

Supplementary Material

Nature-derived Cellulose-based Composite Separator for

Sodium-ion Batteries

Jae Hyeon Jo^{1,z}, Chang-Heum Jo^{1,z}, Zhengfu Qiu², Hitoshi Yashiro³, Liyi Shi², Zhuyi Wang², Shuai

Yuan^{2*} and Seung-Taek Myung^{1*}

¹Department of Nanotechnology and Advanced Materials Engineering & Sejong Battery Institute, Sejong University, Seoul, 05006 South Korea

²Research Centre of Nanoscience and Nanotechnology, Shanghai University, Shanghai 200444, China

³Department of Chemistry and Bioengineering, Iwate University, Ueda 4-3-5, Morioka, Iwate 020-8551, Japan

* Correspondence:

Shuai Yuan s.yuan@shu.edu.cn Seung-Taek Myung smyung@sejong.ac.kr

Supplementary Figure 1. Thermal shrinkage rate for Cellulose-PAN, Cellulose-PAN-Al₂O₃ and Glass Fiber (300 °C for 0.5h)

Supplementary Figure 2. Initial charge and discharge curves of C-NaCrO₂ cell using cellulose separator.

Supplementary Figure 3. (a) Cycling performance of C-NaCrO₂ using uncoated cellulose–PAN composite separator. (b) SEM images of surface of cycled uncoated cellulose–PAN composite separator and (c) EDX mapping images for (b-2).

Supplementary Figure 4. (a) charge and discharge curves of C-NaCrO₂/Na cells using glass fiber separator; (b) cycling performance at rates of 1C.