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1 Obtaining the noise-value thresholded gene
expression dataset

Biological and technical variability limit the precision of any measurement of
gene expression. Under the assumption that any gene is not affected in most
experiments, the width of the central quintile (20%) of “cleaned” log-ratio
measurements is an accurate estimate of the total noise level for that gene.
We assumed log-normal distributions for each gene, mapping central quintile
to standard deviations (central quintile = ±0.253σ for normal). The typical
standard deviation (i.e., noise estimate) for cleaned log-ratios (base 2) is approximately
0.1 for genes with green medians above about 200. Genes with lower green
medians have higher noise levels, up to about 0.75 (a factor of 1.7).

We then compared this gene-level noise estimate with the typical (median)
spot-to-spot error for the genes. We found that the two are mostly uncorrelated,
with the spot-to-spot error being significantly smaller. For genes with low green
median, the spot-to-spot error accounts for most of the gene error.

Given a noise model, we can now consider which data points represent
credible discoveries. We first considered each gene separately, and compare the
cleaned log-ratio to the “universal threshold”, as defined in [1]. This approach
uses the fact that the maximum of N draws from a normal distribution is close
to
√

2 lnNσ. If the bulk of the noise is Gaussian, we can control the probability
of at least one false positive. For the 1,500 non-zero time points for a given
gene, this corresponds to 3.8σ. We flagged all measurements that exceeded this
threshold in either direction (a total of 3.3% of the time points). The first level
of thresholding is to set all timecourses with no points passing threshold to
exactly zero.

Noise levels can also vary between microarrays. Thus, we zeroed out any
timecourse that might have signal according to the gene-only noise model, and
then computed the microarray-level noise from the central quintile of the genes
that were not filtered out. We then constructed a simple metric to describe
undesirable timecourses. Timecourses with a single significant detection (not at
the final time point), or timecourses with non-consecutive significant detections,
are not likely to be true positives. We then chose a weighting factor to minimize
the fraction of detected timecourses that are of these types [noise model: σ2

total =
(5/6)σ2

gene + (1/6)σ2
microarray]. This removed obvious microarray-level artifacts

while preserving the signal in experiments where a large fraction of the genome
is affected.

Collectively, the full cleaned dataset is 1,693 microarrays in 217 experiments,
each with 6,175 genes. Of the 1.34 million time series, 118,134 (8.8%) have at
least one point that passes the full noise model. 60,968 (4.5%) have multiple
points that pass the noise model. Of the time series with only single detection,
about half occur in the final time point, suggesting that these are genuine
late changes. Conversely, 9,329 time series possessed gaps between detections
suggesting that their changes may be non-biological. These two filters (removing
non-final singletons and non-consecutive changes) left 79,709 timecourses (5.9%),
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which were used to train the whole-cell dynamical systems model.

2 Modeling timecourses with sigmoidal or impulse-like
dynamics

Next, we wanted to identify timecourses that most likely contain smooth, biologically-feasible
dynamics. In order to capture dynamics without overly restricting the types
of dynamics that might exist, each timecourse with observation-level signal
was fit with the phenomonological impulse model of Chechik and Koller [2].
This model expresses timecourses as the sum of two sigmoidal changes each
which have a characteristic amplitude and time constant. This impulse model
has been sufficient to capture complex pattern in expression and metabolomic
data. timecourses were considered well fit by an impulse model if over 80%
of expression variation could be accounted for through the impulse fit (i.e.,∑

(f̂ij − fij)2/
∑
f2
ij < 0.2).

This filter removed highly inconsistent responses, but in some cases dynamics
were clearly driven by an outlier yet an impulse model still fit the data well.
To remove these cases, two heuristics were applied to separately remove outliers
driven by the time zero measurement, and those occurring at an intermediate
time point. In the first few minutes of an induction experiment, few strong
transcriptional changes exist besides the induced transcription factor. In practice
if the time zero point was noisy, measurements that are normalized together
with respect to this value will be systematically higher or lower than expected,
resulting in sharp early change in expression. Such changes were removed
by filtering timecourses where the largest absolute change in expression was
between the first and second timepoint and in which the impulse model explained
less than 98% of variation is explained by the impulse model (the latter filter
recovered early, strong changes such as the primary induction event). The
second case of pathological timecourses were cases where a single outlier measurement
(beyond what could be detected by our Gaussian noise model) was not appropriately
reflected in either the preceding ft−1, nor the succeeding ft+1 time point despite
fine temporal samples. Large changes followed by a return to baseline were
distinguished from continuous timecourse responses by removing timecourses
with a serial sum of squares to the total sum of squares ratio of less than 1.25

(i.e.,
∑T−1

t (ft+1−ft)2∑
t(ft)

2 < 1.25).

