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1st Editorial Decision 16th August 2019 

Thank you for having submitted a manuscript entitled "Learning regulators from IDEA, a set of 

hundreds of dynamic transcriptome-wide induction experiments" for consideration for publication in 

Molecular Systems Biology.  

 

Your paper has now been seen by Editors of the Journal, and we have decided to return it to you 

without sending it for extensive peer review.  

 

In this study you present IDEA, a gene expression time-course dataset monitoring the response to 

the individual induction of hundreds of transcription factors (TFs) in yeast. You further present a 

computational framework for inferring direct regulatory connections among genes, based on 

integration of all time-course data in IDEA and computational modeling, without requiring prior 

information. We appreciate that you identify novel transcriptional regulators and that you 

experimentally validate three previously unknown transcriptional hubs that are predicted in your 

model. However, we think that in absence of a global assessment of the obtained results and a direct 

comparison of IDEA to existing alternative methods, the validity of the identified regulatory 

connections and hubs seems somewhat tentative, and the potential of IDEA and the presented 

computational approach for deriving novel biological insights that would not be possible to obtain 

using existing workflows, remains to be demonstrated. Overall, we are not convinced that study 

provides the kind of broadly relevant resource and the kind of decisive methodological advance with 

demonstrated potential to generate novel biological insight that would be required for publication at 

Molecular Systems Biology.  
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Authors‘ re-submission 26th October 2019 

Based on your comments, we've gone back and benchmarked our whole-cell modeling predictions 

in a few ways. We've now shown that not only can we predict new regulators, but we can also 

predict the presence of genetic interactions within two different published networks (Yeastnet and 

Costanzo). This ability of using a model of transcription to predict gene-gene interactions (with 

AUC ~ 0.7), is quite unprecedented -- furthermore, it highlights new biology that we now discuss in 

great detail. Additionally, we've benchmarked our dataset against ChIP and published gene 

expression data of mutants, which highlights that dynamic perturbation data is more functionally 

coherent than other data types with far fewer data sets.  

 

Given the results of these new analyses, we were hoping you would consider a resubmission.  

 

2nd Editorial Decision 11th December 2019 

Thank you again for submitting your work to Molecular Systems Biology. We have now heard back 

from two of the three reviewers who agreed to evaluate your manuscript. Unfortunately, after a 

series of reminders we did not manage to obtain a report from reviewer #3. In the interest of time, 

and since the recommendations of referee #1 and #2 are quite similar, I prefer to make a decision 

now rather than further delaying the process. As you will see below, the reviewers acknowledge that 

the presented approach and dataset seem potentially useful for the field. They raise however a series 

of concerns, which we would ask you to address in a major revision.  

 

I think that the recommendations of the reviewers are rather clear so there is no need to repeat the 

points listed below. All issues raised by the reviewers need to be convincingly addressed. As you 

may already know, our editorial policy allows in principle a single round of major revision, so it is 

essential to provide responses to the reviewers' comments that are as complete as possible. Please 

feel free to contact me in case you would like to discuss in further detail any of the issues raised by 

the reviewers.  

 

 

--------------------------------------------------------  

 

REFEREE REPORTS 

 

Reviewer #1:  

 

Summary  

 

In this paper, Hackett et al have taken a previously-published system for small-molecule 

transcriptional induction system in Saccharomyces cerevisiae and applied it to more than 200 

transcriptional controllers (transcription factors, chromatin modifiers, etc). The authors constructed 

strains, performed genome-wide gene expression profiling using DNA microarrays over several 

short-term timepoints to identify the genes that change in expression as a result of overexpression, 

and these expression changes were used to solve dynamic models that correspond to regulator-gene 

connections. Parameters of these solved models were then used as evidence for edges in a gene 

regulatory network.  

 

General Comments  

 

This is an important and well-executed study. The overall experimental design is excellent and 

represents a major improvement over comparable methods that typically use gene deletion alleles in 

steady-state to identify TF targets. The resulting dataset is of very high quality and of considerable 

immediate value to researchers in the field. The core analysis of this data is rigorous and well done. 

I expect that this work will be of great interest for developing computational regulatory network 

inference tools in the short term, and this work will stand as a major advance in our understanding of 

the transcriptional regulatory network in yeast. I have some comments on the data presentation and 

analysis which, if addressed, will enhance this work. I would also like to specifically commend the 

interactive presentation of this data set.  
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Major  

 

1. The authors state that the target TF is over-expressed 53-fold relative to t=0. Does this mean that 

there is some leaky expression in the uninduced state? How does this compare to the fold induction 

of natural inducible systems like the GAL or NCR systems. It would be useful to have some idea of 

how overexpressed each TF is relative to wildtype levels.  

 

2. The authors don't provide a rationale for why cells were grown in chemostats. Although I am sure 

that they would argue that this means the cells are in "steady-state" I think a stronger argument for 

the use of chemostats would help. Moreover, does the condition in which the experiment is 

performed have an effect on the observed induction? For example, in Figure S9 suggests that many 

genes that lie below the diagonal are metabolic-related TFs. And in Figure S4 it appears that PHO4 

has the largest number of impulse responses - is this because the cells are grown in phosphate-

limited chemostats. Ideally, the authors should provide experiments that illustrate the extent to 

which the method is sensitive to the conditions by over-expressing the same TF in multiple 

conditions.  

 

3. I was surprised that the strain construction did not replace the endogenous regulatory sequence, 

but inserted the inducible system regulatory sequence downstream of the endogenous sequence. Do 

the authors have evidence that this doesn't result in any problems e.g. can GAL4 still be induced 

effectively in rich glucose media?  

 

4. Supplemental figure 11 shows a large number of experiments which have few or no changes in 

gene expression. In the discussion it states that ~40 TFs had no effect. It would be valuable to 

explore if those induced genes that give no response have anything in common (e.g. requiring some 

stoichiometry with other proteins, some highly-controlled posttranslational processing like 

proteolytic cleavage, etc)  

 

5. The validation experiment is confusing in presentation, and the information content of figure 6 

seems to be quite low for a main text figure. The authors' model has predicted network edges 

associated with 10 potential regulators; it is necessary to include confusion matrixes for all of the 

validation experiments and a reasonable model performance metric (chi-square does not seem 

appropriate). In addition I would like to see the differential expression heatmaps (as in Figure 5) for 

all10 confirmation experiments (as supplemental figures). Induction experiments which result in no 

gene expression changes are trivially explained as regulators that do not function correctly after 

induction and overexpression; experiments where there are gene expression changes that are not 

predicted by the initial model are much more interesting.  

 

6. Functional coherence doesn't seem like a valid way to benchmark gene regulatory networks. The 

underlying rationale is shaky, especially when using GO slim terms (is an enrichment of 'response to 

chemical' meaningful?). I also have a general concern about using differences between p-values as 

statistical evidence outside the context of hypothesis testing. The ROC curves associated with S14 

are much more compelling ( I am surprised they are not main-text figures).  

 

7. The supplemental methods package related to the model-fitting is excellent (I found the answer to 

every margin note that I made about the modeling approach while reading the results section). 

However, the main-text methods section lacks details of a number of analyses that are presented in 

the manuscript; I believe that as written it would be very difficult to replicate some of the supporting 

analyses in this work. The authors should provide more detail on these methods.  

 

8. In Figures S3 and S4 there are other very obvious horizontal and vertical banding patterns that are 

difficult to interpret. It would help to have these better annotated. The figure legend simply points to 

one of these bands.  

 

9. In all of the heatmaps that the authors present some genes go up and some genes go down. Is this 

expected - are these TFs known to have repressive activity? Are these all due to secondary 

biological effects? Can the authors rule out that data normalization doesn't play a role in this effect?  

 

10. The website is very nice. However, I was surprised that the dataset is not presented as a global 
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gene regulatory network "at the scale of the entire genome" (which is the phrase the authors use to 

motivate their study).  

 

 

Minor  

 

1. In the introduction the authors state that "by not utilizing prior knowledge, we minimize bias 

against re-learning known biology". This seems counterintuitive to me - incorporating prior 

knowledge builds on years of work and effort, and "re-learning" known biology is a means of 

validating the approach. Is there a way to rephrase this statement?  

 

2. It would be useful to the reader to have an intuitive explanation of the Chechik and Koller kinetic 

model.  

 

3. The authors use 'timecourse' in different contexts; the intro has timecourses which are 

experiments ("We generated over two-hundred TF induction timecourses"), and results seems to 

switch between timecourses which are experiments and timecourses which are gene measurements 

in an experiment ("The signals from these 100,036 timecourses were retained"). The terminology 

used needs to be clearly defined and preferably not reused. I found this to be very confusing when 

first reading the manuscript.  

