## Supporting Information

# Reconfigurable DNA Origami Nanocapsule for pH-Controlled Encapsulation and Display of Cargo

Heini Ijäs<sup>†‡</sup>, Iiris Hakaste<sup>†</sup>, Boxuan Shen<sup>†</sup>, Mauri A. Kostiainen<sup>†§</sup>, and Veikko Linko<sup>\*†§</sup>

<sup>†</sup> Biohybrid Materials, Department of Bioproducts and Biosystems, Aalto University, 00076 Aalto, Finland

<sup>‡</sup> University of Jyväskylä, Nanoscience Center, Department of Biological and Environmental Science, P.O. Box 35, 40014 University of Jyväskylä, Finland

<sup>§</sup> HYBER Center of Excellence, Department of Applied Physics, Aalto University, 00076 Aalto, Finland

#### Supplementary methods

Agarose gel electrophoresis (AGE). 2% agarose gels were prepared in two different buffer systems:  $1 \times TAE$  with 11 mM MgCl<sub>2</sub> (pH 8.2) or 45 mM MES, 25 mM Tris with 11 mM MgCl<sub>2</sub> (pH 6.4). Gels were run for 50 minutes with 90 V on an ice bath. Normal gels were dyed with ethidium bromide and samples loaded with New England Biolabs 6× loading dye, and imaged with BioRad ChemiDoc XRS+. Fluorescent gels were prepared by loading samples with self-made loading dye (1× containing 2.5 w-% Ficoll 400, 3.3 mM Tris-HCl and 0.015 w-% bromophenol blue) and imaged with BioRad ChemiDoc MP imaging system using channels Alexa Fluor 488 (excitation filter 470/30 and emission filter 532/28) and Alexa Fluor 546 (excitation filter 530/28 and emission filter 602/50).

**MgCl<sub>2</sub> depletion FRET experiments.** To study the stability of the closed pHL nanocapsules in low  $Mg^{2+}$  (0.6 mM) concentration and subsequent introduction into physiological (150 mM) NaCl concentration, pHL nanocapsules in 1× FOB (pH 6.4) were exchanged to low- $Mg^{2+}$  buffer by spin-filtration. Samples were first diluted with 11 mM Tris buffer at pH 6.4, so that final concentrations of buffer components were 11.2 mM Tris, 0.8 mM acetic acid, 0.04 mM EDTA, 0.6 mM MgCl<sub>2</sub>, and 0.2 mM NaCl. The diluted sample was then concentrated back to original volume with 100 kDa MWCO Amicon Ultra 100 kDa cutoff centrifugal filters (6000 rcf). For 150 mM NaCl sample, NaCl concentration was adjusted after spin-filtration by adding 5 M NaCl. Emission spectra were collected similarly to previous FRET experiments described in the text

**FRET measurements in the presence of blood plasma.** In order to test whether closed pHL nanocapsules remain in a closed state after introduction to plasma, emission spectra were measured from pHL nanocapsules in 1× FOB (pH 6.4) after addition of either 1% or 10% plasma from human (Sigma). Emission spectrum of 1% plasma sample was measured 110 min after addition of plasma. 10% plasma sample was first incubated for 72 min in the presence of 1% plasma, after which plasma volume was increased to 10% and spectrum was collected after 40 minutes of incubation. Changes in the FRET signal were first followed with kinetic measurements to ensure that fluorescence signals had stabilized. Emission spectra were then collected similarly to previous FRET experiments described in the text.

#### **Supplementary figures**

- S1. Additional FRET controls
  - A. Emission spectra of open and closed controls at pH 6.0 and pH 8.0
  - B. Partially labeled (D, A) open control samples
- S2. Agarose gel elctrophoresis (AGE)
  - A. Analysis of assembly yield and quality
  - B. Comparison of electrophoretic mobility and emission of FRET-labeled nanocapsules at pH 6.4 and 8.2
- S3. Sample aggregation at low pH and at high  $Mg^{2+}$  concentrations

S4. Effect of Mg<sup>2+</sup> depletion, physiological NaCl concentration, and blood plasma on closed pHL nanocapsules

- S5. Structural damage in closed control capsules from 5 rounds of pH cycling
- S6. Additional TEM images of AuNP-loaded nanocapsules
  - A. Calculation of the loading yield
  - B. pHL nanocapsules mixed in a closed, low-pH state with AuNPs
- S7. Emission spectra of opC and pHL nanocapsules before and after HRP loading
- S8. Supplementary data for HRP activity measurements
  - A. Product formation plots for all substrate concentrations
  - B. Michaelis-Menten curve fitting
- S9-S10. caDNAno blueprint of the nanocapsule design

Supplementary tables S1–S5. List of staple strands.



**Figure S1. Additional FRET controls.** (A) Emission spectra of permanently open (opC) and closed (clC) control samples labeled with both A488 (D) and A594 (A), and measured at pH 6.0 and 8.0 after 460 nm excitation. Emission profiles and FRET efficiencies of the samples are not affected by pH change, indicating that the conformation of opC and clC is not affected by pH and furthermore, that pH change alone does not affect the emission properties of the FRET pair. (B) Comparison of opC sample emission after 460 nm excitation when labeled either with both FRET dyes (opC +DA), or partially labeled with only the donor (opC +D) or acceptor (opC +A). Direct acceptor excitation at the applied donor excitation wavelength is minimal, as seen in the lack of fluorescence in the opC +A sample. Comparison of opC +D to the opC +DA sample shows that even in the open state, presence of the donor leads to a low acceptor emission indicating FRET. All spectra have been normalized to acceptor emission intensity in the sample after excitation at 560 nm. Acceptor intensity after direct excitation at a wavelength where the donor does not absorb can be used as an internal reference for fluorophore concentration.



**Figure S2. Characterization of the folding quality and electrophoretic mobility of opC, clC, and pHL nanocapsules with agarose gel electrophoresis (AGE).** (A) Comparison of the electrophoretic mobility of different sample types before PEG purification of excess staples, and after PEG purification of excess staples and resuspension into 1× FOB (1× TAE, 15 mM MgCl<sub>2</sub>, 5 mM NaCl) at either pH 8.2 or pH 6.2. Electrophoretic mobility of the nanocapsules is not observably affected by the open/closed state. (B) FRET-labeled capsule samples in 2% agarose gels at either pH 8.2 or pH 6.4. Green channel: donor excitation and detection; red channel: acceptor excitation and detection.



**Figure S3. Aggregation of nanocapsules.** (A) FRET efficiency of pHL nanocapsules with datapoints measured below pH 6.4. The increase of FRET efficiency at pH < 6.4 (uncolored data points) was accounted for sample aggregation and/or instability at low pH. (B) Kinetic measurement of the closing of pH-latch samples at 15 mM MgCl<sub>2</sub> and 30 mM MgCl<sub>2</sub>. Curves show that the FRET efficiency values or closing kinetics are not significantly different between the 30 mM sample and the 15 mM sample, but the fluorescence intensity recordings of the 30 mM sample (raw data, not shown) show heavy fluctuation of the signal linked to scattering produced by large aggregates.