Starting with the 118,134 timecourses that had at least one point that
passed the full noise model, we filtered - based on the timecourse-level patterns
- 18,098 timecourses from further consideration, leaving 100,036 timecourses
which contain clear impulse-like or sigmoidal dynamics.
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3 Obtaining the shrunken gene expression dataset

We believe that each of the previously mentioned 100,036 timecourses contains
timecourse-level signal, but not necessarily at every time point. Changes in
the first 5 minutes are very rare (aside from the induced transcription factor),
while near the end of the experiment, the vast majority of these timecourses
will be different than their pre-induction expression level. To avoid the case of
inappropriately interpreting early, often very weak expression variation as signal,
we want to shrink signals to zero to the extent that they are consistent with the
estimated noise-level of the gene σ̂2

ij . To determine whether each observation in
a timecourse is consistent with the noise model, we perform a Wald test for every
observation (Wijt = fijt/σ̂ijt). As expected, Wald p-values at early timepoints
are more uniformly distributed while later timepoints skew very strongly towards
small p-values. This difference in the fraction of null hypotheses at a given time
point (π0) can be modeled as a monotonically decreasing function of time π0(t)
using the functional false discovery rate [3, 4]. In order to make use of this
approach for shrinkage estimation, we consider that each observation can be
thought of as a mixture of two states, a null state where f̂ijt = 0 and an

alternative state reflecting our experimental measurement: f̂ijt = fijt, weighted
based on the relative support for an observation belonging to each state (wijt):

f shrunken
ijt = wijt × 0 + (1− wijt)f

cleaned
ijt

wijt can be estimated across all the observation of a single timepoint (using
the above estimated π0(t)) using the local false discovery rate (LFDR) [4]. The
LFDR is an estimate of the FDR of a single observation. Because π0 is smaller
for later timepoints, observations later in timecourses tend to be more similar
to their measurements, while early timepoints are shrunk more aggressively
towards zero. This is the “shrunken” dataset.

4 Obtaining kinetic parameters for timecourses

To compare the behavior of timecourses it is useful to be able to summarize
both the timing and strength of transcriptional changes. To capture such simple
dynamics, a sigmoidal model may often be sufficient:

y(t) = vinter
1

(1 + exp(−rate ∗ (time− trise)))

However, in some cases the impulse model utilized above to define feasible
timecourse-level signal may be necessary to capture complex dynamics:

y(t) =
1

1 + exp(−rate ∗ (time− trise))
∗ (vfinal + (vinter − vfinal) ∗

1

1 + exp(rate ∗ (time− tfall))
)
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In order to make use of kinetic information, we would like to determine when
a sigmoidal versus an impulse model is supported and when and how strongly
activations/inhibitions occur.

We are interested in generating interpretable parameters from such fits.
Since sigmoidal or impulse models can fit the data in peculiar ways that are
not biologically feasible (e.g., negative rate coefficients, impulses which fall
before they rise, very strong late activations which are similarly captured with
weaker activations), often with a similar fit to a reasonable parameterization,
some constraints on parameters, through the use of priors, can greatly improve
interpretability. To adapt this problem from non-linear least squares problem to
one where we could apply prior constraints, sigmoid/impulse model parameters
were estimated as maximum posterior (MAP) estimates (arg max

Ω
Pr(Ω|y)) over

100 initializations.
Gaussian likelihood defined the departures between observed fold changes

and the non-linear prediction of an impulse or sigmoid model, while the parameters
(Ω) of these predictions (ŷi(ti,Ω)) were constrained with Gaussian and Gamma
priors:

Pr(Ω|y) ∝ Pr(y|Ω) · Pr(Ω)

Pr(y|Ω) =

I∏
i=1

N (ŷi(ti,Ω);µ = yi, σ = σ̂ijt)

Pr(Ωsigmoid) = N (vinter; 0, 1) · Γ(β; 2, 0.25) · Γ(trise; 2, 25) sigmoid

Pr(Ωimpulse) = N (vinter; 0, 1) · Γ(β; 2, 0.25) · Γ(trise; 2, 25) ·
N (vfinal; 0, 1) · Γ(tfall − trise; 2, 25) impulse

