

Assessment of Genetic Diversity of the 'Acquaviva red onion' (*Allium cepa* L.) Apulian Landrace

Supplementary Material

Table S1. Morphological descriptors related to bulb⁺, skin and flesh.

Code	Bulb shape (1: elliptic; 2: ovate; 3: broad elliptic; 4: globe; 5: broad ovate; 6: broad obovate; 7: rhomboid; 8: flat globe 9: flat)	Bulb apical shape (1: depressed; 2: flat; 3: weak prominent; 4: smooth; 5: weak pointed; 6: strong pointed)	Bulb basal shape (1: depressed; 2: pointed; 3: smooth; 4: weak conical; 5: strong conical)	Bulb thickness (cm)	CV* (%)	Bulb width (cm)	CV (%)	Thickness/Width	CV* (%)	Bulb skin colour (1: white; 2: gray; 3: green; 4: yellow; 5: brown: 6: dark pink; 7: violet-red	Skin colour intensity (3: weak; 5: intermediate; 7: dark)	Bulb flesh colour (1: white-light pink; 2: dark pink-violet; 3: violet- red)
ARO1	8	2	2	4,5 C	18,6	9,2 A	24,3	0,5 C	14,5	6	7	2
ARO2	8	2	2	5,1 C	18,6	10,0 A	16,8	0,5 C	29,4	6	7	2
ARO3	8	2	2	5,1 C	17,0	10,3 A	23,3	0,5 C	17,0	6	7	2
ARO4	8	2	2	4,6 C	15,9	9,8 A	16,8	0,5 C	13,0	6	7	2
ARO5	8	2	2	5,1 C	14,0	9,6 A	18,7	0,5 C	27,7	6	7	2
ARO6	8	2	2	4,4 C	9,6	9,1 A	19,1	0,5 C	27,7	6	7	2
ARO7	8	2	2	5,5 C	15,9	9,6 A	19,8	0,6 C	18,2	6	7	2
ARO8	8	2	2	4,9 C	15,6	10,9 A	17,3	0,5 C	19,2	6	7	2
ARO9	8	2	2	5,0 C	14,4	10,8 A	22,7	0,5 C	17,5	6	7	2
ARO10	8	2	2	4,9 C	20,2	9,8 A	21,3	0,5 C	18,0	6	7	2
ARO11	8	2	2	5,4 C	17,7	11,9 A	17,2	0,5 C	14,6	6	7	2
ARO12	8	2	2	5,3 C	14,6	10,3 A	19,2	0,5 C	34,8	6	7	2
ARO13	8	2	2	4,4 C	18,1	7,5 AB	24,0	0,6 C	15,2	6	7	2
MCO	6	3	4	7,6 B	14,0	6,8 B	24,2	1,1 B	22,3	5	5	1
TRO1	8	2	2	4,8 C	17,9	8,9 A	19,8	0,5 C	16,7	7	7	3
TRO2	7	6	6	11.6 A	20.6	6.6 B	20.7	1.7 A	18.3	7	7	3

⁺Means with the same letters in uppercase or lowercase are not statistically different at 0,01P or 0.05P, respectively (SNK's Test); * Coefficient of variation.

Table S2. Mean observed (Ho) and	l expected (He)	heterozygosity	and fixation	index (F)	for each
population considered in this study.					

ID Accession	Но	He	F
ARO1	0.40	0.45	0.154
ARO2	0.44	0.52	0.184
ARO3	0.50	0.51	0.037
ARO4	0.48	0.50	0.050
ARO5	0.45	0.51	0.125
ARO6	0.55	0.50	-0.106
ARO7	0.27	0.28	0.063
ARO8	0.53	0.54	0.011
ARO9	0.44	0.48	0.085
ARO10	0.57	0.53	-0.040
ARO11	0.45	0.51	0.103
ARO12	0.39	0.46	0.109
ARO13	0.45	0.53	0.149
TRO1	0.53	0.50	-0.068
TRO2	0.46	0.45	0.013
МСО	0.51	0.50	0.001
Mean	0.46	0.49	0.054

Table S3. Pairwise population PhiPT values among all populations genotyped in the present study.Probability values (P) are based on 999 permutations.