 

4. It would be helpful to include a brief introduction to Aft1 and the motivation for selecting that 

gene as the focus.  

 

5. The results section refers to Rpn4 and cites supplemental figure 14; Rpn4 is not in that figure and 

it's not clear where the Rpn4 claims originate.  

 

6. Figure 4 has annotations for validated & invalidated regulatory nodes without any further 

explanation. What makes a node valid or invalid? It's also not clear how regulatory pathways 

(ontologies?) have been integrated into this network.  

 

7. The yeastract citation isn't compiled and the eQTL study (ref 17) is incomplete.  

 

 

 

Reviewer #2:  

 

Review of "Learning causal regulatory networks with inducible promoter alleles and massively 

parallelized time series measurements".  

 

Overall I thought this paper was great, and describes a great dataset and an interesting analysis. It 

hurt a bit to see how disconnected the paper was from prior work, and a major comment is that more 

work needs to be done to properly frame this in the context of the mature field it naturally fits into. I 

am quite positive about this paper and only have so many critical comments due to my keen interest 

in the topic.  

 

A main flaw is that the network inference was not sufficiently well described, I want to hear more 

about alternatives, why you chose this model, and have a proper formulation of the network 

inference in the methods section.  

 

p.2. Constructing these GRNs typically requires extensive prior knowledge [3,4].  

More direct citations are available.  

p. 2. How can we develop the regulatory clarity of GRNs at the scale of the entire genome?  

What is Clarity?  

 

What does "Hyper-ChIP-able" mean ? ... much to informal and inexact. Say less, but be specific.  

 

"Additionally, we find that 79% of genes reported as being directly bound by a TF do not exhibit a 

significant expression response in the corresponding TF's induction experiment"  

"In IDEA, realized regulation is directly measured and there is stronger agreement between early 
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induction events in IDEA with TF-DNA interactions as assessed with transposon calling cards than 

by ChIP "  

No, many TFs need to be post transcriptionally or post translationally modified to be active.  

This could be due to interactions. TFs do not act alone. Also where are you getting these numbers ?  

 

Binding is not a great proxy for "regulates" I agree there, mostly suffering from false positives. But 

over expression dynamics will still have a huge false negative rate due to post-X mods not being 

lined up.  

 

Figure 3c ... I can't figure it out. This could be part my problem and part the figure's problem, but 

perhaps take a peek at this one.  

 

Functional coherence is used as a proxy for regulates. This seems like a very bad idea.  

 

Compare known motifs (Cis-BP and FiMo) to your de novo analysis.  

 

"we fit a Bayesian version of the Chechik & Koller kinetic model to each 5 timecourse [23]"  

... please explain this more thoroughly.  

 

On p. 10 you, while discussing the use of other networks (a genetic interaction network and a 

functional association network) state : "To our surprise, the magnitudes of regression coefficients 

are reasonable predictors of edges in both types of networks (AUC ~ 0.7), while early t rise times do 

not have predictive power of genetic interactions (Figure S14) [22,28]." 

 

1st Revision - authors' response 10th January 2020 

Reviewer #1: 

 

Summary 

 

In this paper, Hackett et al have taken a previously-published system for small-

molecule transcriptional induction system in Saccharomyces cerevisiae and applied 

it to more than 200 transcriptional controllers (transcription factors, chromatin 

modifiers, etc). The authors constructed strains, performed genome-wide gene 

expression profiling using DNA microarrays over several short-term timepoints to 

identify the genes that change in expression as a result of overexpression, and these 

expression changes were used to solve dynamic models that correspond to 

regulator-gene connections. Parameters of these solved models were then used as 

evidence for edges in a gene regulatory network. 

 

General Comments 

 

This is an important and well-executed study. The overall experimental design is 

excellent and represents a major improvement over comparable methods that 

typically use gene deletion alleles in steady-state to identify TF targets. The 

resulting dataset is of very high quality and of considerable immediate value to 

researchers in the field. The core analysis of this data is rigorous and well done. I 

expect that this work will be of great interest for developing computational 

regulatory network inference tools in the short term, and this work will stand as a 

major advance in our understanding of the transcriptional regulatory network in 
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yeast. I have some comments on the data presentation and analysis which, if 

addressed, will enhance this work. I would also like to specifically commend the 

interactive presentation of this data set. 

 

Major 

 

1. The authors state that the target TF is over-expressed 53-fold relative to t=0. 

Does this mean that there is some leaky expression in the uninduced state? 

How does this compare to the fold induction of natural inducible systems like 

the GAL or NCR systems. It would be useful to have some idea of how 

overexpressed each TF is relative to wildtype levels. 

We thank the reviewer for making these points and agree they are important to 

address. To determine how a TF’s expression compares between engineered and 

WT strains, we’ve added a new informatic analysis. Specifically, we obtained the 

red and green channel values for each TF from the t = 0 and t = 90 min. timepoints 

from its respective induction experiment. Additionally, for each TF, we calculated 

its red/green ratio across all experiments to create a distribution for each TF. Since 

the vast majority of these ratios come from strains where the TF is under its native 

control, the median of these distributions should provide an estimate of how much 

the TF level varies between or experimental strains and our universal reference WT 

strain. For each TF, the median ratio was ~1, indicating that we can directly 

compare the normalized red and green channels from the t = 0 minute sample to 

estimate the level of leakiness and 90 minute sample to estimate the fold-change 

above WT. These data are shown in a newly added Appendix Figure S2. We 

estimate that the TF expression in 86% of our synthetic-promoter driven TF strains 

is lower than that in WT at t = 0 min. At t = 90 min, the median TF is 28.4-fold 

above WT TF levels. We’ve added these data to the manuscript near the beginning 

of the Results section. The legend of the new figure reads, “Appendix Figure S2: 

Estimating leakiness and inducible of synthetic promoter-driven TF alleles. For 

each TF strain, the red (sample) and green (reference) microarray values were 

obtained from the t = 0 min. and t = 90 min. samples. The red/green ratio provides 

an estimate of leakiness for the t = 0 min. histogram (blue) in which 86% of 

synthetic promoter-driven TFs have expression less than WT TF levels. At t = 90 

min., the red/green ratio provides an estimate of induction above WT TF levels (red 

histogram). The median level of TF induction over WT TF levels is 28.4.” 

GAL overexpression can result in a 500-1000-fold increase in expression. 

Exploring a recently published dataset that looked at how patterns of gene 

expression change in response to a large pulse of a preferred nitrogen source, we 

estimate the repressibility of NCR genes to be at least 100-fold. We’ve added this 

result to the manuscript as a point of comparison for the interested reader. We now 

write: “Induction of a target TF is detectable in <5 minutes and reaches saturation 

within ~10 minutes following β-estradiol addition at a median level 53-fold higher 

than at t = 0 min (Appendix Figure S1B), which, in terms of magnitude, is less than 

the ~500-1000-fold inducibility of Gal4-driven promoters in the presence of 

galactose and similar to the ~50-100-fold repressibility of Nitrogen Catabolite 

Repression (NCR) genes in response to an increase in nitrogen availability [34–

https://paperpile.com/c/sKeqRn/Nml0+U4tP+gHc3


Molecular Systems Biology   Peer Review Process File  
 

 

 
© European Molecular Biology Organization 7 

36].” We have also added three new references related to the GAL and NCR 

results, which are listed below. 

 

Johnston M. A model fungal gene regulatory mechanism: the GAL genes of 

Saccharomyces cerevisiae. Microbiol Rev. 1987;51: 458–476. 

Airoldi EM, Miller D, Athanasiadou R, Brandt N, Abdul-Rahman F, Neymotin 

B, et al. Steady-state and dynamic gene expression programs in 

Saccharomyces cerevisiae in response to variation in environmental nitrogen. 

Mol Biol Cell. 2016;27: 1383–1396. 

Biggar SR, Crabtree GR. Cell signaling can direct either binary or graded 

transcriptional responses. The EMBO Journal. 2001. pp. 3167–3176. 

doi:10.1093/emboj/20.12.3167 

 

2. The authors don't provide a rationale for why cells were grown in 

chemostats. Although I am sure that they would argue that this means the cells 

are in "steady-state" I think a stronger argument for the use of chemostats 

would help. Moreover, does the condition in which the experiment is 

performed have an effect on the observed induction? For example, in Figure 

S9 suggests that many genes that lie below the diagonal are metabolic-related 

TFs. And in Figure S4 it appears that PHO4 has the largest number of impulse 

responses - is this because the cells are grown in phosphate-limited chemostats. 