Each timecourse was fit with both a sigmoidal and an impulse model and we
sought to determine which model best fit each timecourse. Since the sigmoidal
model is a simpler, nested version of the impulse model (with tfall = ∞), the
likelihood ratio test was used to determine whether the sigmoid was significantly
improved by the two extra parameters of the impulse model:

log Pr(y|Ωimpulse)− log Pr(y|Ωsigmoid) ∼ χ2
2

For 1, 785 timecourses, the impulse model fit significantly better than the sigmoid
at Benjamini-Hochberg-based FDR of 0.001. These timecourses were said to
have impulse dynamics while the remaining 98, 251 timecourses exhibited sigmoidal
dynamics.

5 Dynamical systems modeling

We constructed a linear model based on a simple dynamical system model of
genome-wide expression evolution. The time rate of change of a gene is modeled
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as being affected by the expression levels of any of the genes in the genome,
possibly linearly, or proportionally to the product of their expression levels.
We can transform this equation into the same units as the cleaned data, with
values at time zero divided out. We convert this into a regression problem by
constructing a derivative estimator from the time series data. We then treat
the left-hand side of the equation (i.e., the time derivative) as the dependent
variable, modeled by the right-hand side (i.e., the linear and quadratic terms)
as the independent variables.

d

dt
zi =

∑
j

[Aijzj +Bijzizj ] +Di.

This system of equations presumes the natural units and reaction rates for
gene expression. We only have the microarray measurements. We absorb the
relation between transcript abundance and measured photons into the definitions
of a new set of variables and a new set of coefficients and fit the normalized
system. Our final variable y is the normalized ratio, y(t)=(r(t)/g(t))/(r(0)/g(0)),
and y(t=0)=1 by definition.

d

dt
yi =

∑
j

[αijyj + βijyiyj ] + δi.

The α matrix describes the linear effect of one gene’s expression on another,
while the β matrix describes the same effect when it is also proportional to the
target gene’s expression level. The δ vector represents a background level of
transcription.

When an experiment begins, the yeast is approximately in a steady state.
The population average gene expression should therefore be time independent at
that point. We can subtract out this behavior explicitly, which would highlight
any genes that violate this assumption. This σ vector explicitly describes the
deviation from steady state at the start of the experiment.

σi =
∑
j

[αij + βij ] + δi,

d

dt
yi =

∑
j

[αij(yj − 1) + βij(yiyj − 1)] + σi.

Linear modeling of the gene expression levels can yield a negative numbers of
transcripts which are clearly unphysical. If we instead model the log-ratios, this
can never happen. Dividing each side by the time-dependent gene expression
level yi(t) yields a new equation with the log derivative as the left-hand side.
This equation is exactly equivalent, but notice that the source α, β terms and
intercept σ terms now have the transcript ratio in the denominator.

d

dt
ln(yi) =

∑
j

[
αij

yj − 1

yi
+ βij

yiyj − 1

yi

]
+ σi

1

yi
.
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Enforcing the initial steady state means σi = 0, reducing to Eq. 1 in the main
text.

We can invert the problem by simply integrating. Now, the left-hand side is
the gene expression level, with the time zero subtracted. The right-hand side is
the time integral over earlier time points. Thus, the expression level of a gene
can be modeled by earlier-time averages of the expression levels of other genes.

ln(yi(t)) =

∫ t

0

dt′

∑
j

[
αij

yj(t
′)− 1

yi(t′)
+ βij

yi(t
′)yj(t

′)− 1

yi(t′)

]
+ σi

1

yi(t′)

 .

6 Linear Regression

Translating the dynamical system described above into the language of linear
regression is straightforward. In its simplest form, the dynamics of a single
gene in a single intervention experiment is represented by a design matrix with
rows corresponding to the (usually 8) time points and columns corresponding
to the 6175 genes being measured. We first construct an estimator for the time
derivative of the gene in question. This will reduce the effective number of
independent microarrays by one per experiment. N points in a timecourse will
provide N-1 derivative estimators. We choose to take the average of the first
order forward and backward differences as our estimator, but note that this is
not always the symmetric difference since the time samples are not uniform.
Furthermore we assume that the backward difference at time zero is zero, and
that the forward derivative at the end of the timecourse is also zero. However,
we note that the N derivative estimates for the N time points are not linearly
independent with these assumptions. Equivalently, if we consider a differencing
operator that acts on a timecourse, applying it to a vector of 1s yields all zeros.
Thus, the differencing operator is not invertible.

