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Supplementary Note 1

Normal mode formulation. We present here a more detailed methodological account of the normal modes for-
malism used. We consider a model system of N self-propelled soft interacting particles with overdamped dynamics,
in the jammed state. In the absence of self-propulsion, the particles have an equilibrium position r0

i , corresponding
to a local minimum of the elastic energy. If the interaction potential is linearized around the energy minimum in
terms of the displacement δri = ri − r0

i , the dynamics is described by the equation

ζδṙi = ζv0n̂i −
∑
j

Kij · δrj , (1)

where the Kij ’s are the 2 × 2 blocks of the 2N × 2N dynamical matrix, v0n̂i is the self-propulsion term with
n̂i = cosφiex + sinφiey (i.e., direction of n̂ is given by the angle φi with the x axis of a laboratory reference frame)
and ζ is the friction coefficient. In the absence of inter-particle alignment, the angle φi obeys a simple rotational
diffusive dynamics with white noise ηi (t):

φ̇i = ηi (t) , 〈ηi(t)〉 = 0, 〈ηi (t) ηj (t′)〉 =
2

τ
δijδ (t− t′) , (2)

where we have expressed the inverse rotational diffusion constant as a time scale, τ = 1/Dr. We note that in
general, the system is far out of thermodynamic equilibrium and Dr and ζ are not simply related to each other.
In the following, we consider the self-propulsion noise as a (vectorial) colored noise, and characterize its statistics
as well as the statistics of the displacements δri. To this aim, we first expand δri over the normal modes, i.e., the
eigenvectors of the dynamical matrix. Each normal mode is a 2N -dimensional vector that can be written as a list of
N two-dimensional vectors (ξν1 , . . . , ξ

ν
N ), where the index ν = 1, . . . , 2N labels the mode; the associated eigenvalue

is denoted as λν . This form of the normal modes is useful as it allows the decomposition of δri to be written in the
simple form

δri =

2N∑
ν=1

aνξ
ν
i . (3)

Projecting Eq. (1) on the normal modes, we find the uncoupled set of equations

ζȧν = −λνaν + ην , where ην = v0ζ

2N∑
i=1

n̂i · ξνi , (4)

is the projection of the self-propulsion force onto the normal mode ν.

Self-propulsion force as a persistent noise. We consider the projection ην of the self-propulsion force on nor-
mal mode ν as a correlated noise, which we now characterize. Since ην is the sum of many statistically independent
contributions with bounded moments, using the Central Limit theorem, we can assume its statistics to be Gaussian.
It is also clear, by averaging over the realizations of the stochastic angles φi, that 〈ην (t)〉 = 0. We thus simply
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need to evaluate the two-time correlation function of ην (t). Using the fact that the eigenvectors of the dynamical

matrix form an orthonormal basis, we have
∑N
i=1 ξ

ν
i · ξν

′

i = δν,ν′ . We find

〈ην (t) ην′ (t′)〉 = C (t− t′) δν,ν′ with C (t− t′) =
ζ2v2

0

2
〈cos [φ (t)− φ (t′)]〉 , (5)

where φ (t) obeys the diffusive dynamics of Eq. (2). Note that we have used time translation invariance by assuming
that the correlation function depends only on the time difference t − t′. We can thus set t′ = 0 without loss of
generality. Solving Eq. (2), the quantity ∆φ = φ (t)− φ (0) is distributed according to

p (∆φ, t) =
1√

4π|t|/τ
e−(∆φ)2 τ

4|t| . (6)

One then finds, using Eqs. (5) and (6),

C (t) =
ζ2v2

0

2
e−|t|/τ , (7)

i.e., the time correlation of the noise ην decays exponentially with the correlation (or persistence) time τ . It is
worth emphasizing that the statistical properties of the noise ην are independent of the mode ν.