Ideally, the authors should provide experiments that illustrate the extent to 

which the method is sensitive to the conditions by over-expressing the same TF 

in multiple conditions. 

We thank the reviewer for these important points. We address each of them in full 

below. 

 

Although I am sure that they would argue that this means the cells are in 

"steady-state" I think a stronger argument for the use of chemostats would help.   

We completely agree with the reviewer’s comment. In the original submission, we 

only wrote that cells are in steady state and provided no further context for why that 

actually matters. We’ve modified the beginning of the results section to emphasize 

the relevance of the steady-state condition. We’ve added, “We chose chemostats, in 

part, because the steady-state condition of chemostat cultures is a particularly 

useful feature for mathematical modeling. Under steady-state conditions, the levels 

of molecules and activities of processes are not changing at a culture-wide level. 

Therefore, following TF induction in a steady-state culture, immediate dynamic 

changes result from the TF induction itself. The ability to choose a single growth-

limiting nutrient also makes the chemostat ideal for exploring how input-output 

relationships between TFs and target genes vary under different nutritional 

conditions [29].” 

 

Moreover, does the condition in which the experiment is performed have an 

effect on the observed induction? 

https://paperpile.com/c/sKeqRn/Nml0+U4tP+gHc3
http://paperpile.com/b/sKeqRn/Nml0
http://paperpile.com/b/sKeqRn/Nml0
http://paperpile.com/b/sKeqRn/U4tP
http://paperpile.com/b/sKeqRn/U4tP
http://paperpile.com/b/sKeqRn/U4tP
http://paperpile.com/b/sKeqRn/U4tP
http://paperpile.com/b/sKeqRn/gHc3
http://paperpile.com/b/sKeqRn/gHc3
http://paperpile.com/b/sKeqRn/gHc3
http://dx.doi.org/10.1093/emboj/20.12.3167
https://paperpile.com/c/sKeqRn/fxdXX
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The reviewer makes a very good point in asking if the growth condition affects the 

expression response. The answer to this question is “yes”. We previously 

performed induction experiments of the methionine TFs (Met4, Met28, Met31, 

Met32, and Cbf1) under methionine limitation. We found that Cbf1 would switch 

from an activator (under methionine limitation) to a repressor (under phosphate 

limitation where cells have excess extracellular methionine). Additionally, there are 

other targets in the genome where Cbf1 is an activator independent of methionine 

limitation. For methionine metabolic genes, the regulatory connections exist in both 

conditions -- but the sign of those edges (positive versus negative) is different. 

We’ve added the following text to the introduction: “This study also revealed that 

Cbf1 could act as an activator or a repressor, depending on which promoter it 

targets [29]. For certain methionine metabolic genes, Cbf1 can act as an activator 

of target genes when yeast are limited for methionine, but can switch to being a 

repressor of those same genes when yeast are limited for phosphate and have 

excess extracellular methionine [29]. These results highlight the ability of TF 

induction to reveal condition-dependent regulatory connections, and that a TF can 

act as both a positive and negative regulator of gene expression depending on local 

DNA context and environmental conditions.” 

 

Ideally, the authors should provide experiments that illustrate the extent to which 

the method is sensitive to the conditions by over-expressing the same TF in 

multiple conditions. 

This is a very interesting point. We previously published a study with the 

methionine TFs, but didn’t discuss in great detail in our original submission - this 

was an oversight on our part. We have expanded the introduction to explain those 

results. TF activity can certainly depend on condition, and our induction approach 

has been used to reveal such dependencies. In IDEA, we also have induction 

experiments for multiple nitrogen TFs performed under both phosphate and 

nitrogen limitation. They are in the dataset, but were also not discussed specifically 

in our original submission. We now include some discussion of those data, and 

highlight them for readers particularly interested in nitrogen metabolism. In short, 

the nitrogen TFs looked remarkably similar in both conditions (unlike the Cbf1 

example). In the case of Gln3, we interpreted the similar responses to mean that it 

wasn’t the limitation that mattered (nitrogen versus phosphate), but rather the 

source of nitrogen itself, since we used ammonium sulfate as a nitrogen source in 

both experiments. Had we used a poorer nitrogen source (like proline), the 

expression responses to Gln3 activation may have been quite different. In the 

Results section we had add, “Finally, IDEA also contains several TFs induced 

under multiple conditions. Gln3, Dal80, and Gzf3 were induced under phosphate 

and nitrogen limitation (with ammonium sulfate used as the sole nitrogen source in 

both cases). For each TF, the resulting expression patterns are strikingly similar in 

the two tested environments (Appendix Figure S3), suggesting that the activity of 

nitrogen-related TFs may depend more on the quality of the nitrogen source 

(proline vs. ammonium sulfate, for example), rather than the choice of growth-

limiting nutrient.” 

 

3. I was surprised that the strain construction did not replace the endogenous 

regulatory sequence, but inserted the inducible system regulatory sequence 

https://paperpile.com/c/sKeqRn/fxdXX
https://paperpile.com/c/sKeqRn/fxdXX
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downstream of the endogenous sequence. Do the authors have evidence that 

this doesn't result in any problems e.g. can GAL4 still be induced effectively in 

rich glucose media? 

We thank the reviewer for this comment, and agree that explaining/justifying 

insertion versus replacement is important. The promoter constructs we used are 

~2kb in length and include a drug selectable marker linked a synthetic promoter 

that is placed upstream of a TF. In a strain that has been transformed with our 

construct, the TF’s native promoter is 2kb away from the TF open reading frame 

(ORF). Since upstream activating sequences are normally only a few hundred 

basepairs from ORFs they regulated in Saccharomyces cerevisiae, the conventional 

wisdom is that the native promoter, in our engineered strain, is too far from the TF 

ORF to affect its expression - this is quite different than the situation in human 

cells, for example. The lack of long-range activation of genes in yeast by upstream 

activating sequences (UASs) has been quantified by Fred Winston’s group with 

several UAS-TATA constructs (Dobi and Winston, 2007).  

 

The lack of activation over long distances is one reason for using the insertion 

strategy. But additionally, by not removing native DNA, if there is a gene that 

shares a promoter with the TF and is divergently expressed (such as in the case of  

GAL1 and GAL10 sharing a common promoter region), its upstream regulatory 

region should remain unperturbed using the insertion strategy. We’ve added a 

reference to the Dobi and Winston paper, as well as the following text to the 

materials and methods: “Synthetic promoters were inserted into the genome 

without removing native DNA for two reasons. First, we believed that removing at 

TF’s native promoter could disrupt expression of a divergently transcribed gene. 

Second, binding sites in S. cerevisiae need to be within a few hundred base pairs of 

an ORF to be functional [63]. Therefore, in our case, displacement of the native 

promoter by ~2 kb is likely to remove its regulatory potential of the TF-encoding 

gene.” 

 

The last part of the reviewer’s comment refers to Gal4 -- specifically, can Gal4 be 

induced and function in glucose-rich medium? To address this concern, we have 

included a Gal4 experiment in IDEA, and concluded that the answer is “yes”. We 

found that Gal4 can indeed turn on Gal4 target regions rapidly in our growth 

conditions (phosphate limitation with 2% glucose). On the IDEA website, if one 

goes to the “Induction heatmaps” section and types in “GAL4” they can see the 

genes that respond most strongly to Gal4 induction. GAL7 and GAL1, for example, 

respond within 15 minutes to Gal4 induction with β-estradiol in our experimental 

conditions.   

 

4. Supplemental figure 11 shows a large number of experiments which have 

few or no changes in gene expression. In the discussion it states that ~40 TFs 

had no effect. It would be valuable to explore if those induced genes that give 

no response have anything in common (e.g. requiring some stoichiometry with 

other proteins, some highly-controlled posttranslational processing like 

proteolytic cleavage, etc) 

https://paperpile.com/c/sKeqRn/TWAa
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We thank the reviewer for this comment. We’ve modified the text slightly to read 

“Thirty-eight TFs affected the expression of <50 genes each (Appendix Figure 

S12A).” Furthermore, we’ve modified the figure legend to highlight which TFs we 

are referring to for the interested reader to explore more deeply. We do not see an 

obvious connection to explain the sparseness of the expression responses following 

induction of these particular TFs - they regulate diverse biological processes, and a 

few are annotated to act in complexes. 