Pairwise Co	omparisons	DL:DT	
Accession 1	Accession 2	PhiPI	P
ARO7	TRO2	0.468	0.001
ARO7	TRO1	0.427	0.001
ARO12	TRO2	0.339	0.001
ARO7	MCO	0.325	0.001
ARO7	ARO11	0.323	0.001
ARO7	ARO12	0.314	0.001
ARO12	TRO1	0.292	0.001
ARO3	ARO7	0.275	0.001
ARO4	ARO7	0.274	0.001
ARO5	ARO7	0.266	0.001
ARO2	ARO7	0.266	0.001
ARO7	ARO13	0.252	0.001
ARO12	MCO	0.234	0.001
ARO7	ARO10	0.230	0.001
ARO1	МСО	0.229	0.001
ARO9	TRO2	0.227	0.001
TRO2	МСО	0.227	0.001
ARO6	ARO7	0.224	0.001
ARO1	ARO7	0.223	0.001
ARO7	ARO9	0.223	0.001
ARO1	TRO1	0.219	0.001

ARO9	TRO1	0.216	0.001
ARO1	TRO2	0.207	0.001
ARO9	MCO	0.200	0.001
ARO8	TRO1	0.197	0.001
TRO1	MCO	0.196	0.001
ARO7	ARO8	0.194	0.001
ARO3	ARO12	0.194	0.001
ARO8	TRO2	0.188	0.001
ARO8	MCO	0.186	0.001
ARO8	ARO12	0.175	0.001
ARO5	TRO1	0.174	0.001
ARO6	TRO2	0.173	0.001
ARO3	MCO	0.172	0.001
ARO10	ARO12	0.171	0.001
ARO9	ARO12	0.171	0.001
ARO5	ARO12	0.166	0.001
ARO1	ARO12	0.164	0.001
ARO4	ARO12	0.162	0.001
ARO11	MCO	0.159	0.001
ARO13	TRO2	0.157	0.001
ARO6	TRO1	0.156	0.001
ARO5	TRO2	0.154	0.001
ARO6	ARO12	0.149	0.001
ARO3	TRO1	0.145	0.001
ARO3	TRO2	0.145	0.001
ARO6	MCO	0.139	0.001
ARO11	ARO12	0.135	0.001
ARO5	MCO	0.134	0.001
ARO4	MCO	0.133	0.001
ARO4	TRO2	0.132	0.001
ARO10	TRO2	0.130	0.001
ARO2	TRO1	0.128	0.001
ARO12	ARO13	0.127	0.001
ARO2	TRO2	0.122	0.001
ARO4	TRO1	0.120	0.001
ARO2	MCO	0.116	0.001
ARO1	ARO13	0.116	0.001
ARO9	ARO13	0.115	0.001
ARO8	ARO11	0.115	0.001
ARO10	TRO1	0.113	0.001
ARO11	TRO2	0.111	0.001
ARO9	ARO11	0.111	0.001
ARO2	ARO12	0.107	0.001

ARO8	ARO13	0.102	0.001
ARO13	TRO1	0.100	0.001
ARO13	MCO	0.100	0.001
ARO6	ARO11	0.096	0.001
ARO11	TRO1	0.094	0.001
ARO1	ARO11	0.093	0.001
ARO10	MCO	0.089	0.001
ARO3	ARO9	0.084	0.001
ARO4	ARO8	0.081	0.001
ARO3	ARO13	0.074	0.001
ARO2	ARO3	0.074	0.001
TRO1	TRO2	0.070	0.001
ARO1	ARO3	0.067	0.001
ARO10	ARO11	0.065	0.001
ARO5	ARO13	0.063	0.001
ARO4	ARO9	0.087	0.002
ARO6	ARO9	0.086	0.002
ARO3	ARO8	0.081	0.002
ARO5	ARO8	0.069	0.002
ARO9	ARO10	0.064	0.002
ARO3	ARO11	0.060	0.002
ARO2	ARO6	0.059	0.002
ARO5	ARO11	0.055	0.002
ARO4	ARO11	0.049	0.002
ARO4	ARO13	0.048	0.002
ARO6	ARO13	0.086	0.003
ARO5	ARO9	0.061	0.004
ARO2	ARO9	0.059	0.004
ARO2	ARO13	0.044	0.006
ARO1	ARO6	0.059	0.007
ARO1	ARO2	0.044	0.009
ARO1	ARO10	0.048	0.010
ARO3	ARO10	0.047	0.010
ARO2	ARO8	0.043	0.010
ARO2	ARO11	0.035	0.012
ARO5	ARO6	0.057	0.014
ARO8	ARO9	0.047	0.016
ARO1	ARO5	0.044	0.017
ARO5	ARO10	0.037	0.017
ARO1	ARO4	0.042	0.023
ARO2	ARO4	0.030	0.032
ARO8	ARO10	0.034	0.039
ARO10	ARO13	0.025	0.039

ARO1	ARO8	0.033	0.047
ARO6	ARO10	0.034	0.052
ARO1	ARO9	0.028	0.054
ARO4	ARO6	0.033	0.055
ARO3	ARO6	0.039	0.059
ARO6	ARO8	0.029	0.081
ARO11	ARO13	0.025	0.082
ARO3	ARO5	0.019	0.108
ARO2	ARO5	0.020	0.112
ARO4	ARO5	0.017	0.150
ARO4	ARO10	0.014	0.174
ARO3	ARO4	0.004	0.366
ARO2	ARO10	0.002	0.441

Table S4. Features of the 16 EST-SSR and 21 genomic SSR primer pairs tested on the 16 populations of the present study.