Potential energy spectrum. We now turn to the computation of the average potential energy per mode. Solving
Eq. (4) explicitly for a given realization of the noise ην (t), one finds

aν (t) = aν (0) e−
λν
ζ t +

∫ t

0

dt′
ην (t′)

ζ
e−

λν
ζ (t−t′). (8)

From this expression, one can compute the average value
〈
a2
ν (t)

〉
, leading for t→∞ to

〈a2
ν〉 =

ζ

λν

∫ ∞
0

dv
1

ζ2
C (v) e−

λν
ζ v. (9)

Using Eq. (7), we obtain

〈a2
ν〉 =

ζ

λν

∫ ∞
0

dv
v2

0

2
e−v/τ e−

λν
ζ v =

ζv2
0

2λν

∫ ∞
0

dv e−( 1
τ +λν

ζ )v =
ζv2

0τ

2λν

(
1 + λν

ζ τ
) (10)

or, in terms of average energy per mode

Eν =

〈
1

2
λνa

2
ν

〉
=

ζv2
0τ

4
(

1 + λν
ζ τ
) . (11)

For very short correlation time τ (i.e., large diffusion coefficient Dr), one recovers an effective equipartition of energy

over the modes, Eν ≈ ζv20τ
4 even though the system is out-of-equilibrium. For finite correlation time, this result

remains valid in the range of modes ν such that τ � ζλ−1
ν , if such a range exists. However, for large correlation

time τ , that is, as soon as there is a wide range of modes such that τ � ζλ−1
ν , equipartition is broken, and the

energy spectrum is given by Eν ≈ ζ2v20
4λν

.

Velocity correlation. Following [3], we consider the velocity-velocity correlation function Ĝ(q) in Fourier space,
where one can express the (discrete) Fourier transform v (q) as a function of the particles reference positions r0

i :

Ĝ (q) = 〈v (q) · v∗ (q)〉 with v (q) =
1

N

N∑
j=1

eiq·r0j δṙj , (12)

where the star denotes the complex conjugate. Expanding over the normal modes, one finds

Ĝ (q) =
∑
ν,ν′

〈ȧν ȧν′〉 ξν (q) · ξ∗ν′ (q) , with ξν (q) =
1

N

N∑
j=1

eiq·r0j ξνj , (13)
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where ξν (q) is the Fourier transform of the vectors ξν . From Eq. (4), the quantity 〈ȧν ȧν′〉 is expressed as

〈ȧν ȧν′〉 =
1

ζ2
[λνλν′ 〈aνaν′〉 − λν 〈aνην′〉 − λν′ 〈aν′ην〉+ 〈ηνην′〉] =

1

ζ2

[
λ2
ν

〈
a2
ν

〉
− 2λν 〈aνην〉+

〈
η2
ν

〉]
δν,ν′ , (14)

where the last equality is due to the modes being uncorrelated. The cross-correlation is in fact not 0, but crucial:

lim
t→∞

〈aν (t) ην (t)〉 =
1

ζ

∫ ∞
0

dt′ 〈ην (t′) ην (t)〉 e−
λν
ζ (t−t′) =

1

ζ

∫ ∞
0

dv
ζ2v2

0

2
e−v/τ e−

λν
ζ v =

ζv2
0

2

τ

1 + λν
ζ τ

. (15)

To sum up, one has according to Eq. (14)
〈ȧν ȧν′〉 =

〈
ȧ2
ν

〉
δν,ν′ , (16)

with 〈
ȧ2
ν

〉
=

1

ζ2

[
λ2
ν

〈
a2
ν

〉
− 2λν 〈aνην〉+

〈
η2
ν

〉]
. (17)

Further, using Eqs. (5), (7), (10) and (15), one obtains

〈
ȧ2
ν

〉
=

1

ζ2

[
λ2
ν

ζv2
0τ

2λν (1 + λντ/ζ)
− 2λν

ζv2
0

2

τ

1 + λντ/ζ
+
ζ2v2

0

2

]
=

v2
0

2ζ2

1

1 + λν
ζ τ

[
λνζτ − 2λνζτ + ζ2

(
1 +

λν
ζ
τ

)]
=

v2
0

2
(

1 + λν
ζ τ
) . (18)

Combining Eqs. (13), (16) and (18), we derive the final expression for the velocity correlation function:

Ĝ (q) =
∑
ν

v2
0

2
(

1 + λντ
ζ

) ‖ξν (q)‖2 . (19)

Note that we can compute the equal-time, spatial mean square velocity through Parseval’s theorem as