 

5. The validation experiment is confusing in presentation, and the information 

content of figure 6 seems to be quite low for a main text figure. The authors' 

model has predicted network edges associated with 10 potential regulators; it 

is necessary to include confusion matrices for all of the validation experiments 

and a reasonable model performance metric (chi-square does not seem 

appropriate). In addition I would like to see the differential expression 

heatmaps (as in Figure 5) for all10 confirmation experiments (as supplemental 

figures). Induction experiments which result in no gene expression changes are 

trivially explained as regulators that do not function correctly after induction 

and overexpression; experiments where there are gene expression changes that 

are not predicted by the initial model are much more interesting. 

We thank the reviewer for these important points. We address each of them in the 

revised manuscript. We’ve included a new supplementary figure (Appendix 

Figure S17), which shows heatmaps for all 10 validation experiments.The model 

edge predictions are also incorporated into this heatmap (shown in blue and red). 

We also completely agree with the reviewer on the importance of including 

confusion matrices between predictions and results. We now include these 

confusion matrices as Table 5. We also now include an additional statistical 

assessment of significance using Fisher’s exact test. Finally, we’ve moved Figure 6 

to the supplement, based on the reviewer’s suggestion. 

 

6. Functional coherence doesn't seem like a valid way to benchmark gene 

regulatory networks. The underlying rationale is shaky, especially when using 

GO slim terms (is an enrichment of 'response to chemical' meaningful?). I also 

have a general concern about using differences between p-values as statistical 

evidence outside the context of hypothesis testing. The ROC curves associated 

with S14 are much more compelling ( I am surprised they are not main-text 

figures). 

Based on comments from both reviewers, we’ve removed the analysis on 

“functional coherence” from the revised manuscript. We’ve moved Figure S14 

from the original submission to the main text as the reviewer suggested (it is now 

Figure 5). 

 

7. The supplemental methods package related to the model-fitting is excellent 

(I found the answer to every margin note that I made about the modeling 

approach while reading the results section). However, the main-text methods 

section lacks details of a number of analyses that are presented in the 

manuscript; I believe that as written it would be very difficult to replicate 
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some of the supporting analyses in this work. The authors should provide 

more detail on these methods. 

We thank the reviewer for pointing this out, and are glad that the model-fitting 

methods “ticked all the boxes”. We tried to be extremely fastidious about 

describing the computational methods in detail. Some of the methods were placed 

in the main text, while others were placed in the Appendix. 

We have made several substantive changes that we hope will address the reviewers 

concerns. First, in our newly added “Data Accessibility” section, we now include 

links to the code on Github for both the Chechik & Koller curve fitting model 

(http://https//github.com/calico/impulse) as well as the dynamical systems 

modeling that is used to solve Equation 1 in the main text 

(https://github.com/google-research/google-

research/tree/master/yeast_transcription_network). 

Second, we’ve moved more of the methods from the Appendix to the main text. 

Specifically, the summary of the dynamical systems modeling implementation has 

been moved. We’ve also added a sentence that points the interested reader to the 

Appendix for a complete and very technical accounting of the entire dynamical 

systems modeling approach. That, combined with the code provided above, will 

allow those who are interested to perform this type of analysis. Additionally, we’ve 

moved the entire methods section describing “marginal attribution analysis” used in 

Figure 3 to the main text as well.  

 

8. In Figures S3 and S4 there are other very obvious horizontal and vertical 

banding patterns that are difficult to interpret. It would help to have these 

better annotated. The figure legend simply points to one of these bands. 

We thank the reviewer for pointing this out. We’ve added more annotations to the 

figures as well as descriptions within the legends. We now clearly state (in the 

legend of Figure S3) that the vertical banding patterns are actually TFs that are 

hubs (they affect the expression of many genes when induced). The TF experiments 

are sorted alphabetically, and we highlight a subset of them including GAT3, 

GAT4, GCN4, MSN2, MSN4, SFP1, and UME6. The horizontal banding patterns 

are due to weak time-dependent signals that accompany most experiments (e.g., 

ESR-related). We highlight two of the most striking bands. The top horizontal band 

is due to the high variation of expression observed in ORFs that have no standard 

ORF ID beyond their chromosome and position (many of these are dubious ORFs). 

We’ve now clearly labeled those in both figures. The second large clear band is 

ribosomal genes, which we also now clearly annotate in both figures as well. It’s 

also worth pointing that color palette saturates at log2 = -1 and log2 = 1. We chose 

this dynamic range to accentuate some of the features in the raw data. We think that 

the labels the reviewer requested are a significant improvement, and will be useful 

to readers in interpreting these heatmaps.  

 

9. In all of the heatmaps that the authors present some genes go up and some 

genes go down. Is this expected - are these TFs known to have repressive 

activity? Are these all due to secondary biological effects? Can the authors 

rule out that data normalization doesn't play a role in this effect? 

http://https/github.com/calico/impulse
https://github.com/google-research/google-research/tree/master/yeast_transcription_network
https://github.com/google-research/google-research/tree/master/yeast_transcription_network
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TFs can act as direct activators and repressors of gene expression (like Cbf1). The 

full extent to which dual function (activation and repression) of TFs exist is 

unknown, but in cases where we see a clear binding motif associated with the 

induced regulator the motif tends to be overrepresented as either activating or 

inhibiting. This contrasts with some of the non-TF regulators that we identified 

from modeling and later validated. This is because Fmp48 is a putative kinase and 

activates some targets while inhibiting others.  

 

We think that the vast majority of transcriptional changes elicited in this dataset are 

due to indirect responses to TF induction, and are interpreted as transcriptional 

cascades. As an example, Gln3, a well-studied strong transcriptional activator 

involved in nitrogen metabolism, represses many genes through indirect means. We 

see additional cases of indirect regulation, particularly those manifesting as “perfect 

adaptation”, which often involve acute changes in genes involved in ribosomes or 

anabolism. We think that some of these effects are mediated through global factors 

that we do not directly measure such as amino acid pools.  

 

We have attempted to remove signals that are driven by gene- and array-level noise 

as well as removing stress-dependent patterns.Therefore, we think there are few 

examples of large dynamic changes which could be attributed to mis-normalization. 

The retention of signal is partially demonstrated by the replicate heatmaps of 

different TFs (notably Gln3), which have clear concordance when strong signal 

occurs. We describe all of the signal processing steps in great detail, and make the 

data available at all levels of processing for others to explore and develop 

alternative methods for interrogating signal of interest.  

 

10. The website is very nice. However, I was surprised that the dataset is not 

presented as a global gene regulatory network "at the scale of the entire 

genome" (which is the phrase the authors use to motivate their study). 

We thank the reviewer for making this point, and we’ve corrected this oversight in 

the revision. We have added an interactive version of our network from Figure 4 to 

the website (https://idea.research.calicolabs.com/network). The Cytsoscape file 

itself can be downloaded at https://idea.research.calicolabs.com/data. 

We expect that future work from us and others will continue to refine how we 

explore and visualize these data to drive new discoveries. We want to point out that 

we also did some work to integrate IDEA with the Costanzo genetic interaction 

network, and this can be found under the “TF effects” panel on the website. We’ve 

made movies of how regulator-gene connections form over time on this network. 

While some TFs regulate clear “galaxies” within the genetic interaction “universe”, 

others do not. Understanding how to better integrate these kinds of data, and 

especially how different processes are coordinated to give rise to a healthy cellular 

state, is something we are keen to explore in the future, and believe others will too. 

 

 1. In the introduction the authors state that "by not utilizing prior knowledge, 

we minimize bias against re-learning known biology". This seems 

counterintuitive to me - incorporating prior knowledge builds on years of 

https://idea.research.calicolabs.com/network
https://idea.research.calicolabs.com/data
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work and effort, and "re-learning" known biology is a means of validating the 

approach. Is there a way to rephrase this statement? 

We agree with the reviewer that this sentence was poorly phrased, and have 

removed the offending text. We now say: “Our approach implicitly dissects 

indirect regulation into a series of direct regulatory relationships. Predicted 

intermediate regulators span canonical transcriptional regulators and genes of 

unknown function.” 

 

2. It would be useful to the reader to have an intuitive explanation of the 

Chechik and Koller kinetic model. 

We thank the reviewer for this comment. The second reviewer also suggested that 

we add a more complete explanation of this model in the main text, and we agree 

that this would be useful for readers. We have left the detailed equations in the 

supplement, and have added a general explanation of the Chechik & Koller (CK) 

model to the main text. Specifically, we have added the text shown below in purple: 

“As is the case in the Aft1 experiment, timecourses with significant signal 

across IDEA typically exhibit either a sigmoidal or impulse-like response (double 

sigmoidal); thus, we fit a Bayesian version of the Chechik & Koller (CK) kinetic 

model to each timecourse [42,43] (see materials and methods for more details on 

curve fitting; code for implementing CK fits can be found at 

https://github.com/calico/impulse). The CK model characterizes a timecourse as a 

double sigmoid but can be reduced to a simpler sigmoid that has fewer parameters. 

