Supplementary Materials

Figure S1 Structural comparisons of (**A**) methylated nsp10 (magenta), nsp10 (cyan), and truncated nsp10 (green) and (**B**) PRRSV nsp10 (cyan) and EAV nsp10 (green). A 45° rotation view is shown in the right panel. The structures are superimposed on 1A domains.

Figure S2 ATPase activities of (**A**) PRRSV nsp10 and (**B**) EAV nsp10 were determined from Lineweaver-Burk plots of hydrolysis activity using the malachite green assay. Error bars represent SD values from three separate experiments.

Figure S3 Structural characterization of the PRRSV nsp10 ZBD. (**A**) Structure of the cross-braced zinc finger and (**B**) treble-clef zinc finger. The residues coordinating the Zn²⁺ ions are shown as sticks. (**C**) Superposition of the ZBD of PRRSV nsp10 (green) and EAV nsp10 (PDB code: 4N0N; grey). (**D**) Sequence alignment of ZBD of PRRSV nsp10 and EAV nsp10. Multiple sequence alignment was carried out using Clustal Omega [1]. The illustration of sequence alignment was generated using ALINE [2]. Minor manual adjustments were performed in accordance with the superimposition.

Figure S4 Putative protein interaction surface of the nsp10 ZBD. Hydrophobic surface of (**A**) the PRRSV nsp10 ZBD and (**C**) the EAV nsp10 ZBD. The hydrophobic pocket is

covered by domain 1B in PRRSV nsp10. A 45° rotation view is shown in the right panel. Close-up view of hydrophobic pockets of (**B**) PRRSV nsp10 and (**D**) EAV nsp10. Domain 1B is omitted for clarity. Hydrophobic residues are shown as sticks. The orientation is the same as in panels A and C. Colors are calculated according to the method (https://pymolwiki.org/index.php/ Color_h).

Figure S5 Validation of the nucleic acid binding ability of PRRSV nsp10. (**A**) The binding abilities of PRRSV nsp10 or mutant with different affinity tags to dsDNA are demonstrated through EMSA. (**B**) The binding ability of nsp10 with an authentic N terminus to dsDNA is demonstrated through EMSA. (**C**) SEC profile of nsp10 in the absence (cyan) or presence (green) of ssDNA (Superdex 75 10/300 GL column, GE Healthcare, Uppsala, Sweden). Elution volumes of the molecular mass standards are marked at the top of the panel. dsDNA, partially double-stranded DNA (the sequences are shown in the figures); WT, no tagged protein; T330A/S333A, no tagged T330A/S333A mutated protein; His-nsp10, His-tagged nsp10; Sumo, Sumo-tagged nsp10.

Figure S6 Structural comparison of PRRSV nsp10-DNA complex model (marine) and holo PRRSV nsp10 (grey). The structures are superimposed on 1A domains. A 90° rotation view is shown in the right panel.

Figure S7 Comparison of holo nsp10 and complex model with SAXS experimental data of nsp10-DNA complex. The model of PRRSV nsp10-DNA complex was generated based on the superimposition of each individual domain of PRRSV nsp10 with that of EAV nsp10. Experimental data are represented in black.

Domain	Comparison	Dali Z-score	RMSD (Å)
ZBD/CH	PRRSV vs EAV	6.9	2.9
	PRRSV vs MERS-CoV	3.3	3.0
	EAV vs MERS-CoV	4.2	3.4
1B	PRRSV vs EAV	9.4	1.8
	PRRSV vs MERS-CoV	2.6	2.7
	EAV vs MERS-CoV	3.2	2.4
1A/RecA1	PRRSV vs EAV	17.5	2.5
	PRRSV vs MERS-CoV	10.4	3.0
	EAV vs MERS-CoV	14.1	2.5
2A/RecA2	PRRSV vs EAV	18.0	1.6
	PRRSV vs MERS-CoV	10.6	2.4
	EAV vs MERS-CoV	10.6	2.3
Helicase Core	PRRSV vs EAV	19.0	12.9
(1A/RecA1&2A/RecA2)	PRRSV vs MERS-CoV	11.4	11.4
	EAV vs MERS-CoV	22.1	2.5

Table S1. Pairwise comparison of the isolated ZBD/CH, 1B, 1A/RecA1, 2A/RecA2 and helicase core (1A/RecA1&2A/RecA2) domains of PRRSV nsp10, EAV nsp10, and MERS-CoV nsp13¹.

¹ PRRSV nsp10, PDB ID: 6JDU. EAV nsp10, PDB ID: 4N0N. MERS-CoV nsp13, PDB ID: 5WWP.

Parameters	PRRSV nsp10	PRRSV nsp10-DNA
Data collection		
Instrument	SSRF BL19U2	SSRF BL19U2
Wavelength (Å)	1.003	1.030
Exposure time (s)	1.0	1.0
Concentration (mg/ml)	3.0	0.5
Temperature (K)	283	283
Structural parameters		
I(0) (from $P(r)$)	31.8	35.9
$R_g(\text{Å}) \text{ (from } P(r))$	32.7	36.6
I(0) (from Guinier)	30.8	35.7
R_g (Å) (from Guinier)	30.5	35.5
D _{max} (Å)	104	119
Porod volume V_p (Å ³)	87306.6	99132.0
Correlation volume V_c (Å ²)	418.2	507.0
Molecular mass		
Mass (kDa)1	49.0	57.5
Mass (kDa) ²	44.6	58.8
Mass (kDa) ³	46.5	58.8
Data processing		
Data reduction and processing	BioXTAS-RAW	BioXTAS-RAW
Validation	FoXS	FoXS
χ^2	1.16	2.60

Table S2. SAXS da	ta collection and	analysis.
-------------------	-------------------	-----------

c1, c2

¹ Mass was calculated from protein sequence

 2 Mass was calculated from Porod volume V_p

³ Mass was calculated from correlation volume V_c

 Table S3. Examples of insoluble constructs.

No.	Construct boundaries	Affinity/Solubility tag
1	G1 – R365	N-terminal His6
2	G1 – D372	N-terminal His6
3	G1 – H374	N-terminal His6
4	G1 – R375	N-terminal His6
5	G1 – D382	N-terminal His6
6	G1 – A385	N-terminal His6
7	G1 – K386	N-terminal His6
8	G1 – H395	N-terminal His6

Supplementary References

1 Madeira, F.; Park, Y.M.; Lee, J.; Buso, N.; Gur, T.; Madhusoodanan, N.; Basutkar, P.; Tivey, A.R.N.; Potter, S.C.; Finn, R.D.; et al. The EMBL-EBI search and sequence analysis tools APIs in 2019. *Nucleic Acids Res.* **2019**, *47*, W636–W641, doi:10.1093/nar/gkz268.

2 Bond, C.S.; Schuttelkopf, A.W. ALINE: a WYSIWYG protein-sequence alignment editor for publication-quality alignments. *Acta Crystallogr. D Biol. Crystallogr.* **2009**, *65*, 510–512, doi: 10.1107/S0907444909007835.