The Q_i site of cytochrome *b* is a promiscuous drug target in *Trypanosoma cruzi* and *Leishmania donovani*

Richard J. Wall^{1,2}, Sandra Carvalho^{1,2}, Rachel Milne², Juan A. Bueren-Calabuig³, Sonia Moniz², Juan Cantizani-Perez⁴, Lorna MacLean³, Albane Kessler⁴, Ignacio Cotillo⁴, Lalitha Sastry³, Sujatha Manthri³, Stephen Patterson², Fabio Zuccotto³, Stephen Thompson³, Julio Martin⁴, Maria Marco⁴, Timothy J. Miles⁴, Manu De Rycker³, Michael G. Thomas³, Alan H. Fairlamb², Ian H. Gilbert³ and Susan Wyllie^{2*}

¹ Authors contributed equally

² Division of Biological Chemistry and Drug Discovery, Wellcome Centre for Anti-Infectives Research, School of Life Sciences, University of Dundee, Dow Street, Dundee DD1 5EH, United Kingdom.

³Drug Discovery Unit, Wellcome Centre for Anti-Infectives Research, School of Life Sciences, University of Dundee, Dow Street, Dundee DD1 5EH, United Kingdom.

⁴ Global Health R&D, GlaxoSmithKline, Tres Cantos, 28760, Spain

Running title: Cyt *b* - a promiscuous drug target in kinetoplastids

***Corresponding author:** Dr Susan Wyllie, Division of Biological Chemistry and Drug Discovery, Wellcome Centre for Anti-Infectives Research, School of Life Sciences, University of Dundee, Dow Street, Dundee DD1 5EH, United Kingdom.

Tel: (44)1382 38 5761; Email: s.wyllie@dundee.ac.uk

1

Supplementary figures

Figure S1 - resistance generation in vitro.

Figure S2 - CNV analysis for *L. donovani* (*Ld*) and *T. cruzi* (*Tc*) clones resistant to compounds **1** and compound **2**.

Figure S3 - representative complex III and O₂ consumption assay data.

Figure S4 – x-ray structures of cytochrome *b* in complex with ligands binding to the Q_i site.

Figure S5 - binding mode of antimycin A in the cytochrome $b Q_i$ site.

Figure S6 - structural analysis of compound 1 – cytochrome *b* interactions.

Figure S7 - structural analysis of compound 2 – cytochrome *b* interactions.

Figure S8 - structural analysis of compound 3 – cytochrome *b* interactions.

Figure S9 - cytochrome *b* resistant panel screen.

Figure S10 - complex III assays with compounds identified via the cytochrome *b* resistant panel screen.

Supplementary tables

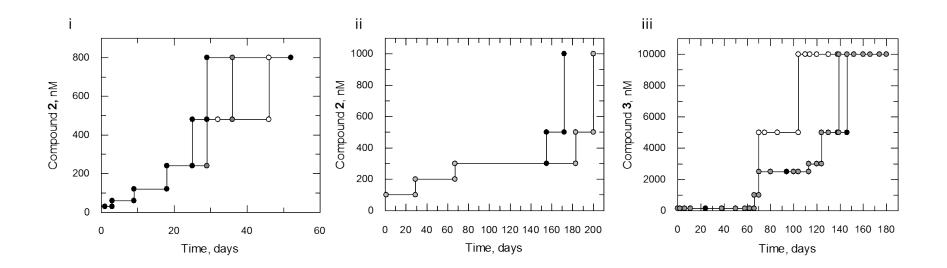

Table S1 – whole genome sequencing for *L. donovani* clones resistant to compound **1**.

Table S2 - whole genome sequencing for *T. cruzi* clones resistant to compound **1**.