Specifically, the original CK kinetic model contains six parameters, which we 

reduced to five parameters because the initial amplitude for all timecourses is zero 

due to normalization. The impulse (double sigmoid) response is ideal for capturing 

two-transition behavior in biological timecourses. One sigmoid characterizes the 

onset response and a second sigmoid characterizes the offset response [42]. 

Parametric fits enable direct comparisons of timecourses by revealing kinetic 

parameters. Our Bayesian implementation ensures that these parameters are 

interpretable by penalizing unrealistic and impossible parameterizations (e.g., step-

function responses or changes which precede β-estradiol introduction). Since the 

impulse and single sigmoid models are nested (i.e., the simpler model contains all 

of the terms within the more complex model), we can - for a given timecourse - use 

a likelihood ratio test to determine if extra parameters improve the fit sufficiently to 

justify the more complex model. 

 Sigmoidal responses are summarized with a half-max time constant (trise), 

an asymptotic expression level (vinter), and a slope parameter (β). Impulses include 

two additional parameters: tfall, which describes the time when the response returns 

halfway to its final level, and vfinal, the asymptotic expression level of the impulse 

(Figure 2B) [43].” 

 

3. The authors use 'timecourse' in different contexts; the intro has timecourses 

which are experiments ("We generated over two-hundred TF induction 

timecourses"), and results seems to switch between timecourses which are 

experiments and timecourses which are gene measurements in an experiment 

("The signals from these 100,036 timecourses were retained"). The 

terminology used needs to be clearly defined and preferably not reused. I 

found this to be very confusing when first reading the manuscript. 

https://paperpile.com/c/sKeqRn/rseH+xRy7U
https://paperpile.com/c/sKeqRn/rseH
https://paperpile.com/c/sKeqRn/xRy7U
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We thank the reviewer for pointing this out, and completely agree that this needs to 

be clearer. We have gone through the text and now use “experiment” to refer to the 

set of all gene expression responses that follow the induction of a single TF. 

Additionally, we now use “timecourse” to specifically refer to a particular genes’ 

expression response in a single experiment. At the beginning of the Results section 

we have added, “In this manuscript, an experiment refers to all of the gene 

expression responses that follow from induction of single TF. A timecourse refers to 

the kinetic response of a single gene within a single experiment.” 

 

4. It would be helpful to include a brief introduction to Aft1 and the 

motivation for selecting that gene as the focus. 

We thank the reviewer for making this suggestion, and we’ve added the following 

text to manuscript where introduce Aft1: “Aft1 was originally identified as an 

activator of genes that uptake iron into the cell [38]. Aft1 responds to defects in 

iron-sulfur cluster biogenesis [39], and its activity is negatively regulated by Met4, 

the primary activator of methionine biosynthetic genes [39,40].  We highlight Aft1, 

in part, because we observe a range of expression responses following its 

activation.” 

It’s also worth noting that we also decided to focus on Aft1 due to our modeling 

predictions, which indicated that Hmx1, (part of the Aft1 regulon) was itself a 

regulator of gene expression. 

 

5. The results section refers to Rpn4 and cites supplemental figure 14; Rpn4 is 

not in that figure and it's not clear where the Rpn4 claims originate. 

We thank the reviewer making this comment. We sought to clarify this result in the 

revision by adding both text and an additional figure. The observation that Rpn4, 

which activates proteasomal subunits, genetically interacts with many of its targets, 

came from the ROC analysis shown in what is now Figure 5 (Figure S14 from our 

original submission). It has long been known that Rpn4 up-regulates proteasomal 

subunits (and thereby proteasomal activity). In IDEA, Rpn4 robustly activates these 

genes as well. What hasn’t been appreciated is that Rpn4 genetically interacts with 

many of its targets. The ROC curves (comparing the magnitudes of coefficients 

from our transcriptional model with two published networks [Yeasnet and 

Costanzo]) revealed this connection. We’ve added a new supplemental figure 

(Appendix Figure S15) to show rpn4∆’s strongest interactions from Costanzo 

(using the interactive tool available at http://thecellmap.org). We also modified the 

text to explain how we made these observations. Specifically, we added, “Based on 

the ROC analysis, we next explored the strongest model coefficients that 

overlapped the genetic interaction profiles from Costanzo et al. This immediately 

revealed two interesting biological observations.” 

 

6. Figure 4 has annotations for validated & invalidated regulatory nodes 

without any further explanation. What makes a node valid or invalid? It's also 

not clear how regulatory pathways (ontologies?) have been integrated into this 

network. 

https://paperpile.com/c/sKeqRn/tfal
https://paperpile.com/c/sKeqRn/gMM0
https://paperpile.com/c/sKeqRn/gMM0+NpUG
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We thank the reviewer for noting these issues as being unclear in our initial 

submission. In Figure 4, validated nodes are the genes we induced in our validation 

experiments and saw a significant overlap between responding genes and gene-

regulator connections within the model. In equation, those connections are 

represent as “alpha” values. We have modified the legend of the figure to clearly 

state what “valid” and “invalid” mean in this particular context. Specifically, we 

now write, “Validated nodes (green) are genes where validation experiments 

confirmed a significant overlap between measured gene-regulator connections and 

model-predicted coefficients. Invalidated nodes (red) are genes where validation 

experiments failed to confirm model-predicted coefficients.”  The GO categories 

are meant to simplify the network and make it more “human readable”. If a 

regulator is connected to hundreds of targets, we pick the GO term with highest 

significant to visualize rather than the hundreds of targets individually. We’ve 

modified the legend to include, “Predicted regulators are linked to GO categories 

based on having a significant overlap with their predicted targets.” 

 

7. The yeastract citation isn't compiled and the eQTL study (ref 17) is 

incomplete. 

We thank the reviewer for pointing out these errors. We’ve fixed them both. The 

eQTL reference is shown below.  

 

Lutz S, Brion C, Kliebhan M, Albert FW. DNA variants affecting the 

expression of numerous genes in trans have diverse mechanisms of action and 

evolutionary histories. PLoS Genet. 2019;15: e1008375.  

http://paperpile.com/b/sKeqRn/J6is
http://paperpile.com/b/sKeqRn/J6is
http://paperpile.com/b/sKeqRn/J6is
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Reviewer #2: 

 

Review of "Learning causal regulatory networks with inducible promoter 

alleles and massively parallelized time series measurements". 

 

Overall I thought this paper was great, and describes a great dataset and an 

interesting analysis. It hurt a bit to see how disconnected the paper was from 

prior work, and a major comment is that more work needs to be done to 

properly frame this in the context of the mature field it naturally fits into. I am 

quite positive about this paper and only have so many critical comments due to 

my keen interest in the topic. 

We greatly appreciate the reviewer’s positive view of our work, and as detailed 

below, we’ve expanded the text (including the introduction) to better frame this 

paper in the context of previous work.  

 

A main flaw is that the network inference was not sufficiently well described, I 

want to hear more about alternatives, why you chose this model, and have a 

proper formulation of the network inference in the methods section. 

We thank the reviewer for this comment, and we have sought to improve our 

formulation of the network inference approach in the main text (both in the Results 

section and the Methods section). The full model derivation, we believe, is beyond 

the scope of the main text, so we relegate it to the following four sections in the 

Appendix: Linear Regression, BIC regularization, Hyperparameter Search, and 

Cross-Validation. But we also now clearly highlight these sections for the reader in 

the main text, which was missing from our original submission. Additionally, in the 

revision, we have included a link to code in a public repository for implementing 

the network inference approach. To the main text Results section, we’ve added the 

following text to explain the approach and discuss alternatives, as suggested by the 

reviewer: 

“To arrive at this approach, we considered a suite of modeling strategies. We 

explored modeling dataset-level dynamics using a system of differential equations; 

however, such a model is both hard to fit and not robust to model mis-specification. 

Since a model of cellular regulation that exclusively includes transcriptional 

regulation is inherently incomplete, the parameters of such a model would be 

inappropriately contorted to compensate for in-expressible regulation. Regression 

models that express the measured abundance of a gene of interest based on 

measured abundances of candidate regulators do not suffer from such a problem. 

As many regression models can be posed, we explored a wide-space of model 

formulations defined by a set of hyperparameters (e.g., modeling in log- or linear-

space, allowing for interaction terms, and adjusting regularization strength) (see 

Appendix for complete details). To arrive at an optimal model formalism we used 

cross-validation, whereby whole experiments were held-out and then predicted 

using all other experiments (encompassing 50 million regressions in aggregate).” 