Leaving out the quadratic and intercept terms for clarity, the “derivative”
and “integral” models can be written with the following equations, respectively:

∑
Q

DPQ ln(yQi ) ∼
∑
j

αij

yPj − 1

yPi
,

ln(yPi ) ∼
∑
j,Q

αijD
−1,PQ

yQj − 1

yQi
,

where the P,Q indicices now refer to time.
The integral version models the data at a time point as a particular sum over

earlier time points. In general, time sampling is not uniform. The majority of
experiments are sampled at t = 0, 5, 10, 15, 20, 30, 45, 90 minutes. In this case,
the difference and integral operators are, respectively:
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D =
1

10 min



−1 1 0 0 0 0 0 0
−1 0 1 0 0 0 0 0
0 −1 0 1 0 0 0 0
0 0 −1 0 1 0 0 0
0 0 0 −1 1/2 1/2 0 0
0 0 0 0 −1/2 1/6 1/3 0
0 0 0 0 0 −1/3 2/9 1/9
0 0 0 0 0 0 −1/9 1/9



D−1 = 10 min



0 0 0 0 0 0 0 0
1 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0
1 0 1 0 0 0 0 0
0 1 0 1 0 0 0 0
2 −1 2 −1 2 0 0 0
−1 2 −1 2 −1 3 0 0
8 −7 8 −7 8 −6 9 0


The full regression dataset for the dynamics of the gene in question is

constructed by row-wise stacking of the 200+ design matrices corresponding
to the intervention experiments. We then repeat this for each of the 6175 genes.

7 BIC regularization

The previously explained regression formulation of the dynamic model was fit
using lasso regression, and regularization paths were fit using glmnet [5].

Normally the regularization parameter of lasso regression is fit by straightforward
cross-validation. Naively, we would use cross validation to select a λ for the
dynamic model of each gene’s dependence on other genes separately. However,
there are a number of practical problems that make this inappropriate on this
data.

First, although there are around ∼1600 rows in the design matrix that
underlies the regression, these represent ∼200 experiments of 8 time points
each. The point being that the interdependency of the data limits the kinds
of cross-validation that are meaningful (e.g. ones in which whole time series
are left out) and substantially reduces the effective sample size. In practice,
separate cross validation for each gene’s model is unacceptably unstable.

To explain our alternative approach, we make use of the theory, based on
Stein’s unbiased risk estimation approach, that the number of nonzero coefficients
in lasso regression at a particular choice of λ is an unbiased estimate of the
degrees of freedom of the model [6].

Accordingly, unbiased estimates of the BIC and AIC criteria can be formulated
as −2 log(L) + c log(n)d̂f where L is the likelihood of the data, d̂f is the number
of nonzero coefficients in the model, and c is 1 or 2/ log(n), respectively. Note
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that the dependence of L, ŷ, d̂f , etc., on λ is suppressed in the notation, for
brevity. Let sse = ||y − ŷ||2. Then, for a homoscedastic Gaussian model, the
deviance, D, i.e. -2 times the log-likelihood, follows:

D =
sse

σ2
+ n log(σ2)

where sse stands for the sum-squared errors of the model. Since D is minimized
at σ̂2 = sse

n , we obtain:

D̂ = n
(

1 + log
( sse

n

))
This results in the following penalized criterion:

criterionv1 = n
(

1 + log
( sse

n

))
+ c log(n)d̂f

Rather than apply criterionv1 naively, we first address these concerns:

1. To be resilient to the small sample variability of the sse statistic (especially
at small values)

2. To compensate for the fact that the homoscedastic noise model does not
hold (most importantly because of time-dependence)

3. It is impractical to find a separate regularization parameter for each gene
model separately by usual means, because the selections fluctuate too
much.

To address the the first point, we can take advantage of the gene expression
noise modeling, which gave us estimates of a noise level for each gene, τg. In
relative units we can write s2 = (sse/n)/τ2

g . Specifically, it is implausible for
the predictive model to be able to explain the data substantially better than
the τg (s2 < 1) – these are likely to be due to chance.

We can rewrite D̂ in terms of s2 as: D̂ = n(1 + log(sse/n)) = n(1 + log(s2 ∗
τ2
g )) = n log(s2) + n+ 2n log(τg).