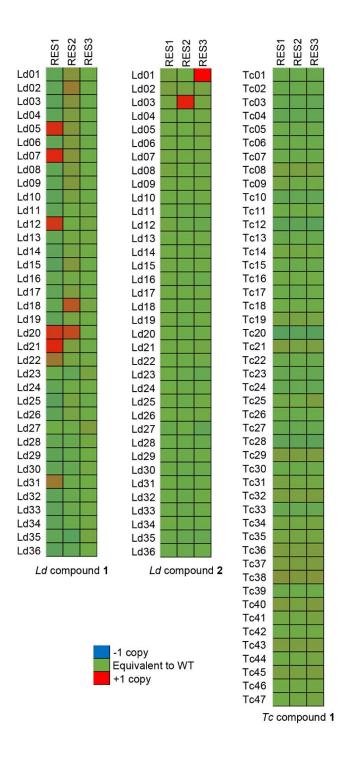
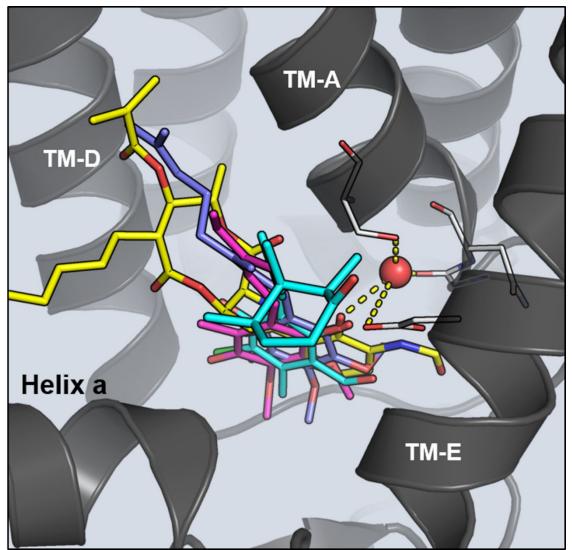

Table S3 - compounds 1 and 2 in complex III assays with WT and resistant cell lysates.

Table S4 - whole genome sequencing for *L. donovani* clones resistant to compound **2**.

Table S5 - compound potencies against wild-type and resistant *L. donovani* cell lines in intra-macrophage assays.


Figure S1 - **Resistance generation** *in vitro*. Schematic representation of the generation of compound **2**-resistant cell lines in *L. donovani* (promastigotes) (i) and *T. cruzi* (epimastigotes) (ii) and with compound **3** in *T. cruzi* (iii). Each passage of cells in culture (circles) is indicated with clones I, II and III indicated in black, white and grey, respectively.

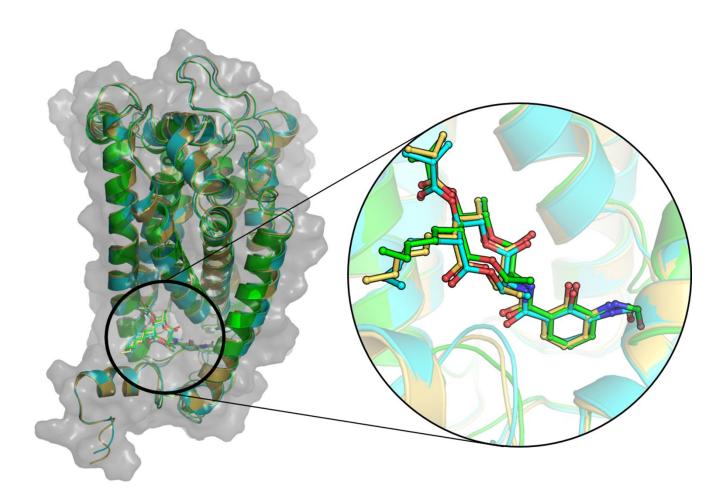

Figure S2 - Copy number variation (CNV) analysis for *L. donovani* (*Ld*) and *T. cruzi* (*Tc*) clones resistant to compounds **1** and compound **2**.

Figure S3 – Representative complex III and O₂ consumption assay data. (A) Representative individual IC₅₀ curves generated from complex III assays (see Materials and Methods for details). The data shown for compounds **1** and **2** were determined in *L. donovani* lysate. Data shown for compound 3 was determined in *T. cruzi* lysate. (B) Representative IC₅₀ curves generated in O₂ consumption assays with *T. cruzi* epimastigotes (see Materials and Methods for details). Data represents three biological replicates.