Locus	Primer Sequences (5'→3')	Repeat Motif	Annealing Temp. (°C)	Reference
	GCAGTTCTCCCTTTGTAAAATCA		59	Kuhl et al.,
ACIVI000	GTGATGGATGAGTGGATGGA	(CIC)/	50	2004
ACM024	CCCCATTTTCTTCATTTTCTCA	$(\mathbf{GCA})_{10}$	58	Kuhl et al.,
1101021	TGCTGTTGCTGTTGTTGTTG	(001)10	00	2004
ACM091*	TCTCCTCCTCTAACCAGCCA	$(TCT)_{10}$	58	Kuhl et al.,
nemoji	GGTGCTCCAGTTGAGCTTTC	(101)10	00	2004
ACM101*	CCTTTGCTAACCAAATCCGA	(TCC) ₅	58	Kuhl et al.,
11011101	CTTGTTGAGAAGGAGGACGC	(100)	00	2004
ACM115	TCCATCTATGCATCTGCCAC	$(CAC)_{6}$	58	Kuhl et al.,
11011110	CTATTCTTCCACTGGGGCAA	(0110)*	00	2004
ACM121	GCAAACTCATATAGTGCCGC	(TAT) ₅	58	Kuhl et al.,
	GAACCGATTCTACGAGCAGC	(111)0	00	2004
ACM132*	ATGGGGCCTGGTAAGTTTTT	(ACAT)14AC(CA	58	Kuhl et al.,
	TGCACACCGTTTCCATTTTA	TG)4		2004
ACM134	ACACACACAAGAGGGAAGGG	(GA)8	58	Kuhl et al.,
	CACACACCCACACACATCAA			2004
ACM138*	ACGGTTTGATGCACAAGATG	(CTGC)11	58	Kuhl et al.,
	CCAACCAACAGTIGATACIGC			2004
ACM147*		(CTC)5	58	Kuhl et al.,
	TICCCACAATCAAAACACCA	· · · ·		2004
ACM151	IGICAGACAAGCAACICCICC	(ACA)5	58	Kuhl et al.,
	AGGIGAGGCIIAGAIGGGGI			2004
ACM152*		(CAG)8	58	Kuhl et al.,
				2004
ACM227	AGCAGCICATICAGCAAAA	(CAG)7	58	Kuni et al.,
				2004 Kubl et al
ACM235*	ACGCATTICAAAIGAAGGC	(TTTG)4	58	Kuni et al.,
				Kuhl et al., 2004 Kuhl et al., 2004
ACM238	TTCCCCACTACACACCTTCC	(TTTG)4	58	2004
				Z004 Kublatal
ACM303		(AC)8	58	2004
				2004 Baldwin of al
ACM359	GCAAAGAATTAAATTGGAAGAAA	(TATG)5	58	2012
ACM366	TTTTGTCTAAAAATGGGCTGA	$(A)_{10}$	58	Baldwin et al.