The second term is constant with respect to λ and may be omitted for model
selection purposes. For the n log(s2) term, however, by the above argument, this
is a suitable functional form when s2 is large, but not when s2 is small. Various
arguments can be made, but the form we finalized on was to replace log(s2) with
arcsinh(s2− 1). This choice preserves the log-like behavior for large s2, and the
local linearity near 1, while giving a small maximum reward for the (probably
chance) event that s2 < 1. In summary the criterion we use for model selection
is:

criterionv2 = n arcsinh(s2 − 1) + c log(n)d̂f

Finally, we addressed points 2 and 3 by letting c be a tunable hyper-parameter
whose value is shared across the dynamic expression models of all genes, and
whose value will be chosen by a global cross-validation criterion.
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8 Hyperparameters

For clarity, we enumerate the model choices (hyperparameters) that were evaluated.
We started from “cleaned” dataset as described above.

• Data Preprocessing: Thresholding/Filtering/Gene+Chip noise model/LFDR

• Model formulation: Integral versus derivative

• Log vs. Linear: Dependent variable is the log derivative?

• Intercept: Allow the time derivative to be non-zero at t=0?

• Standardize: Covariates are scaled to unit normal before regression?

• Quadratic: Include quadratic independent variables?

• Regularization: Magnitude of the BIC adjustment

Data preprocessing is a discrete choice among thresholding levels. The next
five are binary choices. The regularization level is, in principle, chosen from a
continuum. In practice, we make a discrete selection among values separated
by factors of 2, the factor 1.0 indicating the naive BIC calculation.

9 Model Validation by Holdout

Ideally, we would like to do a leave-one-out holdout analysis on the space
of hyperparameters, at the transcription factor level. Since there are 200+
distinct transcription factor experiments (a few with replicates), and 6000+
genes, this involves computing 1.2M regression paths per choice of discrete
hyperparameters. However, this is very computationally expensive. Therefore,
we identified several transcription factors that remain active in the models
out-of-sample. These are CIN5, DAL80, FKH1, GAL4, GRX4, HAC1, HMS1,
LEO1, MSN4, RDR1, and UGA3. For this reduced set we exhaustively searched
128 choices of discrete hyperparameters. There are four binary choices (choosing
not to standardize variables) and eight thresholding levels: none, LFDR, (zero,
hard, soft thresholding) x (do continuity filtering). Including models with
no holdouts, this corresponds to 12x128x6175 = 9.5M regularization paths
computed. From these, we selected 34 candidates for full holdout runs (including
checking a few where we do standardize variables). Over all hyperparameter
and holdout selections, over 8000 regularization paths were generated for each
transcript, over 50M in total.

To score a fully specified model (i.e. a complete specification of model
hyperparameters) we used the method described in Algorithm 1. In order to
score a holdout experiment, the model coefficients were interpreted as predictions
about which genes would move up by 2-fold or down by 2-fold.

In ordinary cross validation, one tries to minimize out-of-sample squared-error.
Instead, we choose to maximize out-of-sample coefficient correctness (i.e., the

11



coefficients’ ability to make out-of-sample predictions about observed 2-fold
changes). The models that scored best (on average) making out-of-sample
predictions, including consideration of the sign (induction vs. repression), were
called “best”.

According to these criteria, the best performing model was:

• Data Preprocessing: zero thresholding, with continuity filter

• Derivative: dependent variable is the time derivative estimate

• Log: dependent variable is the log derivative

• No Intercept: prediction is forced to zero at time zero

• No Standardize: covariates are not whitened before regression

• Quadratic: quadratic terms are included in the design

• Regularization: BIC adjustment = 0.5

With these hyperparameters, we construct a final model with no experiments
held out. The model takes the form of a number of coefficients stating that gene
A induces or suppresses gene B.

10 Validation Experiments

Based on our modeling results, ten predicted latent regulators were chosen for
experimental validation. Selected regulators fell into three classes of predictions:

• Regulators which were predicted to drive the strong impulse behavior of
Pho4 induction experiment: Pho5, Pho11, Phm6

• Regulators predicted to affect many targets spanning all experiments:
Hmx1, Arn2, Anb1, YGL117W

• Regulators predicted as hubs, operating in many experiments: Stp4,
Fmp48, YGR066C

Each predicted regulator was separately induced and genome-wide expression
was tracked at eight time points using the same experimental and computational
methodology used to construct the “cleaned” dataset. Predicted regulators
whose effects were primarily restricted to genes involved in the non-specific
induction stress response (Phm6) were removed from consideration since their
effects are either due to or confounded with the stress response. Predicted
regulators were also removed from consideration if the induced gene increased
by less than four-fold during the experiment (Pho11). For the remaining eight
validation experiments, a regulator’s predicted targets were compared to experimental
changes (absolute fold-change> 0.5 at any time point) by constructing a contingency
table and applying a χ2-test to evaluate the independence of the marginal effects.
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Algorithm 1 Hyperparameter search for dynamical systems modeling.