 

Furthermore, in the main text Methods section, we now include a section call 

“Dynamical systems modeling overview”, which reads: “We pursued a linear 
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regression approach to modeling Equation 1. First, we constructed an estimator of 

the time derivative of the gene expression response, which is treated as the 

dependent variable.  We then fit a linear model to extract the coefficients of the 

dynamical system.  This works because the time derivatives of the gene expression 

levels are modeled as linear functions of gene expression levels (possibly with 

quadratic terms as well).  We note that this does not actually correspond to a full 

solution of the dynamical system, but requires point-wise consistency with the 

dynamical system description. Selection of regularization levels with cross-

validation yielded a model for the transcriptional effects of gene expression levels. 

This model was interrogated to identify which regulators were most important for 

predicting observed expression changes in each timecourse. Derivations 

implementing this modeling approach are presented in the Appendix sections: 

Linear Regression, BIC regularization, Hyperparameter Search, and Cross-

Validation.” 

 

p.2. Constructing these GRNs typically requires extensive prior knowledge 

[3,4]. 

More direct citations are available. 

We thank the reviewer for this comment, and we completely agree with it. In our 

original attempt at brevity, we missed a number of references as well an 

opportunity to properly frame our work in the context of previous work on GRNs. 

We have added many references (in total, the revised manuscript has 66 references, 

compared to 44 in the original submission), and now give a more detailed 

description of early work on the inference of GRNs and networks motifs. We’ve 

also cited more recent work on using mutant libraries and CRISPR tools to identify 

GRNs in multiple organisms.  

 

We’ve added the text in purple to the Introduction: “The direct and indirect 

molecular interactions that achieve a particular cellular state can be described as 

regulatory edges that collectively form Gene Regulatory Networks (GRNs) [3,4]. 

As genome-scale datasets started to become available over 20 years ago, work by 

Alon and colleagues established that certain GRN topologies are enriched in 

biological systems [4]. Understanding the functional properties of such “network 

motifs” became the subject of intense experimental and theoretical investigation 

[4–14]. Combined with genomic tools and extensive prior knowledge, it became 

possible to identify network motifs/GRNs associated with core cellular processes, 

with early work in yeast focusing on cell cycle control and the DNA damage 

response [15,16]. The widespread development and adoption of genome-scale 

technologies, including the creation of mutant libraries and the power of CRISPR-

Cas systems, has further enabled GRN discovery in living organisms, from plants 

[17], to yeast [18], to humans [19].” 

 

We have also added a reference and description of a beautiful recent paper (Solis et 

al) that used a combination of genomic tools and time series analysis using the 

“anchor away” method to identify a core GRN within the Hsf1/proteostasis 

network. Specifically, we’ve added the following text: “Integration of multiple 

https://paperpile.com/c/sKeqRn/1TMAD+eOtz
https://paperpile.com/c/sKeqRn/eOtz
https://paperpile.com/c/sKeqRn/eOtz+BjpW+nIg6+Z195+fKwL+wWHd+XZUe+3UIV+bqZL+sDWA+JYjE
https://paperpile.com/c/sKeqRn/MfIp7+tDI84
https://paperpile.com/c/sKeqRn/LFpT
https://paperpile.com/c/sKeqRn/OXvVV
https://paperpile.com/c/sKeqRn/sq6s
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‘omic technologies combined with time series measurements can help identify 

direct functional interactions to elucidate GRNs, as was done in a recent study that 

combined RNA-seq, NET-seq, and ChIP-seq to identify a core regulon for Hsf1 in 

yeast [28].” 

 

 

p. 2. How can we develop the regulatory clarity of GRNs at the scale of the 

entire genome? What is Clarity? 

We have removed this sentence, and agree with the reviewer that our original 

phrasing was confusing. We have modified the offending sentence to say, “How 

are genomic approaches commonly applied to identify GRNs?” 

 

What does "Hyper-ChIP-able" mean ? ... much to informal and inexact. Say 

less, but be specific. 

We thank the reviewer for pointing this out - our phrasing was too colloquial, and 

not adequately explained. We removed the word “hyper-ChIPable”, and modified 

the text to read, “Target genes with similar ChIP profiles can exhibit opposite 

expression responses [26], and highly expressed portions of the genome can exhibit 

strong ChIP signal even amongst unrelated proteins [27]. Interpreting the 

biological importance of such peaks must be done with sufficient controls to 

distinguish whether signals are truly biological versus technical in origin, but the 

challenge remains that ChIP-based approaches alone provide no assessment of TF 

functionality.” 

 

"Additionally, we find that 79% of genes reported as being directly bound by 

a TF do not exhibit a significant expression response in the corresponding TF's 

induction experiment". "In IDEA, realized regulation is directly measured 

and there is stronger agreement between early induction events in IDEA with 

TF-DNA interactions as assessed with transposon calling cards than by ChIP 

". No, many TFs need to be post transcriptionally or post translationally 

modified to be active. This could be due to interactions. TFs do not act alone. 

Also where are you getting these numbers ? 

We thank the reviewer for this question/points. We tackle them, one at a time, 

below. 

 

"In IDEA, realized regulation is directly measured and there is stronger 

agreement between early induction events in IDEA with TF-DNA interactions as 

assessed with transposon calling cards than by ChIP ". No, many TFs need to be 

post transcriptionally or post translationally modified to be active. This could be 

due to interactions. TFs do not act alone.  

We’ve removed the above statement in the revision, and clarified the text to read, 

“Additionally, we find that 79% of genes reported as being directly bound by a TF 

based on published ChIP measurements do not exhibit a significant expression 

response in the corresponding TF’s induction experiment (Appendix Figure S10) 

https://paperpile.com/c/sKeqRn/DaNy
https://paperpile.com/c/sKeqRn/GSJ5U
https://paperpile.com/c/sKeqRn/pD6hh
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[41]. The low recall of reported transcriptional regulation underscores the value of 

dynamic data. Realized regulation may be impacted by chromatin accessibility and 

the regulatory context of the extracellular environment, which can result in 

different post-translational modifications of TFs [29,44–46].” 

 

Also where are you getting these numbers? 

We’ve added a citation to Yeastract in the main text, and clarified that we are 

calculating the percentage of previously identified binding sites that result in 

measurable changes in expression of target genes in response to TF induction. The 

vast majority of these sites don’t result in realized regulation in our dataset. We 

don’t want to over-interpret this result, because there are biological and technical 

reasons a difference could be observed that are beyond the scope of the current 

study. Therefore, we just write “...79% of genes reported as being directly bound 

by a TF based on published ChIP measurements do not exhibit a significant 

expression response in the corresponding TF’s induction experiment (Appendix 

Figure S10) [41].”  

 

Binding is not a great proxy for "regulates" I agree there, mostly suffering 

from false positives. But over expression dynamics will still have a huge false 

negative rate due to post-X mods not being lined up. 

We thank the reviewer for making these important points. We’ve modified the 

introduction substantially to address this, and explicitly discuss Cbf1, which some 

of us previously showed can switch between activating or repressing methionine 

genes depending on environmental conditions. An interesting future analysis could 

be to compare binding to induction experiments and look for TFs that have the 

largest disagreements across the genome between binding and expression effects. 

This kind of “computational screen” could identify TFs that likely require 

modification to be active under various conditions. We’ve also added a 

supplemental figure for Gln3, which is an activator regardless of whether or not the 

cells are limited for nitrogen or phosphate. As mentioned above, we’ve also added 

some discussion of Solis et al. that combined RNA-seq, NET-seq, ChIP-seq, and 

time series analysis (using the “anchor away” method) to identify a core GRN for 

Hsf1/proteostasis. This multi-omic approach was focused on one TF, but also 

provides a useful framework for exploring functional versus non-functional TF 

binding.  

 

Figure 3c ... I can't figure it out. This could be part my problem and part the 

figure's problem, but perhaps take a peek at this one. 

