Understanding dissolution rates via continuous flow systems with physiologically relevant metal ion saturation in lysosome – Supplementary Material

Johannes Keller^{1,2}, Willie Peijnenburg^{3,4}, Kai Werle¹, Robert Landsiedel¹, and Wendel Wohlleben ^{1,*}

¹ BASF SE, Dept. Experimental Toxicology and Ecology and Dept. Advanced Materials Research, 67056 Ludwigshafen, Germany; <u>johannes-georg.keller@basf.com</u>, <u>kai.werle@basf.com</u>

² Institute of Pharmacy, Faculty of Biology, Chemistry & Pharmacy, Freie Universität Berlin, 14195, Berlin, Germany

³ National Institute of Public Health and the Environment RIVM, P.O. Box 1, Bilthoven, The Netherlands; <u>willie.peijnenburg@rivm.nl</u>

⁴ Institute of Environmental Sciences (CML), Leiden University, PO Box 9518, Leiden, The Netherlands

* Correspondence: <u>wendel.wohlleben@basf.com</u>; Tel.: +49-621-609-5339

Table S1: Descriptors and properties of tested engineered nanomaterials. Reproduced from Wohlleben et al. (Nanoscale, 2019).

	descriptors	NM110_ZnO	NM111_ZnO	CuO	NM105_TiO2_nano	TiO2_non-nano	NM600_Bentonit	IRMM385_Kaolin	Kaolin	IRMM381_BaSO4 non-nano	IRMM387_NM220_BaSO4
Composition	CAS no.		1314-13-2	1317-38-0	1317-80-2		1302-78-9	1332-58-7	1332-58-7	7727-43-7	7727-43-7
Primary particle dimension	median diameter, nm	42	80	24	21	204	1362	181	279	234	32
Specific surface area (BET/VSSA)	BET, m ² /g	12	14	34	51	15	52	16	24	2.5	41
	% C	30	67.9	7	9						17
	% O	38	24.3	47	63						52
	% metals	38	4.3	46	29						13
	% non metals	3	3.5								17
Surface charge (zeta-potential)	Zeta potential at pH7, mV	30	-25	-34	-17	36	-31		-53	-37	-37
Hydrophobicity	water contact angle	10	152	10	60	10	10	10	10	10	10
Solubility in water	OECD screening LoD or value, metal ion, ppm	3.6	3.3	97	ns	ns	0.1		0.8		6

Table S2: Chemical composition of phagolysosomal simulant fluid (PSF) as reproduced from Keller et al. (Sci. Rep., 2020)

Substance	PSF pH4.5
NaCl	6650
Na ₂ HPO ₄	142
Na ₂ SO ₄	71
CaCl ₂ 2H ₂ O	29
KH-Phthalate	4085
Glycine	450
alkylbenzyldimethylammonium chloride (ABDC)	50

Figure S3: Dissolution kinetic of three different Aluminosilicates. Grey indicates the dissolution of Si ions, whereas red indicates the dissolution kinetic of Al ions. A) Bentonit NM600, B) Kaolin JRC-IRMM385, C) Kaolin (from nanoGRAVUR).

Figure S3: Comparison of SA/V vs. dissolution rate k between the fixed flow-rate dissolution setup (orange) and the ramped flow-rate dissolution setup (blue) for **A** BaSO₄ NM220, **B** CuO, **C** ZnO NM110 and **D** ZnO NM111. Unfilled circles indicate points with low reliability due to remaining mass <10%.