Figure S4. Effect of  $Mg^{2+}$  depletion and blood plasma on closed pHL nanocapsules at pH 6.4 studied with FRET. (A) Emission spectra of pHL nanocapsules in 1× FOB pH 6.4 (containing 15 mM MgCl<sub>2</sub>, 5 mM NaCl), after buffer exchange to low-Mg<sup>2+</sup> buffer (0.6 mM MgCl<sub>2</sub>, 0.2 mM NaCl, pH 6.4), and after addition of 150 mM NaCl into theC low-Mg<sup>2+</sup> sample. FRET efficiency decreases *ca*. 22% upon addition of NaCl. (B) Emission spectra of pHL nanocapsules in 1× FOB (pH 6.4) supplemented with different volumes of plasma. 10% plasma significantly obstructs the fluorescence measurement through increased scattering, preventing a reliable calculation of FRET efficiency from the spectrum. 10% plasma was also observed to increase sample pH (from 6.4 to above 7.0). All spectra in subfigures (A) and (B) have been scaled according to acceptor emission intensity at 616 nm after 560 nm direct excitation.



Figure S5. TEM verification of structural damage caused to the clC sample by repeated pH cycling. (A) clC sample at pH 6.3 after the first addition of acetic acid (pH decrease). (B) The same sample at pH 6.3, after changing the pH five times between 7.7 and 6.3 with additions of acetic acid or sodium hydroxide. It has been noted the MgCl<sub>2</sub> concentration decreases to ~11.8 mM due to the acid and base additions but is not considered as the main cause for the observed decrease of  $E_{REL}$  in the closed control, since the drops occur only with each NaOH addition.



Figure S6. Additional TEM images of AuNP-loaded nanocapsules. (A) A typical sample of AuNP-loaded pHL nanocapsules in the open state used for loading yield estimation. Empty nanocapsules are marked with a red dot, and structures with a yellow dot contain a nanoparticle in the specified cargo-anchoring location. In this case, n = 29 and 52% of the capsules are loaded successfully. (B) When capsules are closed they cannot be loaded with AuNPs. Scale bars are 50 nm.



**Figure S7. Emission spectra of phL and opC samples at pH 6.4 with and without HRP cargo.** HRP loading does not change the emission properties of the nanocapsules labeled with a FRET pair. Most importantly, FRET efficiency in the pHL capsule does not decrease upon cargo loading indicating that cargo loading does not hinder the formation of the closed state. The spectra have been obtained with 460 nm excitation and normalized for concentration differences with the acceptor emission intensity collected after 560 nm excitation.



Figure S8. Analysis of the catalytic activity of HRP in HRP-capsule samples and free HRP in solution. (A) Formation of the oxidized product  $ABTS^{++}$  catalyzed by HRP in pH 6.4 samples. The rate of ABTS conversion to  $ABTS^{++}$  was followed according to the increase of absorption at 420 nm, measured in the presence of 0.125–4 mM ABTS and 4 mM H<sub>2</sub>O<sub>2</sub>. Nanocapsule concentration in opC and pHL samples was 2 nM, and concentration of HRP in the free HRP sample 2 nM. Initial catalytic rates for each ABTS concentration were determined from the slope or a linear equation fitted into the data points in the first 6 minutes. Error bars represent the standard error of the mean of three parallel samples. (B) Product formation in pH 7.8 samples. Apart from the higher pH, experimental conditions were identical to the pH 6.4 measurements. (C) Michaelis-Menten curves for determining  $V_{max}$  and  $K_m$  in each sample type, representing the relationship between ABTS concentration and the measured initial catalytic rates. The values for  $V_{max}$  and  $K_m$  are reported in the text.



Figure S9. caDNAno blueprint of the nanocapsule top half. The top half of the capsule consists of helices 1-49 according to the helix map shown in the top-right part of the figure. Staple strands have been colored according to the strand type or function in the design. Locations of 3' or 5' extensions in pH latch strands and fluorophore-modified strand has been indicated, as well as location of the unhybridized scaffold regions  $(4 \times 10 \text{ nt})$  linking the capsule halves together.



**Figure S10. caDNAno blueprint of the nanocapsule bottom half.** The bottom half of the capsule consists of helices 50-95 according to the helix map shown in the top-right part of the figure. Staple strands have been colored according to the strand type or function in the design. Locations of 3' or 5' extensions in pH latch strands, fluorophore-modified strand, and cargo anchoring strand has been indicated. To achieve correct strand direction for complementary lock strands in the clC design, the strands colored in black have been used for lock extensions instead of the adjacent pH latch strands.

### List of all staple strands

All nanocapsules (pHL, clC, and opC) contain the staple strands listed in Tables S1 and S2. Depending on the nanocapsule type, these strands are combined with one set of staples making up the "lock region"; selected either from Table S3 (pH latch staples for pHL), Table S4 (complementary lock staples for clC), or Table S5 (staples with no lock extensions for opC). Start – end locations correspond to caDNAno design.

| Functionality | Start - end       | Sequence                                          |  |  |  |
|---------------|-------------------|---------------------------------------------------|--|--|--|
| core          | 0[55] - 26[49]    | TCTATCAAATCAAGAAAAGAA                             |  |  |  |
| core          | 0[76] - 25[76]    | ACGTCAACCCGAGAATCTACATTTAGTG                      |  |  |  |
| core          | 0[95] - 31[97]    | TTAAAGTTCCAGGAGGGTATAAACGAGAACGGTCTAGCAT          |  |  |  |
| core          | 1[63] - 47[69]    | GGGTCAGAGGGCGAGTAACGCATGTGCTTATTACG               |  |  |  |
| core          | 10[34] - 12[30]   | GCCACCGTCTGTCCAACTA                               |  |  |  |
| core          | 10[93] - 18[84]   | TAAGTTATCCGCTCGAATTCGTAAACGCGTGAAGGTTT            |  |  |  |
| core          | 11[105] - 19[109] | ATTCCACAGCCGGACGCGG                               |  |  |  |
| core          | 11[42] - 20[46]   | AAATTAATTATAATTCTAAAGTGG                          |  |  |  |
| core          | 11[63] - 19[69]   | CTTCTTTCCAGAATACCTCAA                             |  |  |  |
| core          | 11[77] - 20[84]   | TCCTGTGTGAAATTAGCCTGGTTTCGCAGCATCAG               |  |  |  |
| core          | 12[109] - 36[105] | CCCGGCCGTGAGCCCTGCGTGTGTTCTTTCAACAATACTTTGTACCA   |  |  |  |
| core          | 12[48] - 35[48]   | AGTAGAACCATTGCTATTAACAAAACATAGATAGATACCCGG        |  |  |  |
| core          | 12[69] - 16[63]   | AGTAATATCATGGAAAACAGACCGAACGAACCACCCTACCTGAAAGCGT |  |  |  |
| core          | 15[28] - 11[41]   | CCAGTAATAAAAGGATGGATTCCGCCAGGAACTCAATCACGC        |  |  |  |
| core          | 15[45] - 10[35]   | ATTCCAGACAATATTTTTTAGCCCTACCGCCTTGAAAAACAGTGAG    |  |  |  |
| core          | 15[56] - 11[62]   | CAGAGATTTTGACGAAAACGCACATCACAGCAATA               |  |  |  |
| core          | 15[66] - 14[79]   | ACCCTTCTGGCATCAGACGTCAT                           |  |  |  |
| core          | 15[87] - 17[90]   | CCAGGGTGCCGGTGCCCCAGCTCGTCATAAAC                  |  |  |  |
| core          | 15[98] - 11[104]  | TCACTGCATGCGGCTTCGCGTGTACCGAGCTCACA               |  |  |  |
| core          | 16[62] - 9[62]    | AAGAATAAAAAATAGGTGAGGTTGCTGACCTGAGATTAGACA        |  |  |  |
| core          | 17[21] - 36[21]   | AATGCGCATTTTCACAGATGAAAACAAT                      |  |  |  |
| core          | 17[49] - 15[55]   | CGCCATTCGTGGCATGGCCAA                             |  |  |  |
| core          | 18[83] - 11[76]   | CTTTGCACAGGCGCGGTGCCTAATGACGGACTGTT               |  |  |  |
| core          | 19[70] - 12[70]   | ATATCTGGAAGATAAAGTTTCTGCCAGCTCATGGTCATAGTT        |  |  |  |
| core          | 2[62] - 22[52]    | GCCGTAAAGCACTAAGCTTGACTTTGCCACAATTCCAAT           |  |  |  |
| core          | 2[95] - 21[94]    | GGCAAATCCTGTCGGTCCGAACGTGCTGGTCAGTCGG             |  |  |  |
| core          | 20[111] - 40[105] | GCTTACGGGATAAAACCCTCAATAAAGCGGCAAAGAACATCCCAATTCT |  |  |  |
| core          | 20[45] - 39[48]   | CAAACTCCGTGAGCTCTCTACCATGCAGCGCCAGAATCG           |  |  |  |
| core          | 20[69] - 7[62]    | CTCAATCAATATCTATCTTATTTCCTCGCTTTGA                |  |  |  |
| core          | 20[83] - 9[83]    | CGGGGTCCAACGGCTGTCGTGCCAGCATTAGTGAGCTAACTC        |  |  |  |
| core          | 21[95] - 13[93]   | TGGGTGTCCACTCAATCATGGGTACCT                       |  |  |  |
| core          | 22[51] - 13[51]   | AGACTAAAATGGTCAGTCATCACCCGGTCAGAAC                |  |  |  |