Require: raw data DRAW . (experiment, time) X gene
Require: gene set G = {gi} . 6175 genes
Require: experiment set H = {hj} . 200+ genes with direct experiments
Ensure: H ⊂ G
Require: hyperparameter sets Θ = {θk} . each θk is a collection of values

Require: BIC correction factors ~B

1: for θk ∈ Θ do
2: D ← PreprocessData(DRAW, θk)
3: for hj ∈ H do
4: DH ← HoldOutExperiment(D, hj)

5: {~βi( ~B)} ← FitModel(DH , θk, ~B)
6: DK ← KeepOnlyExperiment(D, hj)

7: Sj( ~B) ← ScoreModelCoefficients({~βi( ~B)},DK)
8: end for
9: Ω(θk, ~B) ← CollateHoldoutScores({Sj( ~B)})

10: end for
11: θ,B ← argmax Ω(Θ, ~B)
12: D ← PreprocessData(DRAW, θ)

13: {~βFINAL
i } ← FitModel(D, θ, B)

14: procedure FitModel(Din, θk, ~B)
15: for gi ∈ G do
16: if gi ∈ H then
17: D ← HoldOutExperiment(Din, gi) . gi experiment held out
18: else
19: D ← Din

20: end if
21: X ← ConstructDesignMatrix(D, gi, θk)
22: ~y ← ConstructDependentVariable(D, gi, θk)

23: ~βi(~λ) ← FitLASSO(X, ~y, θk) . model is ~y ∼ X~β

24: ~βi( ~B) ← BIC CorrectionFactor(X, ~y, ~βi(~λ)) . ~λ→ BIC
25: end for
26: return {~βi( ~B)}
27: end procedure

13
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Appendix Figure S1: Gene expression responses do not depend on triggering
mechanism and TF induction is rapid across our dataset. (A) Scatterplot of gene
expression responses following GLN3 induction (using the “cleaned” dataset) at 90 min using
either GEV or ZEV. (B) The expression level of each TF is plotted from the experiment in
which the TF is induced with 1 μM β-estradiol (grey). The median expression level across all
TF inductions (purple) at t = 0, 5, 10, 15, 20, 30, 45, and 90 minutes following induction is
also shown (the errorbar width is ±1 standard deviation).

11 Appendix Figure S1: Gene expression responses
do not depend on triggering mechanism and
TF induction is rapid across our dataset
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Appendix Figure S2: Comparing expression of synthetic promoter-driven TF
alleles to native promoter-driven TF alleles. For each TF strain, the red (sample)
and green (reference) microarray values were obtained from the t = 0 min. and t = 90 min.
samples. The red/green ratio provides an estimate of leakiness for the t = 0 min. histogram
(blue) in which 86% of synthetic promoter-driven TFs have expression less than WT TF levels.
At t = 90 min., the red/green ratio provides an estimate of induction above WT TF levels
(red histogram). The median level of TF induction over WT TF levels is 28.4.

12 Appendix Figure S2: Estimating leakiness
and inducible of synthetic promoter-driven
TF alleles
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one

experiment

Appendix Figure S3: Induced changes can be robust to environmental state.
Three regulators that were separately induced in either a phosphorus- or nitrogen-limited
environment and the resulting “cleaned” experiments are shown. From the “shrunken” data,
the correlations of the paired experiments are 0.40, 0.87, and 0.77 for Dal80, Gln3, and Gzf3,
respectively.

13 Appendix Figure S3: Induced changes can
be robust to environmental state
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Appendix Figure S4: Systematic identification and summarization of regulatory
signals. Since most transcriptional regulators affect a relatively small number of target
genes, meaningful changes in expression are relatively sparse ( 9% of timecourses). These
signal-containing timecourses are distinguished from timecourses which are purely noise,
by first regressing out an average stress response, then selecting timecourses with extreme
observation-level signal-to-noise and finally shrinking observations towards zero based on
signal-to-noise.

