2	
3	Supplementary Information
4	Chiral twisting in a bacterial cytoskeletal polymer affects filament size and
5	orientation
6	
7	Shi e <i>t al.</i>
8	

9 Supplemental Tables

10 Supplementary Table 1: List of MD simulation systems from this study.

Name	Structure	Ligand	Atoms	Time	Replicates
	source		(x1000)	(ns)	
1x1 ATP	PDB: 4CZF	ATP and Mg ²⁺	95	80	2
1x1 ADP	PDB: 4CZF	ADP and Mg ²⁺	95	80	2
1x1 ATP	PDB: 4CZF	ATP, A22, and Mg ²⁺	95	70	1
A22					
1x1 ATP	PDB: 4CZF	ATP and Mg ²⁺	95	70	2
steered					
1x1 ATP	PDB: 1JCG	ATP and Mg ²⁺	95	80	2
(TmMreB)					
2x1 ATP	PDB: 4CZF	2xATP and 2xMg ²⁺	130	120	2
2x1 ADP	PDB: 4CZF	2xADP and 2xMg ²⁺	130	120	2
4x2 ATP	PDB: 4CZF	8xATP and 8xMg ²⁺	356	500	2
4x2 ADP	PDB: 4CZF	8xADP and 8xMg ²⁺	356	500	2
8x2 ATP	PDB: 4CZF	16xATP and 16xMg ²⁺	689	57	1
4x2 ATP	PDB: 4CZF	8xATP and 8xMg ²⁺	356	100	2
(EcMreB)	homology				
	model				
4x2 ATP	PDB: 4CZF	8xATP and 8xMg ²⁺ ,	434	120	2
membrane		membrane patch			

4x2 ADP	PDB: 4CZF	8xADP and 8xMg ²⁺ ,	434	120	2
membrane		membrane patch			
2x1 ATP	PDB: 4CZF	2xATP and 2xMg ²⁺ ,	202	80	1
membrane		membrane patch			
2x1 ADP	PDB: 4CZF	2xADP and 2xMg ²⁺ ,	202	80	1
membrane		membrane patch			
4x1 ATP	PDB: 4CZF	4xATP and 4xMg ²⁺ ,	437	80	2
membrane		membrane patch			
4x2 ATP	PDB: 4CZF	8xATP and 8xMg ²⁺	356	120	2
(E275D)	(E275D				
	mutation)				
4x2 ATP	PDB: 4CZF	8xATP and 8xMg ²⁺	356	120	2
(I138V)	(I138V				
	mutation)				
4x2 ATP	PDB: 4CZF	8xATP and 8xMg ²⁺	356	120	2
(R121C)	(R121C				
	mutation)				
4x2 ATP	PDB: 4CZF	8xATP and 8xMg ²⁺	356	120	2
(V53A)	(V53A				
	mutation)				
4x2 ATP	PDB: 4CZF	8xATP and 8xMg ²⁺	356	100	2
(EcMreB,	homology				
E276D)	model				

	(E276D				
	mutation)				
4x2 ATP	PDB: 4CZF	8xATP and 8xMg ²⁺	356	100	2
(EcMreB,	homology				
l141V)	model				
	(I141V				
	mutation)				
4x2 ATP	PDB: 4CZF	8xATP and 8xMg ²⁺	356	100	2
(EcMreB,	homology				
R124C)	model				
	(R124C				
	mutation)				
4x2 ATP	PDB: 4CZF	8xATP and 8xMg ²⁺	356	100	2
(EcMreB,	homology				
V55A)	model				
	(V55A				
	mutation)				
1x1 ATP	PDB: 4CZF	ATP and Mg ²⁺ ,	128	100	2
membrane		membrane patch			
1x1 ATP	PDB: 4CZF	ATP and Mg ²⁺ ,	128	100	1
membrane	(E275D	membrane patch			
(E275D)	mutation)				

1x1 ATP	PDB: 4CZF	ATP and Mg ²⁺ ,	128	100	1
membrane	(I138V	membrane patch			
(I138V)	mutation)				
1x1 ATP	PDB: 4CZF	ATP and Mg ²⁺ ,	128	100	1
membrane	(R121C	membrane patch			
(R121C)	mutation)				
1x1 ATP	PDB: 4CZF	ATP and Mg ²⁺ ,	128	100	1
membrane	(V53A	membrane patch			
(V53A)	mutation)				
4x2 ATP	PDB: 4CZF	8xATP and 8xMg ²⁺ ,	434	120	2
membrane	(R121C	membrane patch			
(R121C)	mutation)				
4x2 ATP	PDB: 4CZF	8xATP and 8xMg ²⁺ ,	434	120	2
membrane	(V53A	membrane patch			
(V53A)	mutation)				
4x2 ATP	PDB: 4CZF	8xATP and 8xMg ²⁺	481	100	2
RodZ	(for MreB)				
	PDB:				
	2WUS (for				
	RodZ,				
	homology				
	model)				
		1	1	1	1