**Table S1. Staple strands for the core structure and poly-T overhangs.** Poly-T regions for passivation of the edges have been written in lowercase letters.

| core | 22[62] - 4[56]    | GAGCCGTGACAACTAACCACCCAAGTGTAGCGGTCCGGCGAACGTGGCG   |  |  |  |
|------|-------------------|-----------------------------------------------------|--|--|--|
| core | 22[83] - 7[76]    | CGCAAGACATCCTCTGGTTTTTCTTTGCGTTGCAT                 |  |  |  |
| core | 24[69] - 1[62]    | AGCCTTAGGCGGCCAAAATCCCCGTAAAATTTTTTG                |  |  |  |
| core | 24[86] - 48[84]   | TTCGTAAAGTGCTATTTCCTGAGACTTCCTGCCATCAAAGATTCA       |  |  |  |
| core | 25[49] - 2[63]    | GAACAAGCCGCACATTAAATCCGGGGAAAGCCGCTATGAGGT          |  |  |  |
| core | 25[77] - 5[83]    | ATGAAGGGTCTCGTCCCAGCACAGCAAGCGGTCCAACTCACCAGTGAGA   |  |  |  |
| core | 26[109] - 45[104] | ATTAAATGATATCTGCGAACGAGTGCCTGGAAG                   |  |  |  |
| core | 27[56] - 49[77]   | TCGACATAAAAAGGGTTTTCCCAAGCTTTGGGAAGGGAA             |  |  |  |
| core | 27[77] - 24[70]   | GTCATTGTTGAGAGTAGGGTTTATAAATCAAAAGAGGTTTGCCGCTGGC   |  |  |  |
| core | 28[97] - 36[91]   | GTCAACTAGAGAATAAACGTTTGTAAAATAAGCAA                 |  |  |  |
| core | 29[32] - 34[35]   | TATAAAATCGCTGATTGTCGGGAGATATACAGTAACAGCTGAAAT       |  |  |  |
| core | 30[41] - 24[37]   | ТСАААТТАТТАТСАТАТТА                                 |  |  |  |
| core | 35[91] - 15[97]   | GTATATGACCCTGTGCCAAAAACAGGAAATCCCTTAGCCAGCC         |  |  |  |
| core | 36[104] - 33[97]  | AAAACATTTAAGCATATCATATGTACCCTCAGAAA                 |  |  |  |
| core | 36[48] - 33[34]   | CCAGTCCTTTTACACTTTGAAACTATCAAAATTATAACAGAA          |  |  |  |
| core | 37[21] - 40[21]   | GATTCGCCGCAGAGCATTTCACATCAAG                        |  |  |  |
| core | 38[118] - 35[118] | CAGGCAACTCAGAGAATCGGTTTGCGGG                        |  |  |  |
| core | 39[35] - 41[48]   | GAGCAAAAAGTTACACCTTAAATTTCTGGCCAGCAATACCTC          |  |  |  |
| core | 39[98] - 42[105]  | IAGCATTAATTAGCCGGGTAAAGATTCAAAAGGCCTCATTTGGTCAATA   |  |  |  |
| core | 4[55] - 8[53]     | AGAAAGGGCGCTGGACACCCGTATGGTTGTT                     |  |  |  |
| core | 4[95] - 10[94]    | CTGAGCAGCTGAATTGGGCACGCGCGCCAGTCGTTGCGTTAGTG        |  |  |  |
| core | 40[104] - 28[98]  | CTAATATATATTTGGAGACA                                |  |  |  |
| core | 40[48] - 29[31]   | GAAACAAGATGATGTTTAACAGTATCAATATAATCGGAT             |  |  |  |
| core | 41[21] - 39[34]   | СААААТТААТТАСААААСААААТТАССТ                        |  |  |  |
| core | 42[104] - 49[111] | ACCTGTTTCAGATTTAGTTTGTGAATATTGCGGAT                 |  |  |  |
| core | 42[48] - 49[56]   | GGATATTCATTTGACAATATATGTGAAACCTTTTTTTCCGGCACCGCTTCT |  |  |  |
| core | 42[62] - 0[56]    | GCCGCCACCAGTGCCAGTCACAAGTTGGAAAACCG                 |  |  |  |
| core | 42[90] - 42[63]   | AAATCAGCTCATTTTTTTAAAGAGGTGGA                       |  |  |  |
| core | 45[105] - 47[109] | TTTCATTGCAACTACTGTA                                 |  |  |  |
| core | 45[49] - 27[55]   | GAAAATTGACGTTGGTGTACA                               |  |  |  |
| core | 46[34] - 26[31]   | AAGACGCTAATTTTGCTTCTGTGATGGCAATTCTGGAAGGAGCGGA      |  |  |  |
| core | 46[97] - 0[77]    | GTACAACCCGTCGGATTCTGAAAGGGGGGCAATCAACATTAAAGACTCCA  |  |  |  |
| core | 47[56] - 47[55]   | TCTTCGCGCAAGGCGACATAGCGATAGCCTGAGAGACGGGCC          |  |  |  |
| core | 47[70] - 27[76]   | CCAGCTGCAACTGTTCCCAATAGGAACGTAGCCAGCTTTCGGCTATCAG   |  |  |  |
| core | 48[83] - 46[98]   | GGCTGCGGCCCGTGGGAACAAACGGCGGATTGATGAAGTACG          |  |  |  |
| core | 48[97] - 39[97]   | ATGGGATAAATAATTATTGTTAATTTGCGTTTAAATTTTGAG          |  |  |  |
| core | 49[28] - 46[35]   | ATGCTGATGCAATTAACCTCCCATAGGTTTAGATT                 |  |  |  |
| core | 5[44] - 45[48]    | CTAGGAAGGGAAGATTTAGAATCGGATCACCCAGGGCGATAATCCTT     |  |  |  |
| core | 5[84] - 45[90]    | CGGGCAAAGAGTTGGGCGAAAAATCCCTGAGTGTTGAACGTGTGTGAGC   |  |  |  |
| core | 50[95] - 68[94]   | CGTGCGGTCAGGTAATTCGCAAAAAGAAGCAAAACCATAAGCTC        |  |  |  |
| core | 51[42] - 76[35]   | TTTAGTTAGATCGCAAGGAAACTCCTTATTACGCA                 |  |  |  |
| core | 51[63] - 77[69]   | ACCTAAAACGACAGTAATAACGGAATAAAATATCTTACCGAATATAAAA   |  |  |  |
| core | 51[84] - 76[84]   | TCCAACAATCTGCCCTTTGACCAAAAGA                        |  |  |  |
| I    |                   |                                                     |  |  |  |