14 Appendix Figure S4: Systematic identification
and summarization of regulatory signals
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Appendix Figure S5: Full transcriptome of the “raw” gene expression data.
Genes are sorted alphabetically from bottom to top. Note the increase in variability of gene
expression for genes near the top of the clustergram (these are mostly genes that begin with
“Y” as they have no known function and lack a standard name). There is also a clear horizontal
stripe for the ribosomal genes, which are weakly repressed in many experiments as part of a
mild stress response. The appearance of vertical stripes in the heatmap is due to TFs with
many regulatory connections (hubs), a few of which are highlighted including: GAT3, GAT4,
GCN4, MSN2, MSN4, SFP1, and UME6.

15 Appendix Figure S5: Full transcriptome of
the “raw” gene expression data
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Appendix Figure S6: Full transcriptome of the “shrunken” gene expression data.
Genes are sorted alphabetically from bottom to top. Vertical stripes in the heatmap are from
TFs with many regulatory connections (hubs). A subset of these are highlighted: GAT3,
GAT4, GCN4, MSN2, MSN4, SFP1, and UME6. Data cleaning removes noise from “Y” and
ribosomal genes (seen in Appendix Figure S5) to reveal remaining signal.

16 Appendix Figure S6: Full transcriptome of
the “shrunken” gene expression data
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Appendix Figure S7: Counts of impulse vs. sigmoids across experiments.
Transcriptional regulators are characterized based on the number of transcriptional responses
that are sigmoid (e.g., turn on) versus impulses (e.g., turn on, then off). Pho4, Oaf1, Aft1, and
Zap1, among other transcription factors, are highly enriched for impulse dynamics. Impulses
generally feature spikes in enzyme expression and dips in ribosome synthesis.

17 Appendix Figure S7: Counts of impulse vs.
sigmoids across experiments

20



−3

−2

−1

0

1

2

−3 −2 −1 0 1 2 3

vfinal

v
in

te
r

1

4

16

64

count

Appendix Figure S8: Most impulses exhibit near-perfect adaptation. vinter is
compared to vfinal for all timecourses exhibiting impulse dynamics. The absolute
value of each coefficient was floored to three for visualization.

18 Appendix Figure S8: Most impulses exhibit
near-perfect adaptation. vinter is compared to
vfinal for all timecourses exhibiting impulse
dynamics
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Appendix Figure S9. Diverse, functionally significant regulation in the Pho4
induction experiment. A. Heatmap summary of Pho4 induction experiment showing all
> 4-fold changes. B. Parametric summaries of representative sigmoidal activation/inhibition
timecourses and impulse (double sigmoid) modeling of transitory inhibition. Sigmoids are
summarized by half-max time (trise) and the asymptote (vinter), while impulses include a
second half-max (tfall) time and final asymptote (vfinal). The strongest supported model
for each timecourse is shown as a filled in line, while the alternative model is shown with a
dashed line. C. K-mers enriched in the promoters of regulated genes are overlaid on summary
of each gene’s trise and vinter. D. Response kinetics are overlaid on gene coordinates based
on synthetic lethality as a surrogate for functional similarity. Pho4 rapidly inhibits ribosome
biogenesis, rRNA processing and mRNA processing. E. The rRNA processing and ribosome
biogenesis responses are each acute inhibition impulses that can be clearly distinguishing based
on kinetics.

19 Appendix Figure S9: Diverse, functionally
significant regulation in the Pho4 induction
experiment
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Appendix Figure S10: Functional classes of kinetic responses. For each of the
> 100, 000 timecourses with parametric fits, timecourses were divided into four categories:
directly induced (TF induced in cognate experiment), binding (direct regulation based on
direct-binding data from Yeastract), expression (co-expression of TF and responsive gene
based on data from Yeastract), and new dynamics (newly discovered gene associations outside
the other three classes).

20 Appendix Figure S10: Functional classes of
kinetic responses
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Appendix Figure S11: Response magnitude comparison with reported regulation.
Scatter plot of number of targets or correlation-associated genes (Yeastract) versus the number
of genes with significant dynamical responses in the “shrunken” data.