〈
|v|2

〉
=

1

N

N∑
j=1

〈|δṙj |2〉 =
∑
q

Ĝ (q) =
L2

(2π)2

∫
d2q

∑
ν

v2
0

2
(

1 + λντ
ζ

) ‖ξν (q)‖2 . (20)

Supplementary Note 2

Continuum elastic formulation. We now turn to the study of the overdamped equations of motion derived
from the elastic energy, in the framework of continuum elastic. In two dimensions, the elastic energy of an isotropic
elastic solid with bulk modulus B and shear modulus µ can be written as [1, 2]

Fel =
1

2

∫
d2r

[
B Tr (û (r))

2
+ 2µ

(
uαβ (r)− 1

2
Tr (û (r)) δαβ

)2
]
, (21)

where û is the strain tensor with components uαβ = 1
2 [∂αuβ + ∂βuα] written as spatial derivatives of the components

α, β ∈ {x, y} of the displacement vectors u (r) = r′ (r)− r from a reference state r to the deformed state r′ (r). The
stress tensor σαβ = δFel

δuαβ
can then be written as

σαβ = Bδαβuγγ + 2µ

(
uαβ −

1

2
δαβuγγ

)
, (22)

where summation over pairs of repeated indices is assumed. Hence, its divergence is given by

∂βσαβ = B∂αuγγ + 2µ

(
∂βuαβ −

1

2
∂αuγγ

)
.
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We can then write the overdamped equations of motion for the displacement field

ζu̇α = ∂βσαβ = B∂α∂γuγ + 2µ

(
1

2
∂β (∂αuβ + ∂βuα)− 1

2
∂α∂γuγ

)
.

This last equation can be rewritten in vectorial notation as

ζu̇ = B∇ (∇ · u) + µ∆u . (23)

In Fourier space, we can write this relation as

ζ ˙̃u = −D (q) ũ, D (q) =

[
Bq2

x + µq2 Bqxqy
Bqyqx Bq2

y + µq2

]
, (24)

where D (q) is the Fourier space dynamical matrix, and q2 = q2
x + q2

y. The two eigenvalues of the dynamical matrix
are

λL = (B + µ) q2, λT = µq2, (25)

with normalized eigenvectors

εL =
1

q
(qx, qy) ≡ q̂, εT =

1

q
(qy,−qx) ≡ q̂⊥. (26)

In other words, for each q, we obtain one longitudinal and one transverse eigenmode, with diffusive equations of
motion, where the diffusion coefficients are the two elastic moduli:

˙̃uL = −DLq
2ũL, DL = B + µ (27)

˙̃uT = −DTq
2ũT, DT = µ.

Overdamped dynamics with activity. Now including the self-propulsion force, the continuum version of the
active equations of motion is given by

ζu̇ = ζv0n̂ + ∇ · σ̂, (28)

where we have included an active force Fact(r, t) = ζv0n̂(r, t), whose statistical properties will be discussed below.
At this stage, we need a brief aside to properly define our conventions for the Fourier transform. This is particularly
important because we wish to compare results from numerical simulations and from continuum theory. Numerical
simulations are done in a system of relatively large, but finite linear size L, and with a minimal length scale given
by the particle size a, which leads to the use of a discrete space Fourier transform. On the other hand, analytical
calculations are made much easier by assuming whenever possible that L→∞ and a→ 0, i.e., using the continuous
Fourier transform. For consistency between the two approaches, we use the following space continuous Fourier
transform

u(r, t) =
1

(2π)2

∫
d2q ũ(q, t) e−iq·r (29)

ũ(q, t) =

∫
d2r u(r, t) eiq·r. (30)

When the finite system and particle sizes need to be taken into account, we discretize the integrals into

1

(2π)2

∫
d2q→ 1

Na2

∑
q

,

∫
d2r→ a2

∑
r

, (31)

where N = L2/a2 is the number of particles, at unity packing fraction. In the sum, q takes discrete values defined
by the geometry of the problem. For instance, for a square lattice of linear size L, q = (2πm/L, 2πn/L) where
(m,n) are integers satisfying 0 ≤ m,n ≤ L/a − 1. From this discretization, we get that the discrete space Fourier
transform u(q, t) is consistently related to the continuous Fourier transform ũ(q, t) through

ũ(q, t) = a2u(q, t). (32)