| core | 52[90] - 77[90]  | AGCTTCAAAATCCGTATCATCGGGTAAA                      |  |  |  |
|------|------------------|---------------------------------------------------|--|--|--|
| core | 53[42] - 77[48]  | TACTAGAGTGATAAAATAAGAAAGTAAGACATACA               |  |  |  |
| core | 56[34] - 64[32]  | ATCGCCACGCCAACTAATAAGGTACCGAGCC                   |  |  |  |
| core | 56[97] - 64[91]  | AAACGAGATAAATACAATACTTTTGCCAAACGAAC               |  |  |  |
| core | 57[42] - 71[45]  | TTAGGCAGGGCTTAAGCCAACGCCTGTTGAGA                  |  |  |  |
| core | 60[97] - 95[97]  | GCAAAAGTCGTTTACAAAAGGAGGTTTACACCCTCGAGGCTG        |  |  |  |
| core | 61[42] - 69[45]  | ITTATCAACGACGATAAAGTACATTTTCCAATTTTGTTACAAATAA    |  |  |  |
| core | 61[49] - 95[62]  | ACAATAGCCTAATTGGAGTGTAGAATGGGCCTATTTCGGAAC        |  |  |  |
| core | 61[63] - 61[90]  | CTGAACAAGAGCAACACTATCATAACCC                      |  |  |  |
| core | 62[76] - 95[76]  | GTAAGAAAGGTGTACAAGCCCTCTGAAA                      |  |  |  |
| core | 63[70] - 93[79]  | GAACATTTAACGATGGAACCCATGTACCGGGATAGTCA            |  |  |  |
| core | 63[91] - 93[100] | TCATCAGAGACAGCTGAGTTTCGTCACCGAGCCACGTA            |  |  |  |
| core | 64[31] - 91[34]  | CAATCATTCCAGACAGGAGGTCAGA                         |  |  |  |
| core | 64[48] - 82[44]  | GGAATCATAAGAACTCAAGATAGCGTCATAGCGACGCACCATATTAG   |  |  |  |
| core | 64[55] - 91[55]  | CATCGTAACCAAGTACCAGAGATTCACA                      |  |  |  |
| core | 64[76] - 89[76]  | TAAGCAAGCCGTTTCGAACCTCCCGACTACAGTTTAGTTTTG        |  |  |  |
| core | 65[35] - 60[28]  | GGTATTCTTACCGCCAAAAGGCAATAAACAACATG               |  |  |  |
| core | 66[90] - 84[84]  | AATCATTAGGAGCCAGGTGAA                             |  |  |  |
| core | 67[71] - 82[63]  | ACGACCACCTTGCGGGAGGTTTCATCGCGATAGCCCGGAAAACCGACT  |  |  |  |
| core | 67[84] - 80[84]  | GAAACACCAGTGAAAACCGGACTTCATCCTGAGGCCGTCACC        |  |  |  |
| core | 68[55] - 89[62]  | ITTGCCAATCCTGACCTTAAAGCGAGGCCCTCAGACACCACCCTCAGAG |  |  |  |
| core | 68[67] - 85[76]  | ICCAGAACGTCAAAAATCTAAACCATGCAAAGG                 |  |  |  |
| core | 68[93] - 89[95]  | ATTCAGAACGCAACTTTAACTGGCGATTTTGGTTAG              |  |  |  |
| core | 69[46] - 80[44]  | GAATAACATAAAATTATAGGGA                            |  |  |  |
| core | 7[44] - 25[48]   | CGTACCCGCGCTTTTACAACGAACGTTTTTGCG                 |  |  |  |
| core | 7[63] - 22[63]   | CGAGCACTGCGCGTCGCCGGCCAGAGCAATACTAATAGATTA        |  |  |  |
| core | 7[77] - 24[87]   | TAATGAATCGGCCAGCCAGGGATAACGGTTTT                  |  |  |  |
| core | 70[51] - 87[62]  | GAAACGATTTTAATCAGGACTGTACCCTTATCCGGAACCAGAGCC     |  |  |  |
| core | 70[69] - 80[63]  | TAGCAGCTTATCACAGGGCGA                             |  |  |  |
| core | 71[46] - 78[44]  | ATTGATAACCAATTCATGTTTA                            |  |  |  |
| core | 71[84] - 79[76]  | TTTGAAATCATAAGAACGAGGAGACTTTTTCATGAGGAAGAACAAGACA |  |  |  |
| core | 71[91] - 87[95]  | GAGGACAGGCTGACTATTCATGCTTTCGTTTAATTTTTTCAAACTA    |  |  |  |
| core | 72[69] - 78[63]  | ATTGAGCCCAAAGACGCAAAG                             |  |  |  |
| core | 76[104] - 72[91] | TAAAACGAAAGAGGCCCCAGCAGATTTGCGACCTGCGGTCAA        |  |  |  |
| core | 76[55] - 70[52]  | ATTAAGACCGAGGATTAAGAAGCAAGAATCAGAGAAACTGAAGAGA    |  |  |  |
| core | 76[83] - 76[56]  | ATACACTAAACCCAAAAGAACTGGCATG                      |  |  |  |
| core | 77[35] - 50[28]  | AGAAAATCAGATAGTTACCAGACAAGACAAAGAAC               |  |  |  |
| core | 77[49] - 83[55]  | TAAAGGTGGAATAAATGGTTTCCGATTGTCATTAATTTGGGATACCATT |  |  |  |
| core | 77[91] - 83[95]  | ATACGTAGGACTAAGTAGCAAGCGGGATTTGCAGGAACAACCTACCG   |  |  |  |
| core | 8[52] - 12[49]   | AGAAAGGGATTAGTGTTTCCGTTGTTTGCCTG                  |  |  |  |
| core | 80[62] - 51[62]  | CATTCAAACCAGCGGCTAATAACAATGAGAAATACTCTTCTG        |  |  |  |
| core | 80[83] - 71[83]  | CTCAGCAGCGAAAACGTATATTCGGTCGAAGAGTAGACCAAC        |  |  |  |
| core |                  | TGAGCCAAGGTGAACTTTACACACCCTGAACAAAGTCAGACTATGAAAA |  |  |  |
|      | 82[62] - 70[70]  | TGAGCCAAGGTGAACTTTACACACCCTGAACAAAGTCAGACTATGAAAA |  |  |  |