21 Appendix Figure S11: Response magnitude
comparison with reported regulation
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Appendix Figure S12: Extent of differential expression per experiment or gene.
A. Histogram of the number of differentially expressed genes in each experiment. B. Histogram
of the number of transcriptional regulators under which a gene changes (median 12, mean =
15.3, maximum would be changing under all 203 distinct induction experiments). Regulators
resulting in differential expression of less than 50 genes include ARR1, CAM1, ERT1, FAP1,
GAL80, GCR1, GTS1, HIR1, HIR3, HMRA1, HOT1, KAR4, KSS1, LOT6, MTF1, OAF3,
PGD1, PPR1, RDR1, RDS2, RRN10, SIP4, SPT3, SRB2, SRB8, SSN2, STP1, TAF2, THI3,
TOG1, UAF30, UGA3, WTM1, WTM2, YAP5, YHP1, YLL054C, and ZNF1.

22 Appendix Figure S12: Extent of differential
expression per experiment or gene
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Appendix Figure S13: Histograms of maximum correlation of genes to all
other measured genes are shown as experiments are pruned from the dataset.
Panels indicate the number of experiments included in the analysis, where smaller datasets
retain the experiments with the largest number of differentially expressed genes. Each
gene is summarized based on the maximum correlation of its expression across all included
experiments and timepoints to every other genes’ expression. The blue line indicates the
median of the maximum correlation of genes. For the purpose of calculating medians, genes
which are dropped when constructing the reduced datasets are represented with a correlation
of one (since they are impossible to discriminate from other absent regulators).

23 Appendix Figure S13: Histograms of maximum
correlation of genes to all other measured
genes are shown as experiments are pruned
from the dataset
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Appendix Figure S14: Fit of regulatory model to observed gene-expression
measurements. Each observation compares measured log2 fold-changes from the dataset
that the whole-cell model was fit to (i.e., time courses that passed full noise model and filters;
see section 8 of the supplement) with the fitted fold-changes predicted from the whole-cell
model.

24 Appendix Figure S14: Fit of regulatory model
to observed gene-expression measurements
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Appendix Figure S15: Negative genetic interactions with rpn4∆ from
http://thecellmap.org. Strong negative genetic interactions are shown (interaction score
< −0.45). Genes are colored according to SAFE annotations.

25 Appendix Figure S15: Negative genetic interactions
with rpn4∆ from http://thecellmap.org

28



0

50

100

150

1 2 3 4 5 6 7

n
o
 e

ffe
ct

s

Induced transcription factor rank

N
u

m
b

e
r 

o
f 

e
x
p

e
ri

m
e

n
ts

Appendix Figure S16: Induced transcriptional regulators are the primary drivers
of gene expression changes in most experiments. Each experiment summarized
differentially expressed genes based on the regulator with the largest attributed role in
achieving the rise time. The rank of the induced transcription factor among regulators,
derived from the model, is shown across all experiments. TFs that were not predicted by
the model to directly drive changes in their respective experiments: DAL80, GAL4, HAP3,
HMRA1, LOT6, MTF1, RRN10, RSF2, SIP3, TFB5, WHI5, and ZNF1.

26 Appendix Figure S16: Fit of regulatory model
to observed gene-expression measurements
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Appendix Figure S17: Transcriptome-wide heatmap for 10 validation
experiments. Model-predicted regulatory targets of each putative regulator are shown to
the left of time zero with predicted activation shown in red and predicted inhibition shown in
blue.

27 Appendix Figure S17: Transcriptome-wide
heatmap for 10 validation experiments
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Appendix Figure S18: Identifying latent transcriptional regulatory hubs. A. For
each gene whose expression change is partially attributed (attributing at least 5% of variation)
to a regulator’s levels in 5 or more experiments, the timing of the regulator is compared to
its predicted targets within the same experiment. B. The vinter value (i.e., expression-level
asymptote) of each regulator is compared to the vinter of each of its effects in the same
experiment. Targets are colored based on whether the regression model indicates an activating
or inhibitory relationship.

28 Appendix Figure S18: Identifying latent transcriptional
regulatory hubs
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Appendix Figure S19: GRNs. TFs with induction experiments used for modeling are
shown in blue. Genes that were induced based on model predictions are shown in orange, and
responses to those genes are shown in green for A. Hmx1, B. Stp4, and C. Fmp48.

29 Appendix Figure S19: GRNs

32



Appendix Figure S20: Comparing transcriptome data from two Fmp48
overexpression datasets. Data shown in Figure 5 are plotted along the y-axis. Replicates
from Breitkreutz et al. (2009) are averaged and plotted along the x-axis. The Pearson
correlation is 0.47 and is significant with p-value < 2.2 × 10−16.

30 Appendix Figure S20: Comparing transcriptome
data from two Fmp48 overexpression datasets
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