We thank the reviewer for pointing this out. This figure does indeed contain quite a 

bit of information. To help the reader navigate this figure, we now include five 

“speech bubbles” which explain what each part of the figure, and provides the 

reader an order in which to view different parts of the figure (i, ii, iii, iv, and v). For 

(i), we now specify “Aft1 expression peaks shortly after induction”, and point to the 

purple dot that represents Aft1. Aft1 is strongly activated so its vinter value from the 

CK model is much greater than 0. Then, in (ii), we now write “Aft1 is predicted to 

regulate genes which in turn regulate downstream expression of many other 

https://paperpile.com/c/sKeqRn/dRKr3
https://paperpile.com/c/sKeqRn/wQydq+fxdXX+ePf4Y+vurR4
https://paperpile.com/c/sKeqRn/dRKr3
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genes”. This speech bubble points directly at 3 genes (Fet3, Tis11, and Hmx1), 

which are predicted intermediate regulators. In the third (iii) speech bubble, we 

write “Hmx1 is the predicted primary regulator of downstream expression of 

turquoise-colored genes. See inset donut chart for this example, Yhb1.” For (iv), we 

write, “Arn2 is the predicted primary regulator of downstream expression of 

orange- colored genes, whose differential expression “peaks” later in the 

timecourse.” For (v), we write, “Hmx1 is predicted to make the largest marginal 

contribution to downstream expression of Yhb1 in this experiment, though Arn2, 

Fet3, and others contribute as well.” 

We believe that these will help make the figure much easier to understand. 

 

Functional coherence is used as a proxy for regulates. This seems like a very 

bad idea. 

Based on comments from both reviewers, we’ve removed this analysis from the 

revised manuscript.  

 

Compare known motifs (Cis-BP and FiMo) to your de novo analysis. 

In our original submission, we included a table that included the motifs we 

discovered with DREME, including matches to known motifs. The known motifs 

(PWMs) were downloaded from the Yeastract database and matched to the motifs 

we identified with DREME using the TOMTOM software package (which, like 

FiMo, is part of the MEME suite of software tools). Based on the reviewer’s 

comment, we’ve repeated this same analysis using motifs from Cis-BP. This results 

are nearly identical, and we’ve included them as part of Table 3 in our revision. 

We’ve also added a reference to Cis-BP to the main text (Weirauch et al, 2014). 

 

"we fit a Bayesian version of the Chechik & Koller kinetic model to each 

timecourse [23]"... please explain this more thoroughly. 

We thank the reviewer for this comment. Indeed, a better explanation of the 

Chechik & Koller model was requested by both reviewers. The text we added to 

fully explain the model is shown above in response to the first reviewer’s 

comments. Additionally, we have added a link to all of the code for performing the 

sigmoid and impulse fits (http://github.com/calico/impulse). 

 

On p. 10 you, while discussing the use of other networks (a genetic interaction 

network and a functional association network) state : "To our surprise, the 

magnitudes of regression coefficients are reasonable predictors of edges in 

both types of networks (AUC ~ 0.7), while early trise times do not have 

predictive power of genetic interactions (Figure S14) [22,28]." 

 

It looks like this comment was cut off, but we’ve made some minor changes to this 

section aimed at clarifying our findings. We now write, “The magnitudes of 

regression coefficients (from Equation 1) are reasonable predictors of edges in 

both types of networks (AUC ~ 0.7), while early trise times (from the CK model) do 

http://github.com/calico/impulse
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not have predictive power of genetic interactions in Costanzo et al. (Figure 4) 

[41,48]. A baseline LASSO regression model was included which fits each gene’s 

expression as linear combinations of all genes’ expression using a globally chosen 

λ.”  

 
 

3rd Editorial Decision 6th February 2020 

Thank you for submitting your revised manuscript to Molecular Systems Biology. We have now 

heard back from the two reviewers who agreed to evaluate your manuscript. As you will see the 

reviewers are now overall supportive and I am pleased to inform you that your manuscript will be 

accepted in principle pending the following essential amendments:  

 

1. Reviewer #1 has expressed concerns about the use of the word "timecourse" in the text, please 

address this properly.  

2. Please address reviewer #2's concern by improving the introduction and/or discussion sections in 

light of previously published work.  

 

----------------------------------------------------------------------------  

 

REFEREE REPORTS 

 

Reviewer #1:  

 

The revised manuscript has addressed all of my comments. I have one remaining concern that 

should be addressed in the text; I don't believe that any additional experimental or analytic work is 

necessary.  

 

The authors have continued to use 'timecourse' to refer both to whole genome expression changes 

through an experiment, and to single gene expression changes through an experiment. In the results 

section, they have defined these terms to be "In this manuscript, an experiment refers to all of the 

gene expression responses that follow from induction of single TF. A timecourse refers to the 

kinetic response of a single gene within a single experiment." Figure 2A clearly refers to a 

timecourse as whole genome expression changes, and figure 2B clearly refers to a timecourse as a 

single gene expression change through an experiment. Many of the textual uses of 'timecourse' are 

ambiguous in context and could be read either way (changing the interpretation of several key parts 

of this work). Based on the definition provided, I read "The Aft1 timecourse is an illustrative 

example of the value of induction data for revealing intricate regulatory phenomena" as the change 

of Aft1 expression, but it seems more likely to be the experiment where Aft1 is induced. It is 

absolutely essential that the terminology used be consistent throughout this work, including figure 

legends and captions (like Appendix Figure S3, 5, & 6).  

 

 

 

Reviewer #2:  

 

The authors have responded to most of my comments. They still fall short on connecting this to 

prior works, but have made minor improvement on that front. Overall I was positive prior and 

remain positive given the improvements in the paper. I am in favor of publishing this work. 

 

2nd Revision – authors’ response 13th February 2020 

Reviewer #1: 

 
The revised manuscript has addressed all of my comments. I have one remaining 
concern that should be addressed in the text; I don't believe that any additional 
experimental or analytic work is necessary. 

https://paperpile.com/c/sKeqRn/O9QmZ+dRKr3
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The authors have continued to use 'timecourse' to refer both to whole genome 
expression changes through an experiment, and to single gene expression 
changes through an experiment. In the results section, they have defined these 
terms to be "In this manuscript, an experiment refers to all of the gene expression 
responses that follow from induction of single TF. A timecourse refers to the kinetic 
response of a single gene within a single experiment." Figure 2A clearly refers to a 
timecourse as whole genome expression changes, and figure 2B clearly refers to a 
timecourse as a single gene expression change through an experiment. Many of 
the textual uses of 'timecourse' are ambiguous in context and could be read either 
way (changing the interpretation of several key parts of this work). Based on the 
definition provided, I read "The Aft1 timecourse is an illustrative example of the 
value of induction data for revealing intricate regulatory phenomena" as the 
change of Aft1 expression, but it seems more likely to be the experiment where 
Aft1 is induced. It is absolutely essential that the terminology used be consistent 
throughout this work, including figure legends and captions (like Appendix Figure 
S3, 5, & 6). 

 

We thank the reviewer for pointing this out. We’ve carefully gone through the 
manuscript and made sure that the language is consistent throughout the 
main text and appendix. We’ve edited Figures S3, S5, and S6 to include the 
word “experiment” and not “timecourse”.  

 

Reviewer #2: 

 
The authors have responded to most of my comments. They still fall short on 
connecting this to prior works, but have made minor improvement on that front. 
Overall I was positive prior and remain positive given the improvements in the 
paper. I am in favor of publishing this work. 
 
We are pleased that we addressed the majority of the reviewer’s comments 
in the first revision. We had added a number of references to papers on GRN 
inference and discovery in the previous revision. In this revision, we’ve 
significantly expanded the introduction to spell out work from the DREAM 
project on network inference. Specifically, we added, “Finally, there is a 
growing literature of computational methods for reconstructing GRNs from high-
throughput data [29–35]. The Dialogue on Reverse Engineering Assessment and 
Methods (DREAM) project, which is organized around annual challenges, provides 
a framework to benchmark network inference methods [29]. Network inference 
performance can depend on implementation as well as the network structure itself 
[31]. In the DREAM5 challenge, no single inference method performed optimally 
across multiple datasets. Integrating predictions across all participating teams (35 
inference methods in total) to generate “community networks” had the most robust 
performance [31].” Additionally, we added a reference to Chua et al. in the 
Introduction: “A seminal paper from Chua et al. revealed that overexpression of a 
single TF, followed by transcriptome profiling at a single time point, can reveal 
functional regulator-gene connections that are absent when profiling TF deletion 
mutants [36]. Following that work, we combined TF activation with dynamic 
transcriptome profiling to dissect the incompletely understood regulatory 
connectivity of the yeast sulfur regulon [37].” 

 
 

https://paperpile.com/c/HRClHc/IRTl+LHEh+QCWH+TPpk+cRsh+jnyg+BN1c
https://paperpile.com/c/HRClHc/IRTl
https://paperpile.com/c/HRClHc/QCWH
https://paperpile.com/c/HRClHc/QCWH
https://paperpile.com/c/HRClHc/AV43
https://paperpile.com/c/HRClHc/4MkCq
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Accepted 19th February 2020 

Thank you again for sending us your revised manuscript. We are now satisfied with the 

modifications made and I am pleased to inform you that your paper has been accepted for 

publication.  
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� common tests, such as t-test (please specify whether paired vs. unpaired), simple χ2 tests, Wilcoxon and Mann-Whitney 
tests, can be unambiguously identified by name only, but more complex techniques should be described in the methods 
section;

� are tests one-sided or two-sided?
� are there adjustments for multiple comparisons?
� exact statistical test results, e.g., P values = x but not P values < x;
� definition of ‘center values’ as median or average;
� definition of error bars as s.d. or s.e.m. 