| core                       | 83[56] - 68[56]   | AGCAAGGAGCACCGTTTGTTTAGCCTAA                       |  |  |  |
|----------------------------|-------------------|----------------------------------------------------|--|--|--|
| core                       | 84[83] - 68[68]   | TTTCTTGTGACAAGTAAGGCTTGGCGTCTT                     |  |  |  |
| core                       | 85[77] - 67[83]   | CTCCAAAGTGAATTCTGACGA                              |  |  |  |
| core                       | 86[83] - 64[77]   | AATCTCCAAAAAATGGAGTGAGAATAGAACTTTCATATGCGAACAACAT  |  |  |  |
| core                       | 87[63] - 67[70]   | ACCACGCTTTCGGTCATAGCCGCGCGTTTTTGAAGATCTTACCAACGCTA |  |  |  |
| core                       | 89[63] - 64[56]   | CCGCCAACACGGAACCGCCTCGTTTTAGTTATTTT                |  |  |  |
| core                       | 89[77] - 62[77]   | TCGTCTTGTTAGCGACAGGTAAGGCATA                       |  |  |  |
| core                       | 89[84] - 86[84]   | TCCAGACCTAAACAAAGGAACCGTTGAA                       |  |  |  |
| core                       | 9[44] - 30[42]    | ATTAATCAGAGCAGGTTATTAATACAAAAAAGACAGCGGA           |  |  |  |
| core                       | 9[63] - 20[70]    | GGAACGGAACGTGCGGAGCACTAACAGCATAAACC                |  |  |  |
| core                       | 9[84] - 22[84]    | ACATTAAGGAAACCAGCACCGCAGCAAC                       |  |  |  |
| core                       | 91[35] - 94[28]   | CGATTGGAGTCTCTCTTTTGACGGGGTCAGTGCCT                |  |  |  |
| core                       | 91[56] - 61[62]   | AACAAATAAATCTACTACCAGAACCACCACCGCACATCCCATATAAGTC  |  |  |  |
| core                       | 92[31] - 90[46]   | TTTATATAAACAGTTAATGCCCCCTAAAGCGCCCTTGATCCG         |  |  |  |
| core                       | 94[111] - 65[109] | GGGGTTTCACCCTCCAGATACTTAGGAAATCTACGACCAG           |  |  |  |
| core                       | 95[63] - 63[69]   | CTATTATAACTCATTAAAGCCACATAGCCCGGAATAAATA           |  |  |  |
| core                       | 95[77] - 90[84]   | CATGAAAGTATTAAATTTTCAGTAACACCCTCATA                |  |  |  |
| core                       | 95[98] - 90[105]  | AGACTCCTCAAGAGACCCTCAAGTACAACTGTAGC                |  |  |  |
| core + poly-T              | 0[118] - 0[96]    | ttttttttAGTCCACTA                                  |  |  |  |
| core + poly-T              | 1[21] - 2[21]     | LTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTT            |  |  |  |
| core + poly-T              | 10[127] - 11[127] | tttttttATACGACAACtttttttt                          |  |  |  |
| core + poly-T              | 11[12] - 10[12]   | tttttttAAGAGAGTAAttttttt                           |  |  |  |
| core + poly-T              | 12[132] - 12[110] | LTTTTGAGGATC                                       |  |  |  |
| r = r                      | 12[29] - 12[5]    | TCGGCCTTGttttttt                                   |  |  |  |
| core + poly-T              | 13[5] - 18[7]     | ttttttttCCAGAACTGCCACGtttttttt                     |  |  |  |
| core + poly-T              | 14[132] - 15[111] | tttttttttGTGCTGCGGCCAGAGCGCCTG                     |  |  |  |
| core + poly-T              | 17[102] - 9[116]  | TGGGCTGGTACGCCGGGAGCATAAGCGCTCAtttttt              |  |  |  |
| core + poly-T              | 18[134] - 13[132] | ttttttttttCTGTTGCCTCCTCtttttttt                    |  |  |  |
| core + poly-T              | 19[110] - 19[134] | TTGCGGTATttttttt                                   |  |  |  |
| r = r                      | 19[30] - 14[5]    | GCAAAGCAACAGAATATTAATTTACATTGGCAGtttttttt          |  |  |  |
| r = r                      | 19[7] - 19[29]    | ttttttttGAGCCAGCA                                  |  |  |  |
| core + poly-T              | 2[118] - 2[96]    | ttttttttCCGAAATC                                   |  |  |  |
| r = r                      | 21[19] - 20[19]   | ttttttttAGGAATTGAAttttttt                          |  |  |  |
| r = r                      | 22[125] - 30[105] | ttttttttGCGTGGTTTTTAAAGAGTAAT                      |  |  |  |
| core + poly-T              | 23[19] - 22[19]   | ttttttttGAAGTATTTAttttttt                          |  |  |  |
| r = r                      | 24[120] - 25[120] | tttttttTTCCGTGCCGtttttttt                          |  |  |  |
| r = r                      | 24[36] - 24[14]   | ATTTTAAAAttttttt                                   |  |  |  |
| r = r                      | 25[14] - 31[34]   | ttttttttGAGTAACCTGAATATAGAACC                      |  |  |  |
| core + polv-T              | 26[132] - 26[110] | ttttttttAGCTGATAA                                  |  |  |  |
| core + polv-T              | 26[30] - 26[5]    | ATTATCATCAttttttt                                  |  |  |  |
| core + polv-T              | 26[48] - 0[22]    | ACCACCAGGCGGTTTAGTGAATAACCTTCCCTTAGGGCCCACttttttt  |  |  |  |
| r = 1 - T<br>core + polv-T | 27[5] - 44[7]     | tttttttttTATCAGATAAATCG++++++++                    |  |  |  |
| r = r = r = r              | 28[127] - 29[127] | tttttttttGTGAGAAAGGtttttttt                        |  |  |  |
| r = 1, T                   | 29[12] - 28[12]   | ttttttttTGTTTCTGATtttttttt                         |  |  |  |