This relation will be useful for comparison to the results of numerical simulations. In the following, we generically
use the tilde notation for continuous Fourier transform, and drop the tilde when dealing with the discrete Fourier
transform.
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To proceed with the computations in the framework of the continuum theory, we now introduce the space and
time Fourier transform

u(r, t) =
1

(2π)3

∫
d2q

∫
dω ũ(q, ω) e−iq·r−iωt (33)

ũ(q, ω) =

∫
d2r

∫
dtu(r, t) eiq·r+iωt. (34)

With these definitions, the active equation of motion (28) can be rewritten in Fourier space as

−iζωũ(q, ω) = F̃act(q, ω)−D(q)ũ(q, ω) (35)

where we have defined the continuous Fourier transform F̃act(q, ω) of the random active force Fact(r, t) in Fourier
space as

F̃act(q, ω) = ζv0

∫
d2r

∫ ∞
−∞

dt n̂(r, t) eiq·r+iωt. (36)

Active noise correlations. To determine the correlation of the active noise, we need to start from a spatially
discretized version of the model. For definiteness, we assume a square grid with lattice spacing a. Then for each
grid node i we have n̂i = (cosφi, sinφi) with dynamics φ̇i = ηi, 〈ηi (t) ηj (t′)〉 = 2

τ δijδ (t− t′), and the noise remains
spatially uncorrelated. We thus have

〈n̂i(t) · n̂j(t′)〉 = δi,j e−|t−t
′|/τ . (37)

The exponential time dependence has been obtained using the same reasoning as in Eqs. (5) to (7). In order to
take a continuum limit, we replace n̂i by a continuous field, and we substitute δi,j by its Dirac counterpart, namely

δi,j → a2 δ(r− r′). (38)

We then have that, in the continuum limit,

〈n̂(r, t) · n̂(r′, t′)〉 = a2 δ(r− r′) e−|t−t
′|/τ . (39)

In view of Eq. (36), it is clear that
〈
F̃act (q, ω)

〉
= 0, as 〈cosφ〉 = 〈sinφ〉 = 0. The second order correlations are

simply〈
F̃act (q, ω) · F̃act (q′, ω′)

〉
= ζ2v2

0

∫ ∞
−∞

dt

∫ ∞
−∞

dt′
∫
d2r

∫
d2r′eiωteiq·reiω′t′eiq′·r′ 〈n̂ (r, t) · n̂ (r′, t′)〉 . (40)

Using Eqs. (39) and (40), a straightforward calculation then yields

〈F̃act(q, ω) · F̃act(q′, ω′)〉 = (2π)3a2ζ2v2
0

2τ

1 + (τω)
2 δ(q + q′) δ(ω + ω′) . (41)

Note that Eq. (41) is obtained in the continuum formulation, where δ(q + q′) is a Dirac delta distribution, which
is infinite if one sets q′ = −q. To compare with the numerics, one has to come back to the discrete formulation,
corresponding to a finite system size L. The Dirac delta is then replaced by a Kronecker delta according to the
substitution rule

δ(q + q′) → 1

(∆q)2
δq′,−q with ∆q ≡ 2π

L
. (42)

We are thus led to define the space-discrete Fourier transform Fact(q, ω) = F̃act(q, ω)/a2 [see Eq. (32)] for discrete
wavevectors q (note that ω remains a continuous variable). The correlation of the discrete Fourier transform
Fact(q, ω) of the active noise then reads

〈Fact(q, ω) · Fact(−q, ω′)〉 = 2πNζ2v2
0

2τ

1 + (τω)
2 δ(ω + ω′), (43)

in agreement with Eq. (9) of the main text.
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Fourier modes properties. We decompose equation (35) into longitudinal and transverse modes: ũ (q, ω) =
ũL (q, ω) q̂+ ũT (q, ω) q̂⊥ along and perpendicular to the eigenvectors of the dynamical matrix, Eq. (24). We obtain
two equations

− iζωũL (q, ω) = F̃act (q, ω) · q̂− (B + µ) q2ũL (q, ω) ,

− iζωũT (q, ω) = F̃act (q, ω) · q̂⊥ − µq2ũT (q, ω) ,

with solution

ũL (q, ω) =
F̃ act

L (q, ω)