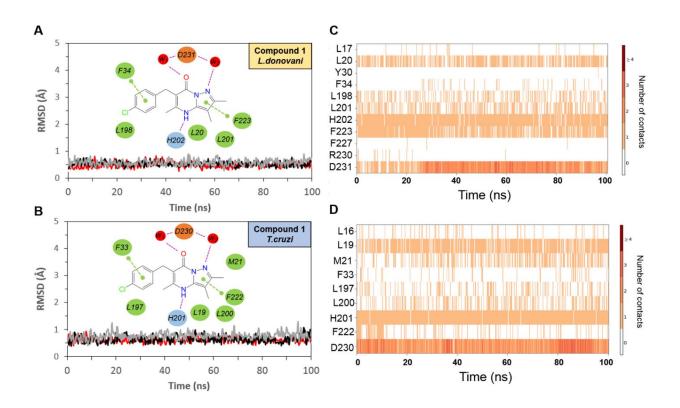
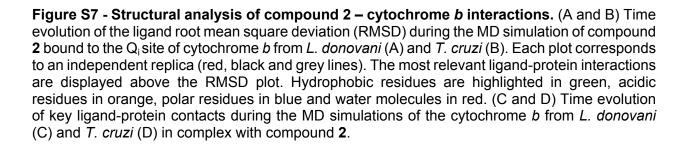
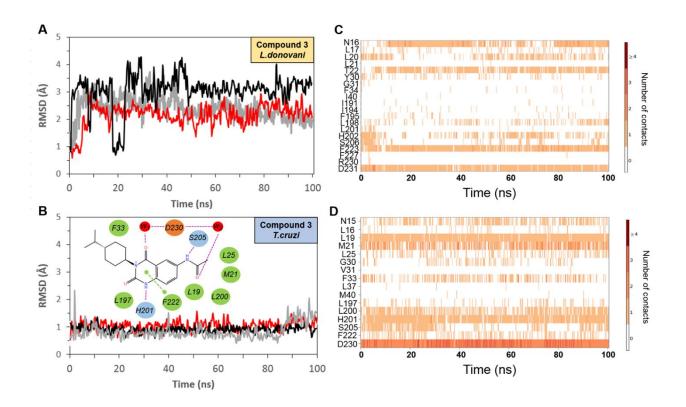


Figure S4 - Conserved water molecule in different X-ray structures of cytochrome *b* **in complex with ligands binding to the Q**_i **site.** The water molecule (red sphere) was explicitly considered during the docking calculations of antimycin A and compounds **1**, **2** and **3**. The ligands are displayed as sticks: ubiquinone (violet and magenta, PDB 1NTZ and 3L70); ascochlorin (cyan, PDB 3H1L); antimycin A (yellow, PDB ID 1PPJ).


Figure S5 - Binding mode of antimycin A in the cytochrome *b* Q_i site.


Left. Structural alignment of the X-ray crystal structure of cytochrome *b* from chicken (PDB ID 3H1I, in green) with the homology models of cytochrome *b* from *L. donovani* (yellow) and *T. cruzi* (cyan). **Right.** Close-up view into the Q_i site of cytochrome *b* displaying antimycin A (in sticks): avian (in green), *L. donovani* complex model (in yellow) and *T. cruzi* complex model (in cyan).