| core + poly-T | 3[21] - 4[21]     | ttttttttAGCCCCCGAAAGCGtttttttt                   |  |  |  |
|---------------|-------------------|--------------------------------------------------|--|--|--|
| core + poly-T | 30[104] - 3[118]  | GTGTAATTGCTGATGCAAACGTTGATGGtttttttt             |  |  |  |
| core + poly-T | 30[127] - 31[127] | tttttttTGCCTTGCAAttttttt                         |  |  |  |
| core + poly-T | 31[12] - 30[12]   | ttttttttAGGGTATGGAtttttttt                       |  |  |  |
| core + poly-T | 31[35] - 6[21]    | TACCAGGTTTGAGGATTAGACTAATGCGtttttttt             |  |  |  |
| core + poly-T | 31[98] - 23[125]  | GTCAATAGCTGGTCCGGACTTGTAGAACtttttttt             |  |  |  |
| core + poly-T | 32[127] - 33[127] | tttttttTTAGAAATTTttttttt                         |  |  |  |
| core + poly-T | 33[12] - 32[12]   | ttttttttCGTAATTGCAttttttt                        |  |  |  |
| core + poly-T | 33[35] - 8[21]    | ATAAATTTCAACAGTTGAGGAGGGAGCTtttttttt             |  |  |  |
| core + poly-T | 33[98] - 21[125]  | AGCCCAAGCTGGAGTGCCATCCCACGCAttttttt              |  |  |  |
| core + poly-T | 34[118] - 17[134] | GCCTTTAAGCAAATttttttt                            |  |  |  |
| core + poly-T | 4[118] - 4[96]    | ttttttttCGCCTGGCC                                |  |  |  |
| core + poly-T | 43[21] - 48[5]    | AACAGTAGTTGGGTttttttt                            |  |  |  |
| core + poly-T | 44[134] - 27[132] | tttttttttCCCAATTTCAACCGtttttttt                  |  |  |  |
| core + poly-T | 45[7] - 46[5]     | tttttttTATTAATTGAGAAGtttttttt                    |  |  |  |
| core + poly-T | 45[91] - 1[117]   | GAGTAGTGTCTGGCGTATCACCATCAATTGCCGGATTTGGAAtttttt |  |  |  |
| core + poly-T | 46[132] - 45[134] | tttttttTAAATATCCATATAttttttt                     |  |  |  |
| core + poly-T | 47[110] - 47[132] | GCTCAACATttttttt                                 |  |  |  |
| core + poly-T | 47[5] - 47[29]    | ttttttttGAATTTATC                                |  |  |  |
| core + poly-T | 48[132] - 43[118] | tttttttTAATTGCACCATTA                            |  |  |  |
| core + poly-T | 5[21] - 5[43]     | ttttttttGAGCGGGCG                                |  |  |  |
| core + poly-T | 50[111] - 75[125] | CTTTTGACCAAGCGttttttt                            |  |  |  |
| core + poly-T | 52[127] - 53[127] | ttttttttGACTTCGAAtttttttt                        |  |  |  |
| core + poly-T | 53[105] - 73[125] | GGAAGCCCAAATATTTACTTAttttttt                     |  |  |  |
| core + poly-T | 53[12] - 52[12]   | tttttttTAAACAAGAAtttttttt                        |  |  |  |
| core + poly-T | 54[127] - 55[127] | ttttttttCCCTGCTTTAttttttt                        |  |  |  |
| core + poly-T | 54[31] - 68[14]   | TGCGTCTTACCAGCCATAttttttt                        |  |  |  |
| core + poly-T | 55[12] - 54[12]   | ttttttttCAAATTTATAttttttt                        |  |  |  |
| core + poly-T | 56[127] - 57[127] | ttttttttATGCTCTCAAttttttt                        |  |  |  |
| core + poly-T | 57[105] - 71[125] | AATCCCCTTAAACAATCAGGTACTATTAGGTGTACttttttt       |  |  |  |
| core + poly-T | 57[12] - 56[12]   | ttttttttACAATATTtttttttt                         |  |  |  |
| core + poly-T | 58[127] - 59[127] | ttttttttGTTTAAAAATtttttttt                       |  |  |  |
| core + poly-T | 59[12] - 58[12]   | ttttttttATAAAAGAATtttttttt                       |  |  |  |
| core + poly-T | 6[118] - 5[118]   | tttttttTTTGCGTTTGCCCTtttttttt                    |  |  |  |
| core + poly-T | 60[116] - 67[125] | AAAATAGCGAGATAATAGTGACTGGAAATTGGGtttttttt        |  |  |  |
| core + poly-T | 62[132] - 93[118] | ttttttttACTAATGAGAACCG                           |  |  |  |
| core + poly-T | 63[5] - 64[5]     | ttttttttCCTTATAGCAAGCtttttttt                    |  |  |  |
| core + poly-T | 64[132] - 63[132] | ttttttttAAGAAAATACCACAtttttttt                   |  |  |  |
| core + poly-T | 65[110] - 65[132] | TCAGGACGTttttttt                                 |  |  |  |
| core + poly-T | 65[5] - 65[34]    | tttttttTAGAAGGCTTATCC                            |  |  |  |
| core + poly-T | 66[125] - 57[104] | tttttttttagatggtttaatttagtagtatagcgtcttcattg     |  |  |  |
| core + poly-T | 67[19] - 66[19]   | ttttttttTGCACTATTTtttttttt                       |  |  |  |
| core + poly-T | 68[120] - 69[120] | ttttttttCGTAAATCAAttttttt                        |  |  |  |
| core + poly-T | 69[14] - 56[35]   | ttttttttTTATCCCAATCCAAAATAAACAGTATAAATTGAGA      |  |  |  |

| core + poly-T | 7[21] - 7[43]     | tttttttTACAGGGCG                               |  |  |  |
|---------------|-------------------|------------------------------------------------|--|--|--|
| core + poly-T | 70[125] - 53[104] | ttttttttCAGGCGCATAGGCTGATGAACTAGTCAGATTAAGA    |  |  |  |
| core + poly-T | 71[19] - 70[19]   | ttttttttCGCATGGAAGtttttttt                     |  |  |  |
| core + poly-T | 72[125] - 52[102] | ttttttttGAACGAGGCGCAGACTCCATGCGC               |  |  |  |
| core + poly-T | 73[19] - 72[19]   | ttttttttGTTAAATTGAttttttt                      |  |  |  |
| core + poly-T | 74[127] - 74[105] | tttttttttACAAAGT                               |  |  |  |
| core + poly-T | 75[19] - 74[19]   | ttttttttCAAAGCCGAAtttttttt                     |  |  |  |
| core + poly-T | 78[118] - 50[96]  | tttttttttGCTTTGAATGCCACAACGGGATTATATATCGTAAC   |  |  |  |
| core + poly-T | 78[43] - 78[21]   | TTTTGTCACttttttt                               |  |  |  |
| core + poly-T | 79[21] - 51[41]   | ttttttttAATAGAACACAAGAGCCCAATATAAGGCAATATAT    |  |  |  |
| core + poly-T | 8[118] - 7[118]   | ttttttttCCGCTTTGGGAGAGtttttttt                 |  |  |  |
| core + poly-T | 80[118] - 79[118] | ttttttttCGCTTTTCGGCTACtttttttt                 |  |  |  |
| core + poly-T | 80[43] - 80[21]   | GGGAAGGTAttttttt                               |  |  |  |
| core + poly-T | 81[21] - 53[41]   | tttttttttGACGGAAAACAGTAGACGGTAGTATCTCATAAT     |  |  |  |
| core + poly-T | 82[118] - 81[118] | ttttttttCAATGACGAGTTAAtttttttt                 |  |  |  |
| core + poly-T | 82[43] - 82[21]   | AGCCAGCAAttttttt                               |  |  |  |
| core + poly-T | 83[21] - 84[21]   | ttttttttACCAGTAAGAATCAtttttttt                 |  |  |  |
| core + poly-T | 83[96] - 83[118]  | ATAGTTGCGttttttt                               |  |  |  |
| core + poly-T | 84[118] - 56[98]  | ttttttttCAGCTTTACCCAACAAAGCTATCAAAAGTTCAGA     |  |  |  |
| core + poly-T | 85[21] - 57[41]   | tttttttttGCCTTTTAGTTGCCCAGCTAGAGCCAGATGTAAT    |  |  |  |
| core + poly-T | 86[118] - 85[118] | tttttttTAATAATGTATCGGtttttttt                  |  |  |  |
| core + poly-T | 87[21] - 88[21]   | ttttttttCATAATCCCCTCAGtttttttt                 |  |  |  |
| core + poly-T | 87[96] - 87[118]  | AAGGAATTGttttttt                               |  |  |  |
| core + poly-T | 88[118] - 60[98]  | ttttttttGTATGGTCATTATTTAATAAGAGGGGGGGGCTTTT    |  |  |  |
| core + poly-T | 89[21] - 61[41]   | tttttttttGCCACCCCAGCATTAGAACGGATGTAGAGCGCCTG   |  |  |  |
| core + poly-T | 89[96] - 89[118]  | TAAATGAATttttttt                               |  |  |  |
| core + poly-T | 9[21] - 9[43]     | tttttttAGGAGGCCG                               |  |  |  |
| core + poly-T | 90[127] - 91[127] | ttttttttAACGCACTACtttttttt                     |  |  |  |
| core + poly-T | 90[45] - 86[21]   | CCGCTCAGAGCGCCGCCAAAAATCATAGCGTTTGCCATCttttttt |  |  |  |
| core + poly-T | 91[12] - 90[12]   | ttttttttAGGCAGGTTGtttttttt                     |  |  |  |
| core + poly-T | 92[136] - 92[112] | ttttttttAACCGCC                                |  |  |  |
| core + poly-T | 92[27] - 92[5]    | CCGTTCCttttttttt                               |  |  |  |
| core + poly-T | 93[21] - 62[5]    | AGCGTCACAATAATttttttt                          |  |  |  |