−iζω + (B + µ) q2
, ũT (q, ω) =

F̃ act
T (q, ω)

−iζω + µq2
, (44)

where F̃ act
L (q, ω) = F̃act (q, ω) · q̂ and F̃ act

T (q, ω) = F̃act (q, ω) · q̂⊥.
We can use these expressions to obtain velocity correlation functions that can be directly measured in experiments

and simulations. As ṽ (q, ω) = −iωũ (q, ω), we can simply write

〈ṽ (q, ω) · ṽ (q′, ω′)〉 = 〈ṽL (q, ω) ṽL (q′, ω′)〉+ 〈ṽT (q, ω) ṽT (q′, ω′)〉
= −ωω′ 〈ũL (q, ω) ũL (q′, ω′)〉 − ωω′ 〈ũT (q, ω) ũT (k′, ω′)〉 .

It is easy to show that the longitudinal and transverse components of the active force contribute equally to the
correlation, namely

〈F̃ act
L (q, ω)F̃ act

L (q′, ω′)〉 = 〈F̃ act
T (q, ω)F̃ act

T (q′, ω′)〉 =
1

2
〈F̃act(q, ω) · F̃act(q′, ω′)〉 . (45)

Using Eqs. (41), (44) and (45), the correlation functions of the longitudinal and transverse components of the
Fourier velocity field are then straightforward to compute, leading to

〈ṽL(q, ω)ṽL(q′, ω′)〉 =
(2π)3a2ζ2v2

0τω
2

[(B + µ)2q4 + ζ2ω2] [1 + (τω)
2
]
δ(q + q′) δ(ω + ω′) (46)

〈ṽT(q, ω)ṽT(q′, ω′)〉 =
(2π)3a2ζ2v2

0τω
2

[µ2q4 + ζ2ω2] [1 + (τω)
2
]
δ(q + q′) δ(ω + ω′). (47)

Of particular interest is the equal-time Fourier transform of the velocity. In other words, we need to integrate over
frequency. E.g., for the longitudinal velocity, we find

〈ṽL (q, t) ṽL (q′, t)〉 =
1

(2π)2

∫ ∞
−∞

dω

∫ ∞
−∞

dω′e−i(ω+ω′)t 〈ṽL (q, ω) ṽL (q′, ω′)〉

= 2πa2ζ2v2
0τ δ(q + q′)

∫ ∞
−∞

dω
ω2

[(B + µ)2q4 + ζ2ω2] [1 + (τω)2]
.

Using the decomposition

ω2

[(B + µ)2q4 + ζ2ω2] [1 + (τω)2]
=

1

µ2τ2q4 − ζ2

(
µ2q4

µ2q4 + ζ2ω2
− 1

1 + τ2ω2

)
(48)

a straightforward integration leads to

〈ṽL (q, t) ṽL (q′, t)〉 =
2π2a2ζv2

0

(B + µ)τq2 + ζ
δ(q + q′). (49)

A similar calculation for the transverse component of the Fourier velocity field yields

〈ṽT (q, t) ṽT (q′, t)〉 =
2π2a2ζv2

0

µτq2 + ζ
δ(q + q′). (50)

Introducing the longitudinal and transverse characteristic length scales

ξL =

(
(B + µ)τ

ζ

)1/2

, ξT =

(
µτ

ζ

)1/2

, (51)
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the equal-time (continuous) Fourier velocity correlation can be expressed as

〈ṽ (q, t) · ṽ (q′, t)〉 = 2π2a2v2
0

[
1

1 + (ξLq)2
+

1

1 + (ξTq)2

]
δ(q + q′). (52)

The length scales ξL and ξT can be interpreted as the longitudinal and transverse correlations lengths that both
diverge ∼ τ1/2 for τ → ∞ (i.e., a fully persistent self-propulsion). The existence of those correlation lengths is a
direct consequence of activity. In the “passive” limit τ → 0, these length scales vanish.