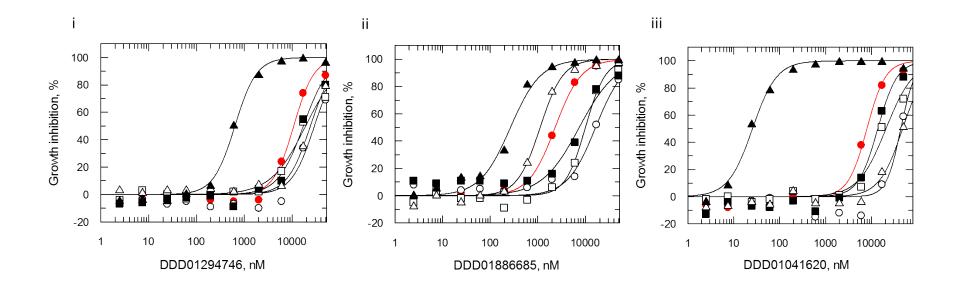

Figure S6 - Structural analysis of compound 1 – cytochrome *b* **interactions.** (A and B) Time evolution of the ligand root mean square deviation (RMSD) during the MD simulation of compound 1 bound to the Q_i site of cytochrome *b* from *L. donovani* (A) and *T. cruzi* (B). Each plot corresponds to an independent replica (red, black and grey lines). The most relevant ligand-protein interactions are displayed above the RMSD plot. Hydrophobic residues are highlighted in green, acidic residues in orange, polar residues in blue and water molecules in red. (C and D) Time evolution of key ligand-protein contacts during the MD simulations of the cytochrome *b* from *L. donovani* (C) and *T. cruzi* (D) in complex with compound **1**.

Figure S8 - Structural analysis of compound 3 – cytochrome *b* **interactions.** Time evolution of the ligand root mean square deviation (RMSD) during the MD simulation of compound **3** bound to the Q_i site of cytochrome *b* from *L. donovani* (A) and *T. cruzi* (B). Each plot corresponds to an independent replica (red, black and grey lines). The most relevant ligand-protein interactions are displayed above the RMSD plot. Hydrophobic residues are highlighted in green, acidic residues in orange, polar residues in blue and water molecules in red. (C and D) Time evolution of key ligand-protein contacts during the MD simulations of cytochrome *b* from *L. donovani* (C) and *T. cruzi* (D) in complex with compound **3**.

Figure S9 - Cytochrome *b* **resistant panel screen.** Test compounds were screened against wild-type *T. cruzi* epimastigotes (red) and also five cell lines bearing representative mutations within cytochrome *b*. Resistant line R1, open circles; R2, open squares; R3, closed squares; R4, open triangles and R5, closed triangles. Data represents the mean of duplicate technical replicates.



Figure S10 - Complex III assays with compounds identified via the cytochrome *b* resistant panel screen. Lysates enriched with mitochondria isolated from *T. cruzi* epimastigotes were incubated with test compounds (20μ M) or DMSO for 8 min prior to initiation of the complex III assay by the addition of the pseudo substrate decylubiquinol. Complex III activity in the presence of test compounds was determined and compared to activity in the presence of DMSO. Data represents the weighted mean ± standard deviation of triplicate technical replicates and is representative of the data from three biological replicates.

Table S1 – Whole genome sequencing for *L. donovani* clones resistant to compound **1**. Summary of read counts and coverage of sequencing (i). Summary of significant SNPs identified in compound **1**-resistant clones (ii).

Cell line	Number of reads	Read length	Percentage mapped	Fold coverage	Gain of SNP heterozygosity	Gain of SNP homozygosity
WT	36675180	100	87.98	88	-	-
RES1	36620390	100	84.93	85	1	1
RES2	36764126	100	86.46	87	1	1
RES3	36619010	100	85.05	85	1	1

ii

i

Chromosome	Nucleotide	Reference	Mutation	Amino acid	Cor	npou	nd 1	Cono nomo
Chromosome	position	Reference	wutation	change	R1	R2	R3	Gene name
Homozygous ı	mutations (co	oding region	s only)					
Kinetoplast	9139	G	С	Gly37Ala	1/1	1/1	0/0	cytochrome b
Kinetoplast	9694	G	Т	Cys222Phe	0/0	0/0	1/1	cytochrome b
Heterozygous	mutations (c	oding region	is only)					
24	688650	С	G	Arg565Pro	0/1	0/0	0/0	LdBPK_241820.1; SET domain containing protein
25	378147	С	А	Gln381Lys	0/0	0/0	0/1	LdBPK_251030.1; hypothetical
35	1178869	С	А	Ala125Ser	0/0	0/1	0/0	LdBPK_352870.1; major facilitator superfamily

Table S2 - Whole genome sequencing for *T. cruzi* clones resistant to compound **1**. Summary of read counts and coverage of sequencing (i).Summary of significant SNPs identified in compound **1**-resistant clones (ii).

