
04

0.
06

0.
00

0.
25

0.
50

0.
75

1.
00

−1

0

1

true

es
tim

at
ed

shapeIndi

test

train

variable
B
Cor: 0.08
CAF
Cor: 0.34
Macro
Cor: 0.42
NK
Cor: 0.4
T
Cor: 0.26

Overall Correlation: 0.3; reconstructed bulks; baseline model: g=1

18

sessionInfo

sessionInfo()

R version 3.5.0 (2018-04-23)
Platform: x86_64-apple-darwin15.6.0 (64-bit)
Running under: macOS 10.15.1
##
Matrix products: default
BLAS: /System/Library/Frameworks/Accelerate.framework/Versions/A/Frameworks/vecLib.framework/Versions/A/libBLAS.dylib
LAPACK: /Library/Frameworks/R.framework/Versions/3.5/Resources/lib/libRlapack.dylib
##
locale:
[1] en_US.UTF-8/en_US.UTF-8/en_US.UTF-8/C/en_US.UTF-8/en_US.UTF-8
##
attached base packages:
[1] parallel stats graphics grDevices utils datasets methods
[8] base
##
other attached packages:
[1] tictoc_1.0 GEOquery_2.50.5 Biobase_2.42.0
[4] BiocGenerics_0.28.0 DTD_1.1 nnls_1.4
[7] reshape2_1.4.3 ggplot2_3.2.1 Matrix_1.2-17
[10] matrixStats_0.55.0
##
loaded via a namespace (and not attached):
[1] tidyselect_0.2.5 xfun_0.10 purrr_0.3.2 lattice_0.20-38
[5] colorspace_1.4-1 vctrs_0.2.0 htmltools_0.3.6 yaml_2.2.0
[9] rlang_0.4.2 pillar_1.4.2 glue_1.3.1 withr_2.1.2
[13] tweenr_1.0.1 lifecycle_0.1.0 plyr_1.8.4 stringr_1.4.0
[17] munsell_0.5.0 gtable_0.3.0 evaluate_0.14 labeling_0.3
[21] knitr_1.25 curl_4.2 Rcpp_1.0.3 readr_1.3.1
[25] scales_1.1.0 backports_1.1.5 limma_3.38.3 farver_2.0.1
[29] ggforce_0.2.2 hms_0.5.1 digest_0.6.23 stringi_1.4.3
[33] dplyr_0.8.3 polyclip_1.10-0 grid_3.5.0 tools_3.5.0
[37] magrittr_1.5 lazyeval_0.2.2 tibble_2.1.3 crayon_1.3.4
[41] tidyr_1.0.0 pkgconfig_2.0.3 zeallot_0.1.0 MASS_7.3-51.4
[45] xml2_1.2.2 assertthat_0.2.1 rmarkdown_1.14 R6_2.4.1
[49] compiler_3.5.0

References
Bates, Douglas, and Martin Maechler. 2019. Matrix: Sparse and Dense Matrix Classes and Methods.
https://CRAN.R-project.org/package=Matrix.

Bengtsson, Henrik. 2019. MatrixStats: Functions That Apply to Rows and Columns of Matrices (and to
Vectors). https://CRAN.R-project.org/package=matrixStats.

Görtler, Franziska, Stefan Solbrig, Tilo Wettig, Peter J. Oefner, Rainer Spang, and Michael Altenbuchinger.
2018. Research in Computational Molecular Biology: 22nd Annual International Conference, Recomb 2018,
Paris, France, April 21-24, 2018, Proceedings (Lecture Notes in Computer Science). Springer.

Mullen, Katharine M., and Ivo H. M. van Stokkum. 2012. Nnls: The Lawson-Hanson Algorithm for
Non-Negative Least Squares (Nnls). https://CRAN.R-project.org/package=nnls.

Pedersen, Thomas Lin. 2019. Ggforce: Accelerating ’Ggplot2’. https://CRAN.R-project.org/package=ggforce.

19

https://CRAN.R-project.org/package=Matrix
https://CRAN.R-project.org/package=matrixStats
https://CRAN.R-project.org/package=nnls
https://CRAN.R-project.org/package=ggforce

R Core Team. 2018. R: A Language and Environment for Statistical Computing. Vienna, Austria: R
Foundation for Statistical Computing. https://www.R-project.org/.

Tirosh, I., B. Izar, S. M. Prakadan, M. H. Wadsworth, D. Treacy, J. J. Trombetta, A. Rotem, et al. 2016.
“Dissecting the Multicellular Ecosystem of Metastatic Melanoma by Single-Cell RNA-Seq.” Science 352 (6282).
American Association for the Advancement of Science (AAAS): 189–96. https://doi.org/10.1126/science.
aad0501.

Wickham, Hadley. 2007. “Reshaping Data with the reshape Package.” Journal of Statistical Software 21 (12):
1–20. http://www.jstatsoft.org/v21/i12/.

———. 2016. Ggplot2: Elegant Graphics for Data Analysis. Springer-Verlag New York. https://ggplot2.
tidyverse.org.

20

https://www.R-project.org/
https://doi.org/10.1126/science.aad0501
https://doi.org/10.1126/science.aad0501
http://www.jstatsoft.org/v21/i12/
https://ggplot2.tidyverse.org
https://ggplot2.tidyverse.org

	Overview
	Introduction to DTD
	Data
	Downloading
	Read in and preprocess
	Pheno information
	Single-Cell Profiles
	Reconstruct inferred bulk profiles

	DTD Analysis
	Generate reference matrix X
	Generate training and test `in-silicio' mixtures
	Assess the baseline deconvolution model
	Train a deconvolution model
	Assess the trained deconvolution model
	Deconvolute bulk profiles

	References