It is important to note that Eq. (52) is obtained in the continuum formulation, where δ(q+ q′) is a Dirac delta
distribution. Hence 〈ṽ (q, t) · ṽ (q′, t)〉 is infinite if one sets q′ = −q. To compare with the numerics, one has to
come back to the discrete formulation, corresponding to a finite system size L. The Dirac delta is then replaced by
a Kronecker delta according to the substitution rule given in Eq. (42). One also needs to replace the continuum
Fourier transform ṽ (q, t) with the discrete one, v (q, t), according to ṽ (q, t) = a2v (q, t) [see Eq. (32)]. We thus
end up with, using N = L2/a2,

〈v (q, t) · v (−q, t)〉 = N
v2

0

2

[
1

1 + (ξLq)2
+

1

1 + (ξTq)2

]
, (53)

which is precisely Eq. (10) of the main text.
In addition, one can also compute (using integration techniques in the complex plane) the two-time Fourier

velocity correlation 〈ṽ (q, t) · ṽ (q′, t′)〉. This two-time correlation function is found to decay with the time lag
|t − t′| over three different characteristic times, the persistence time τ of the noise and two elastic time scales
τL = ζ

(B+µ)q2 and τT = ζ
µq2 associated with longitudinal and transverse modes respectively.

Mean-square velocity and velocity autocorrelation function. We conclude by computing the real-space
mean-square velocity 〈|v(r, t)|2〉. One has

〈v (r, t) · v (r, t)〉 =
1

(2π)4

∫
d2q

∫
d2q′ 〈ṽ (q, t) · ṽ (q′, t)〉 e−i(q+q′)·r. (54)

Using Eq. (52) we get

〈v (r, t) · v (r, t)〉 =
a2v2

0

8π2

∫
d2q

[
1

1 + (ξLq)2
+

1

1 + (ξTq)2

]
. (55)

This integral diverges at the upper boundary. This divergence can be regularized if we note that the physical upper
limit to this integral is set by the inverse particle size, i.e., by qm = 2π

a . Therefore, using
∫
d2q = 2π

∫
q dq = π

∫
d(q2)

when integrating a function of q2, one obtains〈
|v|2

〉
=
a2v2

0

4π

∫ qm

0

dq q

[
1

1 + ξ2
Lq

2
+

1

1 + ξ2
Tq

2

]
=
v2

0

8π

[
a2

ξ2
L

log
(
1 + ξ2

Lq
2
m

)
+
a2

ξ2
T

log
(
1 + ξ2

Tq
2
m

)]
.

Note that
〈
|v(r, t)|2

〉
is independent of position (and time) and is thus also equal to

〈
|v|2

〉
space, ensemble

≡ 1

L2

∫
d2r

〈
|v(r, t)|2

〉
. (56)

Finally, generalizing the above calculation one can also compute the autocorrelation function of the velocity field,
yielding

〈v (t) · v (0)〉space,ensemble =
a2v2

0ζ

4πτ

∫ qm

0

dq q

 (B + µ) q2e−
B+µ
ζ q2t − ζ

τ e−t/τ

(B + µ)
2
q4 −

(
ζ
τ

)2 +
µq2e−

µ
ζ q

2t − ζ
τ e−t/τ

µ2q4 −
(
ζ
τ

)2

 . (57)
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Real space expression of the velocity autocorrelation function. We derive here the real space expression
for the correlation of velocities of cells separated by r. This is analytically tractable only if the continuum inverse
Fourier transform is used, i.e., in the limit of infinite system size. However, this calculation has to be done with care,
using the discrete Fourier transform and eventually taking the infinite volume limit to evaluate sums as integrals.
Using instead the continuum Fourier transform of the velocity field would lead to difficulties because of the delta
function δ(q + q′) in Eq. (52). We define the real space correlation function of the velocity field as

Cvv(r) =
1

L2

∫
d2r0〈v(r0 + r) · v(r0)〉 (58)

as well as its Fourier transform

Cvv(q) =

∫
d2rCvv(r) eiq·r. (59)

Note that the space integration is done on the finite volume L2, so that the wavevector q is discretized. A
straightforward calculation leads to

Cvv(q) =
a2

N
〈|v(q)|2〉, (60)

where v(q) is the discrete Fourier transform of the velocity field, and 〈|v(q)|2〉 is given in Eq. (53) as well as in
Eq. (10) of the main text. From Eq. (60), one can evaluate Cvv(r) by computing the inverse Fourier transform of
Cvv(q). The inverse discrete Fourier transform of Cvv(q) can be turned into an integral by taking the limit L→∞,
yielding