(i)

Cell line	Number of reads	Read length	Percentage mapped	Fold coverage	Gain of SNP heterozygosity	Gain of SNP homozygosity
WT	36050370	100	46.09	46	-	-
RES1	36359988	100	58.48	58	1	1
RES2	36353662	100	64.19	64	0	1
RES3	36438792	100	59.48	59	0	1

(ii)

•	Nucleotide	otide	Mutation	Amino	Compound 1			_
Chromosome	position	Reference		acid change	R1	R2	R3	Gene name
Homozygous r	mutations (co	ding region	s only)					
Kinetoplast	4742	С	Т	Leu197Phe	1/1	1/1	1/1	cytochrome b
Heterozygous	mutations (c	oding region	is only)					
Kinetoplast	2098	C	Т	-	0/1	0/0	0/0	NADH dehydrogenase subunit 8 (ND8) pre-edit

Table S3 – Assessment of compounds 1 and 2 in complex III assays with lysates prepared from WT and resistant *L. donovani* cell lines. Lysates enriched with mitochondria isolated from *T. cruzi* epimastigotes were incubated with test compounds (20 μ M) or DMSO for 8 min prior to initiation of the complex III assay by the addition of the pseudo substrate decylubiquinol. Complex III activity in the presence of test compounds was determined and compared to activity in the presence of DMSO. Fold-changes in sensitivity compared to wild-type are in parentheses.

Cell lines	IC ₅₀ values, nM				
	Compound 1	Compound 2			
WT	44 ± 7	99 ± 13			
Compound 1 RES1	220 ± 51 (5)				
Compound 2 RES3		4200 ± 500 (42)			

Data represents the weighted mean \pm SD of at least three biological replicates (n \geq 3).

Table S4 – Whole genome sequencing for *L. donovani* clones resistant to compound **2**. Summary of read counts and coverage of sequencing (i). Summary of significant SNPs identified in compound **2**-resistant clones (ii).

1	;	۱	
l	I	J	

Cell line	Number of reads	Read length	Percentage mapped	Fold coverage	Gain of SNP heterozygosity	Gain of SNP homozygosity
WT	38367592	100	81.37	86	-	-
RES1	35899862	100	82.41	81	1	1
RES2	36102782	100	80.19	79	0	1
RES3	35915250	100	83.71	82	0	1

(ii)

Chromosomo	Nucleotide	Reference	Mutation	Amino acid	Compound 2			Cono nomo
Chromosome	position	Reference	mutation	change	R1	R2	R3	Gene name
Homozygous r	nutations (co	ding regions	s only)					
Kinetoplast	9121	G	С	Gly31Ala	0/0	1/1	0/0	cytochrome b
Kinetoplast	9648	Т	С	Ser207Pro	1/1	0/0	0/0	cytochrome b
Kinetoplast	9708	Т	А	Phe227Ile	0/0	0/0	1/1	cytochrome b
Heterozygous	mutations (co	oding region	s only)					
4	1272440	G	A	Cys179Tyr	0/1	0/0	0/0	LdBPK_150110.1; hypothetica

Table S5 - Assessment of compound potency against wild-type and resistant *L. donovani* cell lines in intra-macrophage assays. The potency of compounds 1 and 2 were assessed against WT parasites and also resistant clones generated by exposure to compounds 1 and 2. Compound DDD01012232, an established divalent cation chelator [58], was also assessed as a negative control. Cell lines demonstrating resistance or crossresistance relative to wild-type are highlighted in blue while those demonstrating hypersensitivity are highlighted in grey. Fold-changes in sensitivity compared to wild-type are in parentheses.

	Leishmania EC ₅₀ , μM								
Compound ID	WT	Compound 1 RES1	Compound 2 RES1						
DDD01012232 (CON)	0.1	0.1	0.2						
Compound 1	0.1	1.3 (11)	0.02 (6)						
Compound 2	0.4	0.03 (13)	4.4 (11)						

Data represents the mean \pm SD of at least two technical replicates.