4x2 ATP	PDB: 4CZF	8xATP and 8xMg ²⁺	481	100	2
(V53A)	(for MreB,				
RodZ	with V53A				
	mutation)				
	PDB:				
	2WUS (for				
	RodZ,				
	homology				
	model)				

12	Supplementary	Table 2: Parameter	values for the	coarse-grained	model.

Parameter	Physical meaning	Value
С	Bending modulus of MreB filament	1.4x10 ⁴ <i>k</i> _B <i>T</i> nm
К	Torsional rigidity	4.6x10 ³ <i>k</i> _B <i>T</i> nm
<i>k</i> ₀	Intrinsic curvature	2.3x10 ⁻³ rad nm ⁻¹
ω ₀	Intrinsic twisting rate	0.01 – 0.05 rad nm ⁻¹ 0.033 rad nm ⁻¹ for wild- type
r	Cell radius	400 nm
V	Membrane binding potential	$4 k_{\rm B}T \rm nm^{-1}$
μ_0	Polymerization free energy	2 <i>k</i> _B <i>T</i> nm ⁻¹

Supplementary Table 3: Strains used in this study.

Strain name	Genotype	Source
KC508	MG1655 csrD::Km, mreB'::msfGFP-mreB"	1
KC507	MG1655 csrD::Km, mreB'::msfGFP-mreB"-E276D	1
KC968	MG1655 csrD::Km, mreB'::msfGFP-mreB"-R124C	2
MreB(msfGFP)-EP028	MG1655 <i>∆mreB</i> [pRMmreBCD-V55A-msfGFP]	3
MreB(msfGFP)-EP067	MG1655 <i>∆mreB</i> [pRMmreBCD-I141V-msfGFP]	3

17 Supplemental Figures

19 Supplementary Figure 1: MreB monomer and dimer conformations are

20 nucleotide-dependent.

a-b) Trajectories of opening angles (a) and dihedral angles (b) in each simulated

22 system. For dimer simulations, the calculated values are for the (-) subunit. Thick

- lines are the results of smoothing the raw data (light lines) using a sliding window
 of 20 frames. ATP-bound monomers had larger opening angles than other
 systems.
- c) Scatter plots of opening and dihedral angles in CcMreB crystal structures. The
 monomeric crystal structures (blue) have larger opening angles than those
 forming single protofilaments (red).
- d-e) Trajectories of (d) opening angles and (e) dihedral angles in ATP-bound
- 30 CcMreB and TmMreB. TmMreB exhibited larger dihedral angles than CcMreB;
- 31 results were more variable for TmMreB than CcMreB across two replicate
- simulations. Thick lines are the results of smoothing the raw data (light lines)
 using a sliding window of 20 frames.
- f) Schematic of buried solvent-accessible surface area (SASA) between ATP and
 MreB. A closed MreB conformation has a larger interaction region with ATP
 (purple shading), and therefore a larger buried SASA than an open MreB
 conformation.
- g) Trajectories for buried SASA of ATP. Buried SASA is related to the open or
 closed states of the MreB monomer. Open states (ATP- or ATP-A22-bound) had
 lower buried SASA values, whereas closed states (dimer or steered simulations)
 maintained high buried SASA values, indicating a stabilized ATP-binding pocket
 that may facilitate ATP hydrolysis. Thick lines are the results of smoothing the
 raw data (light lines) using a sliding window of 20 frames.
- h) Scatter plots of buried SASA and opening angle in a simulation of an ATP-bound
 MreB monomer. Buried SASA negatively correlated with opening angle

46	(Spearman's ρ = -0.3, ρ < 10 ⁻¹¹ using permutation test), suggesting that an open
47	conformation destabilizes the ATP-binding pocket. Each dot represents one time
48	point, with the dots colored by simulation time.
49	i) Trajectories of buried SASA in ATP-bound CcMreB and ATP-bound TmMreB. In
50	both systems, the buried SASA dropped similarly, indicating that although
51	TmMreB and CcMreB conformations behaved differently, their interactions with
52	ATP were similar. Thick lines are the results of smoothing of the raw data (light
53	lines) using a sliding window of 20 frames.
54	j-l) Trajectories of the three Euler angles in each simulated MreB dimer system.
55	ATP-bound dimers consistently exhibited larger θ_1 (j) and θ_2 (k) values than ADP-
56	bound dimers; no clear twisting in $ heta_3$ was observed (I). Thick lines are the results
57	of smoothing the raw data (light lines) using a sliding window of 20 frames.

59 **Supplementary Figure 2: Interaction between a CcMreB double protofilament and**

60 a membrane.