Cvv(r) =
1

(2π)2

∫
d2qCvv(q) e−iq·r. (61)

Using Eqs. (60) and (53), we obtain

Cvv(r) =
a2v2

0

4π

[
K0(r/ξL)

ξ2
L

+
K0(r/ξT)

ξ2
T

]
, (62)

with r = |r|, and K0 the modified Bessel function of the second kind. To obtain Eq. (62), we have made use of the
following identities involving Bessel functions [4]

1

2π

∫ π

−π
dθ eix sin θ = J0(x),

∫ ∞
0

dx
x J0(rx)

x2 + k2
= K0(kr), (63)

where J0 is the Bessel function of the first kind. An asymptotic expansion of Eq. (62) for r � ξL,T yields

Cvv(r) ≈ a2v2
0

4π

√
π

2r

(
1

ξ
3/2
L

e−r/ξL +
1

ξ
3/2
T

e−r/ξT

)
, (64)

that is, an exponential decay of Cvv(r) at large distances, with algebraic corrections.

Supplementary Note 3

Fitting to experiment and simulations. To compare simulations to our continuum predictions, we need to
determine B and µ. As detailed in the Supplementary Note 2, we determine D(q) by Fourier-transforming the
dynamical matrix on the q grid appropriate to the simulations box. The longitudinal and transverse eigenvalues
of the resulting 2× 2 matrix are then (B + µ)q2 and µq2, respectively. In Supplementary Figure 1A, we show the
radially q-averaged eigenvalues (dots) as a function of q2, and the linear fit of the 15 first points we use to extract
the moduli.

In Supplementary Figure 1B, we show the Self-Intermediate function as a function of time for the experiments
and all three fitted simulations. For the experiment, we numerically integrated the PIV field to obtain approximate
trajectories for the regions belonging to each individual PIV arrow at t = 0. Significant local non-affine motion and
distortions emerged, and we stopped before t = 10 hours and at motions of a couple of cell diameters. The match
between experiment and simulation is good for the soft disk simulations; the much slower dynamics of the vertex
model is due to its much higher bulk modulus for a given shear modulus at p̄0 = 3.6.
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Supplementary Figure 1: A. Determining the elastic moduli for the soft disk model. Shown are the radially averaged
longitudinal and transverse eigenmodes of D(q), determined on the inverse q-lattice appropriate to the simulation
box. When plotted against q2, the longitudinal slope is B + µ, and the transverse slope is µ. Here the static
configuration was equilibrated from Teff = 0.005 and τ = 200, but results for other conditions are indistinguishable.
B. Velocity autocorrelation function for the experiments, and for the same soft disk and vertex model simulations
as in Fig. 4b of the main text. B. Self-Intermediate scattering function for the experiments, and for the same two
soft disk simulations and the vertex model simulation as in the main text.

Supplementary Figures

Additional numerical simulation results on the Fourier velocity correlations and their dependence on the persistence
time τ are shown in Supplementary Figures 2 and 3. In addition, Supplementary Figure 4 shows the real-space
correlation functions for soft disks (left) and the vertex model (right), together with the predictions of Eq. (14) of
the main text.

Teff Teff

N N

Supplementary Figure 2: In the limit of τ → 0, we recover the static structure factor S(q). Left: Velocity
correlation as a function of Teff for the soft disk system at τ = 0.2, numerically obtained (dots), from the normal
modes calculation (lines), and the elastic approximation (dashed line). Right: Same for the vertex model potential,
numerical results as dots and elastic approximation as dashed line.
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N N
Supplementary Figure 3: Velocity correlations as a function of τ at higher effective temperature Teff = 0.02. Even
though most of these systems are slow liquids, the match between simulations, normal modes and elastic predictions
remains excellent. Left: Soft disk system. Right: Vertex model

distance distance
Supplementary Figure 4: Numerical real-space velocity correlations (dots) as a function of τ at effective temperature
Teff = 0.005, the counterpart of Fig. 3A in the main text. Lines: Predictions of the analytical result Eq. (14) of the
main text. Left: Soft disk system. Right: Vertex model
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