	ΤΕΕΕΕΤΑΑΤΤΕΑΕΕΕΤΤΕ			2012
				2012 Baldwin at al
ACM373		(AC)15	58	2012
				2012 Baldwin at al
ACM376	CAACTTCCAACCATAGGIICCA	(AC)11	58	2012
				Baldwin et al
ACM385	CCAATTTCAAAAGACAGCATTT	(AATA)5	58	2012
	TGGAAAATGGAGCATGGTT			Baldwin et al
ACM389	GGTAGTAGAGGTGGGGGGGTT	(AAT)5	58	2012
	ACATACAAGATGGACACTCAACA			Baldwin et al.
ACM390	GTCAACAACCATGAGTCCG	(AT)10(GTAT)9	58	2012
	TGAGGCACGATGAAACCATA		-0	Baldwin et al.,
ACM410	TTTTTGTTCCCACTCATCCTTT	(A1)6	58	2012
A C M 420	AAATGAAATACTGGAAAGAATAATTGA	(TA)	50	Baldwin et al.,
ACIVI439	ACCCTTAGCCATGAACCTCC	$(1A)^{7}$	38	2012
ACM443	TGGTGCTTGCTATGTTTTGC	$(T\Delta)_{10}$	58	Baldwin et al.,
11011113	CCCTAGGCCAAGCTTACTTGT	(111)10	50	2012
ACM446*	TCAAGAATTCTGTTGCATCTTGT	$(TA)_8$	$65 \longrightarrow 55^*$	Baldwin et al.,
	AATAAGACCGCAGAAACGAAA	()*		2012
ACM449*	GTAAAGGTGTAATAGGAATGAATCG	(GT)7	$65 \longrightarrow 55^*$	Baldwin et al.,
- · ·				2012
ACM452	AICGGGGGIIIGGAAIAAA	(AT)7	58	Baldwin et al.,
				2012 Baldwin at al
ACM463*	CCTTCCCAACACACACCTTA	$(AC)_8$	58	2012
	TACGGGGAATCAACAACTGC			Baldwin et al
ACM474	TACGCCGTTAGTAAGCGGAT	(AT)6	58	2012
	TGCAATTGGAACTTTGGTTTT	(1	- 0	Baldwin et al.,
ACM477	CCGTTCCTCTATTTTGCAGC	$(AT)_6$	58	2012
	TCCCAAGAGTCCAAGAATGG		50	Baldwin et al.,
ACIVI504	GTCGGTTTCAACATGAATACCAT	(GI)6	38	2012
ACM509	CAATAATTAGCGGAAACAAAGAA	$(TA)_{\epsilon}$	58	Baldwin et al.,
ACIMOUS	TCACCTTTGGAGTTTGGAGC	(17)6	50	2012
ACM520	CATGAAGCTGTTATTTGCATTTG	(TA) ₇	58	Baldwin et al.,
11011020	CCCTGCATGATGTTATTTTGC	(111)/	00	2012
	GTACCCGAGACAAACCCCTT	(TC)6ACCCCATC		
		TICHCICCICI	-0	Baldwin et al.,
ACM531	GAAGTTGCTGGGAGAGATGC	TCCIGITICITC	58	2012
		TICICACITIA(
		1)10		Kim et al
Gssr6	AGCCTTTCATCCTCTTTTTCAT	(TAT)4	58	2012
	* Primer pairs calested to construc the 14	nonulations used in	this study	2012
	i inter pairs selected to genotype the it	populations used if	i uns siuuy.	

Table S5. Pairwise population matrix of Nei genetic distance among the 16 onion populations characterized in the present study.

ARO1	ARO2	ARO3	ARO4	ARO5	ARO6	ARO7	ARO8	ARO9	ARO10	ARO11	ARO12	ARO13	TRO1	TRO2	MCO	
0.000																ARO1
0.041	0,000															ARO2
0,051	0.078	0.000														ARO3
0.034	0.040	0.043	0.000													ARO4
0.046	0.046	0.053	0.051	0.000												ARO5
0.058	0.070	0.060	0.042	0.069	0.000											ARO6
0.230	0.274	0.270	0.253	0.266	0.237	0.000										ARO7
0.052	0.040	0.073	0.068	0.067	0.054	0.233	0.000									ARO8
0.022	0.042	0.034	0.036	0.033	0.043	0.232	0.035	0.000								ARO9
0.062	0.031	0.068	0.028	0.065	0.076	0.250	0.052	0.055	0.000							ARO10
0.050	0.060	0.037	0.046	0.063	0.072	0.288	0.072	0.039	0.066	0.000						ARO11
0.109	0.119	0.169	0.140	0.158	0.106	0.253	0.123	0.121	0.166	0.128	0.000					ARO12
0.087	0.072	0.086	0.064	0.084	0.094	0.221	0.081	0.067	0.046	0.049	0.125	0.000				ARO13
0.159	0.131	0.118	0.095	0.167	0.125	0.461	0.151	0.138	0.102	0.090	0.273	0.106	0.000			TRO1
0.151	0.114	0.115	0.110	0.142	0.151	0.573	0.138	0.138	0.116	0.097	0.330	0.150	0.062	0.000		TRO2
0.156	0.113	0.133	0.102	0.122	0.101	0.252	0.125	0.111	0.072	0.145	0.206	0.103	0.159	0.179	0.000	MCO

Figure S1. Post-hoc evaluation of STRUCTURE results. Mean likelihood L(K) and variance for 10 independent runs in each of the hypothetical assumed populations (1-10) (**a**) and detection of the most likely value of K (**b**). Two populations best define genetic variation in *Allium cepa* collection. although the next highest peak describes a deeper structuring in the collection. as confirmed both by the hierarchical clustering and by the principal coordinate analysis.