62 protofilaments, calculated for the middle doublet pair (Pair 2, Fig. 3a). θ_1 and θ_2

- remained close to zero, whereas the ATP-bound protofilaments in water
- 64 exhibited larger twisting in θ_3 . Thick lines are the results of smoothing the raw
- 65 data (light lines) using a sliding window of 20 frames.

66	d-f) Trajectories of the three Euler angles in each neighboring pair of MreB doublets
67	in an 8x2 protofilament simulation. Although the system still exhibited large
68	variability by the end of the simulation, θ_1 and θ_2 largely remained close to zero,
69	while the values of θ_3 were comparable to those in ATP-bound 4x2 simulations
70	(panels a-c). Thick lines are the results of smoothing the raw data (light lines)
71	using a sliding window of 20 frames.
72	g) Trajectories of twisting angle θ_3 for 4x2 simulations of CcMreB and EcMreB.
73	EcMreB exhibited quantitatively similar twisting angles as CcMreB, suggesting
74	that our simulation results in CcMreB are applicable to <i>E. coli</i> . Thick lines are the
75	results of smoothing the raw data (light lines) using a sliding window of 20
76	frames.
77	h) V118 residues facilitate inter-protofilament interaction between two antiparallel
78	MreB protofilaments.
79	i) The mean distance between interacting V118 residues increased over time,
80	suggesting a loss of inter-protofilament interaction. For membrane-bound
81	simulations, the V118 distances remained small, indicating that the membrane

- 82 stabilizes the double protofilament conformation. Thick lines are the results of
- 83 smoothing of the raw data (light lines) using a sliding window of 20 frames.

85 Supplementary Figure 3: MreB twist angle is affected by mutations and RodZ

- 86 binding.
- a-c) Trajectories of the three Euler angles in 4x2 protofilaments of MreB mutants,
- calculated for the middle doublet pair (Pair 2, Fig. 3a). θ_1 and θ_2 were unaffected,

while θ_3 was systematically tuned by mutations. Thick lines are the results of 89 smoothing the raw data (light lines) using a sliding window of 20 frames. 90

- d-f) Trajectories of the three Euler angles in 4x2 protofilaments of wild-type MreB 91 and R121C and V53A mutants bound to a membrane patch, calculated for the 92 middle doublet pair (Pair 2, Fig. 3a). In both mutants, all three angles behaved 93 similarly as in wildtype. Despite the distinct values of θ_3 in water, membrane 94 binding suppressed all twisting to similar extents. Thick lines are the results of 95 smoothing the raw data (light lines) using a sliding window of 20 frames. 96
- g-i) Trajectories of the three Euler angles in 4x2 protofilaments of wild-type MreB 97
- and the V53A mutant, with or without the cytoplasmic tail of RodZ. θ_1 and θ_2 were 98 largely unaffected, while θ_3 decreased upon RodZ binding in both wildtype and 99 the V53A mutant. Thick lines are the results of smoothing the raw data (light 100 lines) using a sliding window of 20 frames.

101

j) Buried SASA of the membrane-binding interface for CcMreB wild-type and mutant 102

monomers. All simulations exhibited similar buried SASA at equilibrium, 103

suggesting that the mutations did not alter the membrane binding properties of 104 105 MreB.

108 Supplementary Figure 4: MreB twist angle predicts MreB filament limit length and

- 109 orientation *in vivo*.
- a) Filament free energy as a function of filament length when bound to a cylindrical
- 111 membrane with radius r = 80 nm.
- b) For the filament in (a), $\frac{dE}{dL} < \mu_0$ for all filament lengths, indicating that the filament
- could extend without a limit length.
- c) The effect of varying the bending modulus *C* in the coarse-grained model. Larger
- 115 C did not affect the predicted limit lengths, but decreased the predicted pitch 116 angles.
- d) The effect of varying the twist modulus *K* in the coarse-grained model. Larger *K*
- decreased the predicted limit lengths, but did not substantially alter the predictedpitch angles.

- e) Increasing the membrane binding potential *V* increased the predicted limit
- 121 lengths but did not alter the predicted pitch angles. The pitch angle values were
- highly overlapping for all values of *V*.
- 123

124 Supplementary References

125

- Ouzounov, N. *et al.* MreB orientation correlates with cell diameter in Escherichia
 coli. *Biophysical journal* **111**, 1035-1043 (2016).
- Colavin, A., Shi, H. & Huang, K. C. RodZ modulates geometric localization of the
 bacterial actin MreB to regulate cell shape. *Nature communications* 9, 1280
 (2018).
- 131 3 Shi, H. *et al.* Deep phenotypic mapping of bacterial cytoskeletal mutants reveals
- 132 physiological robustness to cell size. *Current Biology* **27**, 3419-3429. e3414
- 133 (2017).