SUPPLEMENTARY INFORMATION

Enzyme-Catalyzed Kinetic Resolution of Chiral Precursors to Antiviral Prodrugs

Dao Feng Xiang, Andrew N. Bigley, Emily Desormeaux, Tamari Narindoshvili, and Frank M. Raushel*

> Department of Chemistry, Texas A&M University, College Station, Texas 77843, United States

	Selective		Selective
Variant ^a	hydrolysis	Variant	hydrolysis
BHR-1	none	BHR-43	none
BHR-2	none	BHR-44	none
BHR-3	none	BHR-46	poor
BHR-4	none	BHR-47	none
BHR-5	none	BHR-48	none
BHR-7	none	BHR-49	none
BHR-9	none	BHR-50	none
BHR-11	none	BHR-53	poor
BHR-13	none	BHR-57	none
BHR-14	none	BHR-61	none
BHR-15	none	BHR-62	none
BHR-16	poor	BHR-63	none
BHR-18	poor	BHR-64	yes (S _P)
BHR-19	none	BHR-65	none
BHR-20	none	BHR-66	poor
BHR-21	none	BHR-68	none
BHR-23	none	BHR-69	none
BHR-24	none	BHR-70	yes (S _P)
BHR-25	none	BHR-71	poor
BHR-27	none	BHR-73	none
BHR-28	poor	BHR-74	none
BHR-29	none	BHR-75	none
BHR-31	none	BHR-76	yes (S _P)
BHR-33	poor	G60A-PTE	Yes (R _P)
BHR-34	poor	GGY-PTE	none
BHR-36	none	YT-PTE	none
BHR-38	none	Wild-type	poor
BHR-40	none	In1W-PTE	yes (S _P)
BHR-41	none		

Table S1. Initial screening results with PTE variants.

^aVariants are from references¹⁻⁵. Screening was done as total hydrolysis of 60 μ M of compound **1** in 1 mL with 50 mM Ches (pH 9.0) and 100 μ M CoCl₂ at 30 °C.

Figure S1. Chemical shifts of isomers of compound **1** in different solvents. (a) Racemate in DMSO. Resonance at -1.42 ppm is from the S_P -isomer, and the resonance at -1.58 is from the R_P -isomer. (b) S_P -isomer isolated by selective hydrolysis with G60A-PTE in DMSO. (c) R_P -isomer isolated by selective hydrolysis using In1W-PTE in DMSO. (d) Sample from **c** spiked with sample from **b**. (e) Racemate in methanol. Resonance at -1.51 ppm is due to S_P -isomer, and resonance at -1.69 ppm is due to the R_P -isomer. (f) R_P -isomer isolated by selective hydrolysis of compound **1** by In1W-PTE at 40% completion in water.

Figure S2. ³¹P NMR spectra of compound **1** and hydrolysis product in water. (a) Two diastereomers of compound **1**. S_P -1 is at -1.43 ppm while R_P -is at -1.54 ppm. (b) Hydrolysis of compound **1** by wild-type PTE at 60% completion. The single phosphorus containing hydrolysis product is seen at 2.05 ppm. (c) Complete hydrolysis of compound **1** by wild-type PTE.

Figure S4. ¹H NMR spectra of the hydrolysis products of compound **1**. (a) Hydrolysis products formed by hydrolysis of the isolated $R_{\rm P}$ -isomer by Sb-PTE. (b) Hydrolysis products formed by hydrolysis of the isolated $R_{\rm P}$ -isomer by WT-PTE. The doublets at 8.03 ppm and 6.56 ppm are due to free *p*-nitrophenol, while the triplet at 7.30 ppm and doublet at 7.09 ppm are due to phenol on the phosphodiester product. (c) Hydrolysis product of the isolated $S_{\rm P}$ -isomer by *Sb*-PTE. The doublets at 8.19 ppm and 7.26 ppm are due to *p*-nitrophenol on the diester product, while the triplet at 6.91 ppm and the double at 6.83 ppm are due to free phenol. (d) Spectra of pure phenol in buffered solution.

REFERENCES

- Bigley, A. N., Desormeaux, E., Xiang, D. F., Bae, S. Y., Harvey, S. P., and Raushel, F. M. (2019) Overcoming the Challenges of Enzyme Evolution To Adapt Phosphotriesterase for V-Agent Decontamination, *Biochemistry* 58, 2039-2053.
- [2] Bigley, A. N., Xu, C., Henderson, T. J., Harvey, S. P., and Raushel, F. M. (2013) Enzymatic neutralization of the chemical warfare agent VX: evolution of phosphotriesterase for phosphorothiolate hydrolysis, J. Am. Chem. Soc. 135, 10426-10432.
- [3] Chen-Goodspeed, M., Sogorb, M. A., Wu, F., Hong, S. B., and Raushel, F. M. (2001) Structural determinants of the substrate and stereochemical specificity of phosphotriesterase, *Biochemistry 40*, 1325-1331.
- [4] Chen-Goodspeed, M., Sogorb, M. A., Wu, F., and Raushel, F. M. (2001) Enhancement, relaxation, and reversal of the stereoselectivity for phosphotriesterase by rational evolution of active site residues, *Biochemistry* 40, 1332-1339.
- [5] Tsai, P. C., Bigley, A., Li, Y., Ghanem, E., Cadieux, C. L., Kasten, S. A., Reeves, T. E., Cerasoli, D. M., and Raushel, F. M. (2010) Stereoselective hydrolysis of organophosphate nerve agents by the bacterial phosphotriesterase, *Biochemistry* 49, 7978-7987.