Table S2. Staple strands for FRET and cargo anchoring.

| Functionality                           | Start - end     | Sequence                                                    |
|-----------------------------------------|-----------------|-------------------------------------------------------------|
| Alexa Fluor 488 3',<br>top half FRET    | 14[78] - 15[65] | ACCGGGGTACCTACATAGAtt/3AlexF488N/                           |
| Alexa Fluor 594 3',<br>bottom half FRET | 93[80] - 94[67] | CCGTGTGCCGTCGAGAGGGTTtt/3AlexF594N/                         |
| Cargo anchoring strand                  | 79[77] - 52[69] | GCATCGGGGAACCGTGTGTCGAAGCGAACCAGATAAtttAAAGAAGAAAG<br>AAAAA |

Table S3. Staple strand set for pH latch functionalization of pHL nanocapsules. Hairpinforming extensions have been colored orange, and ssDNA counterparts green. dsDNA regions and ssDNA sequences with the same set number contain matching polypurine - polypurine sequences for Hoogsten triplex formation.  $3 \times T$  spacers between the latch and the core structure, as well as  $4 \times T$  hairpin loops have been marked with lowercase letters.

| Functionality                     | Start - end       | Sequence                                                                      |  |  |
|-----------------------------------|-------------------|-------------------------------------------------------------------------------|--|--|
| latch 15/1 - pHL<br>set 1 hairpin | 13[52] - 15[44]   | AGGACTCAATCGTCTGAAGACtttGAGAGAAGAAGAAGAAGAAGAtttCTT<br>TCTTCTTCTTCTCTCTCC     |  |  |
| latch 15/2 - pHL<br>set 2 hairpin | 13[94] - 15[86]   | GTTCGGGCCGTTTTCACGGATtttAAAGGAAGAGAGAAGAAGAAGGttttCCT<br>TTCTTCTCTCTCTTCTTT   |  |  |
| latch 16/1 - pHL<br>set 3 hairpin | 34[34] - 16[30]   | TGCGTAGGAACTGAGAATGtttCCTTTCTTTCTTTCTTCCTCttttGAGGA<br>AGAAAGAAAGAAAGG        |  |  |
| latch 16/2 - pHL<br>set 4 hairpin | 16[114] - 17[101] | AGAGAAGAAAAGAGGAAGGAttttTCCTTCTCTTTTCTTCTCTtttGATG<br>CCGGGTTACCTGCACAC       |  |  |
| latch 50/1 - pHL<br>set 5 hairpin | 50[54] - 52[49]   | CTTTTCTCTTCTTCCCTTTCttttGAAAGGGAAGAAGAGAAAAGtttTCAG<br>GAAATTTCACGACCGT       |  |  |
| latch 50/2 - pHL<br>set 6 hairpin | 50[75] - 51[83]   | TTTCTTTCCTTTCCCTCTCTttttAGAGAGGGAAAGGAAA                                      |  |  |
| latch 42/1 - pHL<br>set 7 hairpin | 47[30] - 42[30]   | AAAATGGCTTAGCATAAATATTACtttCCCCCTTTCTTTTTCTTCTtttt<br>AGAAGAAAAAAGAAAGGGGG    |  |  |
| latch 42/2 - pHL<br>set 8 hairpin | 42[115] - 39[118] | AAAAGGGAGAAGAAAAGAGGttttCCTCTTTTCTTCTCCCCTTTTtttAATG<br>GGGCGCGGTGGCATAATAAAT |  |  |
| latch 94/1 - pHL<br>set 1 ssDNA   | 94[66] - 94[46]   | GATATAAGTTGGTAATAAGTTtttCTCTCTCTTCTTCTTCTTC                                   |  |  |
| latch 94/2 - pHL<br>set 2 ssDNA   | 93[101] - 94[88]  | CCGCTGCTCAGTACCAGGCGGtttTTTCCTTCTCTCTTTCC                                     |  |  |
| latch 61/1 - pHL<br>set 3 ssDNA   | 61[30] - 92[32]   | CTCCTTCTTTCTTTCCtttAGAACAACCAATTACATGGGAA                                     |  |  |
| latch 61/2 - pHL<br>set 4 ssDNA   | 90[104] - 61[114] | ATTCCACTTGAGATATAACGCCCAGACGACGATAAAAAtttTCTCTTTT<br>TCTCCTTCCT               |  |  |
| latch 49/1 - pHL<br>set 5 ssDNA   | 49[57] - 42[49]   | CTTTCCCTTCTTCTCTTTCtttGGTGCCGGCGATCGGTGCTAACGACGGC<br>GGGAAC                  |  |  |
| latch 49/2 - pHL<br>set 6 ssDNA   | 49[78] - 48[98]   | TCTCTCCCTTTCCTTTCTTTtttCGCCATTCGCCGTCACGTTGGTGTATTA<br>ACCGTA                 |  |  |
| latch 51/1 - pHL<br>set 7 ssDNA   | 50[54] - 52[49]   | TCTTCTTTTTCTTTCCCCCCTTtttTCAGTTAAATACCGGAAATA                                 |  |  |
| latch 51/2 - pHL<br>set 8 ssDNA   | 50[75] - 51[83]   | GTTTATTAGAGAGTACCTTTAAtttTTTTCCCTCTTCTTTTCTCC                                 |  |  |
| core                              | 77[70] - 50[76]   | GATTTCCATTAAACGCCTGATCACTCATAGTTTGAG                                          |  |  |
| core                              | 78[62] - 50[55]   | ACACCACGGCAACAGCCCTTTAACGCAATATCGGCC                                          |  |  |
| core                              | 94[45] - 63[48]   | TTAATGATACATACGAGCGTATTAA                                                     |  |  |
| core                              | 94[87] - 65[90]   | ATAAACTCAGGAATTACGGAAAGATTAACGGATTTTAAG                                       |  |  |

**Table S4. Staple strand set for complementary lock functionalization of clC nanocapsules.** Duplex-forming extensions have been colored dark green. Extensions with the same set number contain complementary sequences for duplex formation.