1.a. How was the sample size chosen to ensure adequate power to detect a pre-specified effect size?

1.b. For animal studies, include a statement about sample size estimate even if no statistical methods were used.

2. Describe inclusion/exclusion criteria if samples or animals were excluded from the analysis. Were the criteria pre-
established?

3. Were any steps taken to minimize the effects of subjective bias when allocating animals/samples to treatment (e.g. 
randomization procedure)? If yes, please describe. 

For animal studies, include a statement about randomization even if no randomization was used.

4.a. Were any steps taken to minimize the effects of subjective bias during group allocation or/and when assessing results 
(e.g. blinding of the investigator)? If yes please describe.

4.b. For animal studies, include a statement about blinding even if no blinding was done

5. For every figure, are statistical tests justified as appropriate?

Do the data meet the assumptions of the tests (e.g., normal distribution)? Describe any methods used to assess it.

Is there an estimate of variation within each group of data?

EMBO PRESS 

A- Figures 

Reporting Checklist For Life Sciences Articles (Rev. June 2017)

This checklist is used to ensure good reporting standards and to improve the reproducibility of published results. These guidelines are 
consistent with the Principles and Guidelines for Reporting Preclinical Research issued by the NIH in 2014. Please follow the journal’s 
authorship guidelines in preparing your manuscript.  

PLEASE NOTE THAT THIS CHECKLIST WILL BE PUBLISHED ALONGSIDE YOUR PAPER

Journal Submitted to: Molecular Systems Biology
Corresponding Author Name: Scott McIsaac

YOU MUST COMPLETE ALL CELLS WITH A PINK BACKGROUND ê

B- Statistics and general methods

the assay(s) and method(s) used to carry out the reported observations and measurements 
an explicit mention of the biological and chemical entity(ies) that are being measured.
an explicit mention of the biological and chemical entity(ies) that are altered/varied/perturbed in a controlled manner.

a statement of how many times the experiment shown was independently replicated in the laboratory.

Any descriptions too long for the figure legend should be included in the methods section and/or with the source data.

 

In the pink boxes below, please ensure that the answers to the following questions are reported in the manuscript itself. 
Every question should be answered. If the question is not relevant to your research, please write NA (non applicable).  
We encourage you to include a specific subsection in the methods section for statistics, reagents, animal models and human 
subjects.  

definitions of statistical methods and measures:

a description of the sample collection allowing the reader to understand whether the samples represent technical or 
biological replicates (including how many animals, litters, cultures, etc.).

The data shown in figures should satisfy the following conditions:

Source Data should be included to report the data underlying graphs. Please follow the guidelines set out in the author ship 
guidelines on Data Presentation.

Please fill out these boxes ê (Do not worry if you cannot see all your text once you press return)

a specification of the experimental system investigated (eg cell line, species name).

NA

graphs include clearly labeled error bars for independent experiments and sample sizes. Unless justified, error bars should 
not be shown for technical replicates.
if n< 5, the individual data points from each experiment should be plotted and any statistical test employed should be 
justified

the exact sample size (n) for each experimental group/condition, given as a number, not a range;

Each figure caption should contain the following information, for each panel where they are relevant:

2. Captions

NA

NA

NA

Manuscript Number: MSB-19-9174RR

NA

NA

NA

NA

NA

NA

1. Data

the data were obtained and processed according to the field’s best practice and are presented to reflect the results of the 
experiments in an accurate and unbiased manner.
figure panels include only data points, measurements or observations that can be compared to each other in a scientifically 
meaningful way.



Is the variance similar between the groups that are being statistically compared?

6. To show that antibodies were profiled for use in the system under study (assay and species), provide a citation, catalog 
number and/or clone number, supplementary information or reference to an antibody validation profile. e.g., 
Antibodypedia (see link list at top right), 1DegreeBio (see link list at top right).

7. Identify the source of cell lines and report if they were recently authenticated (e.g., by STR profiling) and tested for 
mycoplasma contamination.

* for all hyperlinks, please see the table at the top right of the document

8. Report species, strain, gender, age of animals and genetic modification status where applicable. Please detail housing 
and husbandry conditions and the source of animals.

9. For experiments involving live vertebrates, include a statement of compliance with ethical regulations and identify the 
committee(s) approving the experiments.

10. We recommend consulting the ARRIVE guidelines (see link list at top right) (PLoS Biol. 8(6), e1000412, 2010) to ensure 
that other relevant aspects of animal studies are adequately reported. See author guidelines, under ‘Reporting 
Guidelines’. See also: NIH (see link list at top right) and MRC (see link list at top right) recommendations.  Please confirm 
compliance.

11. Identify the committee(s) approving the study protocol.

12. Include a statement confirming that informed consent was obtained from all subjects and that the experiments 
conformed to the principles set out in the WMA Declaration of Helsinki and the Department of Health and Human 
Services Belmont Report.

13. For publication of patient photos, include a statement confirming that consent to publish was obtained.

14. Report any restrictions on the availability (and/or on the use) of human data or samples.

15. Report the clinical trial registration number (at ClinicalTrials.gov or equivalent), where applicable.

16. For phase II and III randomized controlled trials, please refer to the CONSORT flow diagram (see link list at top right) 
and submit the CONSORT checklist (see link list at top right) with your submission. See author guidelines, under ‘Reporting 
Guidelines’. Please confirm you have submitted this list.

17. For tumor marker prognostic studies, we recommend that you follow the REMARK reporting guidelines (see link list at 
top right). See author guidelines, under ‘Reporting Guidelines’. Please confirm you have followed these guidelines.

18: Provide a “Data Availability” section at the end of the Materials & Methods, listing the accession codes for data 
generated in this study and deposited in a public database (e.g. RNA-Seq data: Gene Expression Omnibus GSE39462, 
Proteomics data: PRIDE PXD000208 etc.) Please refer to our author guidelines for ‘Data Deposition’.

Data deposition in a public repository is mandatory for: 
a. Protein, DNA and RNA sequences 
b. Macromolecular structures 
c. Crystallographic data for small molecules 
d. Functional genomics data 
e. Proteomics and molecular interactions

19. Deposition is strongly recommended for any datasets that are central and integral to the study; please consider the 
journal’s data policy. If no structured public repository exists for a given data type, we encourage the provision of datasets 
in the manuscript as a Supplementary Document (see author guidelines under ‘Expanded View’ or in unstructured 
repositories such as Dryad (see link list at top right) or Figshare (see link list at top right).
20. Access to human clinical and genomic datasets should be provided with as few restrictions as possible while respecting 
ethical obligations to the patients and relevant medical and legal issues. If practically possible and compatible with the 
individual consent agreement used in the study, such data should be deposited in one of the major public access-
controlled repositories such as dbGAP (see link list at top right) or EGA (see link list at top right).
21. Computational models that are central and integral to a study should be shared without restrictions and provided in a 
machine-readable form.  The relevant accession numbers or links should be provided. When possible, standardized format 
(SBML, CellML) should be used instead of scripts (e.g. MATLAB). Authors are strongly encouraged to follow the MIRIAM 
guidelines (see link list at top right) and deposit their model in a public database such as Biomodels (see link list at top 
right) or JWS Online (see link list at top right). If computer source code is provided with the paper, it should be deposited 
in a public repository or included in supplementary information.

22. Could your study fall under dual use research restrictions? Please check biosecurity documents (see link list at top 
right) and list of select agents and toxins (APHIS/CDC) (see link list at top right). According to our biosecurity guidelines, 
provide a statement only if it could.

C- Reagents

D- Animal Models

E- Human Subjects
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No antibodies were used

NA
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G- Dual use research of concern

F- Data Accessibility

NA

NA

NA

No

NA

NA

NA

NA

We have included this: Data & Software Availability
Datasets and computer code used in this study are publicly available.

Microarray data: Gene Expression
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE142864
http://idea.research.calicolabs.com
Computer software: Bayesian Chechik & Koller Model
https://github.com/calico/impulse
Computer software: Dynamical Systems Model
https://github.com/google-research/google-research/tree/master/yeast_transcription_network

We have done this

NA

We have done this. Computational approaches are fully described and code made available on 
Github. 