| Functionality         | Start - end       | Sequence                                              |  |  |
|-----------------------|-------------------|-------------------------------------------------------|--|--|
| latch 15/1 - clC      | 13[52] - 15[44]   | AGGACTCAATCGTCTGAAGACtttCTCTCTCTCAAGAAGAAAG           |  |  |
| pair 1 ssDNA          |                   |                                                       |  |  |
| latch 15/2 - clC      | 13[94] - 15[86]   | GTTCGGGCCGTTTTCACGGATtttAAAGGAAGAGTCTTCTTTCC          |  |  |
| pair 2 ssDNA          |                   |                                                       |  |  |
| latch 16/1 - clC      | 34[34] - 16[30]   | TGCGTAGGAACTGAGAATGtttCCTTTCTTCAAAGAAGGAG             |  |  |
| pair 3 ssDNA          |                   |                                                       |  |  |
| latch 16/2 - clC      | 16[114] - 17[101] | TCCTTCCTCTAAAGAAGAGAtttGATGCCGGGTTACCTGCACAC          |  |  |
| pair 4 ssDNA          |                   |                                                       |  |  |
| latch 50/1 - clC      | 78[62] - 50[55]   | ACACCACGGCAACAGCCCtttAACGCAATATCGGCCTTTGAAAAGAGAAGA   |  |  |
| pair 5 ssDNA (*)      |                   | AGGGAAAG                                              |  |  |
| latch 50/2 - clC      | 77[70] - 50[76]   | GATTTCCATTAAACGCCTGATCACTCATAGTTTGAGtttAAAGAAAGGAAA   |  |  |
| pair 6 ssDNA (*)      |                   | GGGAGAGA                                              |  |  |
| latch 42/1 - clC      | 47[30] - 42[30]   | AAAATGGCTTAGCATAAATATTACtttCCCCCTTTCTAAAAAGAAGA       |  |  |
| pair 7 ssDNA          |                   |                                                       |  |  |
| latch 42/2 - clC      | 42[115] - 39[118] | CCTCTTTTCTAGAGGGAAAAtttAATGGGGCGCGGGGGGATAATAAAT      |  |  |
| pair 8 ssDNA          |                   |                                                       |  |  |
| latch 94/1 - clC      | 94[45] - 63[48]   | CTTTCTTCTTGAAGAGAGAGtttTTAATGATACATACGAGCGTATTAA      |  |  |
| pair 1 ssDNA (*)      |                   |                                                       |  |  |
| latch 94/2 - clC      | 94[87] - 65[90]   | GGAAAGAAGACTCTTCCTTTtttATAAACTCAGGAATTACGGAAAGATTAA   |  |  |
| pair 2 ssDNA (*)      |                   | CGGATTTTAAG                                           |  |  |
| latch 61/1 - clC      | 61[30] - 92[32]   | CTCCTTCTTTGAAAGAAAGGttt <b>AGAACAACCAATTACATGGGAA</b> |  |  |
| pair 3 ssDNA          |                   |                                                       |  |  |
| latch 61/2 - clC      | 90[104] - 61[114] | ATTCCACTTGAGATATAACGCCCAGACGACGATAAAAAtttTCTCTTTT     |  |  |
| pair 4 ssDNA          |                   | AGAGGAAGGA                                            |  |  |
| latch 49/1 - clC      | 49[57] - 42[49]   | CTTTCCCTTCTTCTCTTTTCtttGGTGCCGGCGATCGGTGCTAACGACGGC   |  |  |
| pair 5 ssDNA          |                   | GGGAAC                                                |  |  |
| latch 49/2 - clC      | 49[78] - 48[98]   | TCTCTCCCTTTCCTTTCttttcGCCATTCGCCGTCACGTTGGTGTATTA     |  |  |
| pair 6 ssDNA          |                   | ACCGTA                                                |  |  |
| latch 51/1 - clC      | 50[54] - 52[49]   | TCTTCTTTTTAGAAAGGGGGGTTtttTCAGTTAAATACCGGAAATA        |  |  |
| pair 7 ssDNA          |                   |                                                       |  |  |
| latch 51/2 - clC      | 50[75] - 51[83]   | GTTTATTAGAGAGTACCTTTAAtttTTTTCCCTCTAGAAAAGAGG         |  |  |
| pair 8 ssDNA          |                   |                                                       |  |  |
| latch $50/1 - clC$ no | 50[54] - 52[49]   | TCAGGAAATTTCACGACCGT                                  |  |  |
| extension             |                   |                                                       |  |  |
| latch $50/2$ - clC no | 50[75] - 51[83]   | GGGACGTTCCGGAAGCAAAC                                  |  |  |
| extension             |                   |                                                       |  |  |
| latch 94/1 - clC no   | 94[66] - 94[46]   | GATATAAGTTGGTAATAAGTT                                 |  |  |
| extension             |                   |                                                       |  |  |
| latch 94/2 - clC no   | 93[101] - 94[88]  | CCGCTGCTCAGTACCAGGCGG                                 |  |  |
| extension             |                   |                                                       |  |  |

\* the strands marked with an asterisk are core strands adjacent to the corresponding latch strands in the pHL and opC samples. The strands have been exchanged to achieve correct strand directionality for DNA hybridization (see black strands in Figure S10).

| Functionality                   | Start - end       | Sequence                                |
|---------------------------------|-------------------|-----------------------------------------|
| latch 15/1 - opC (no extension) | 13[52] - 15[44]   | AGGACTCAATCGTCTGAAGAC                   |
| latch 15/2 - opC (no extension) | 13[94] - 15[86]   | GTTCGGGCCGTTTTCACGGAT                   |
| latch 16/1 - opC (no extension) | 34[34] - 16[30]   | TGCGTAGGAACTGAGAATG                     |
| latch 16/2 - opC (no extension) | 16[114] - 17[101] | GATGCCGGGTTACCTGCACAC                   |
| latch 42/1 - opC (no extension) | 47[30] - 42[30]   | AAAATGGCTTAGCATAAATATTAC                |
| latch 42/2 - opC (no extension) | 42[115] - 39[118] | AATGGGGCGCGGTGGCATAATAAAT               |
| latch 49/1 - opC (no extension) | 49[57] - 42[49]   | GGTGCCGGCGATCGGTGCTAACGACGGCGGGAAC      |
| latch 49/2 - opC (no extension) | 49[78] - 48[98]   | CGCCATTCGCCGTCACGTTGGTGTATTAACCGTA      |
| latch 50/1 - opC (no extension) | 50[54] - 52[49]   | TCAGGAAATTTCACGACCGT                    |
| latch 50/2 - opC (no extension) | 50[75] - 51[83]   | GGGACGTTCCGGAAGCAAAC                    |
| latch 51/1 - opC (no extension) | 51[30] - 54[32]   | TTTCAGTTAAATACCGGAAATA                  |
| latch 51/2 - opC (no extension) | 52[101] - 51[115] | GTTTATTAGAGAGTACCTTTAA                  |
| latch 61/1 - opC (no extension) | 61[30] - 92[32]   | AGAACAACCAATTACATGGGAA                  |
| latch 61/2 - opC (no extension) | 90[104] - 61[114] | ATTCCACTTGAGATATAACGCCCAGACGACGATAAAAA  |
| latch 94/1 - opC (no extension) | 94[66] - 94[46]   | GATATAAGTTGGTAATAAGTT                   |
| latch 94/2 - opC (no extension) | 93[101] - 94[88]  | CCGCTGCTCAGTACCAGGCGG                   |
| core                            | 77[70] - 50[76]   | GATTTCCATTAAACGCCTGATCACTCATAGTTTGAG    |
| core                            | 78[62] - 50[55]   | ACACCACGGCAACAGCCCTTTAACGCAATATCGGCC    |
| core                            | 94[45] - 63[48]   | TTAATGATACATACGAGCGTATTAA               |
| core                            | 94[87] - 65[90]   | ATAAACTCAGGAATTACGGAAAGATTAACGGATTTTAAG |

Table S5. Staple strand set without strand extensions for opC nanocapsules.