# Scytodecamide from the Cultured *Scytonema* sp. UIC 10036 Expands the Chemical and Genetic Diversity of Cyanobactins

Camila M. Crnkovic,<sup>[a,b]</sup> Jana Braesel,<sup>[a]</sup> Aleksej Krunic,<sup>[a]</sup> Alessandra S. Eustáquio,<sup>[a]</sup> Jimmy Orjala\*<sup>[a]</sup>

<sup>[a]</sup> Department of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, University of Illinois at Chicago, Chicago, Illinois 60612 (USA)

<sup>[b]</sup> CAPES Foundation, Ministry of Education of Brazil, Brasília, Federal District 70040-020 (Brazil)

# **Supporting Information**

Table of contents:

- S1. Photomicrograph (40x, bright field) of Scytonema sp. UIC 10036
- S2. Phylogenetic analysis of Scytonema sp. UIC 10036
- S3. MS/MS spectrum of 1
- S4. <sup>1</sup>H NMR spectrum (900 MHz, methanol-d<sub>4</sub>) of 1
- S5. <sup>1</sup>H NMR spectrum (900 MHz, methanol-d<sub>3</sub>) of 1
- S6. DEPTQ spectrum (226 MHz, methanol-d<sub>4</sub>) of 1
- S7. COSY spectrum (900 MHz, methanol-d<sub>4</sub>) of 1
- S8. COSY spectrum (900 MHz, methanol-d<sub>3</sub>) of 1
- S9. TOCSY spectrum (900 MHz, methanol-d<sub>4</sub>) of 1
- **S10.** Edited HSQC spectrum (900 MHz, methanol-d<sub>4</sub>) of **1**
- S11. HMBC spectrum (900 MHz, methanol-d<sub>4</sub>) of 1
- S12. HMBC spectrum (900 MHz, methanol-d<sub>3</sub>) of 1
- **S13.** <sup>1</sup>H NMR spectrum (900 MHz, pyridine-d<sub>5</sub> with TFA vapour) of **1**
- S14. DEPTQ spectrum (226 MHz, pyridine-d₅ with TFA vapour) of 1
- **S15.** COSY spectrum (900 MHz, pyridine- $d_5$  with TFA vapour) of **1**
- **S16.** TOCSY spectrum (900 MHz, pyridine-d<sub>5</sub> with TFA vapour) of **1**
- **S17.** Edited HSQC spectrum (900 MHz, pyridine-d₅ with TFA vapour) of **1**
- **S18.** HMBC spectrum (900 MHz, pyridine-d₅ with TFA vapour) of **1**
- **S19.** Band-selective HMBC spectrum (900 MHz, pyridine- $d_5$  with TFA vapour) of **1**
- S20. Marfey's analysis of 1
- S21. Protein BLAST statistics for putative scd biosynthetic gene cluster
- S22. Sequence comparison of known cyanobactin precursor peptides and ScdE
- S23. Comparison of ScdMT from Scytonema sp. UC 10036 and PatA from Prochloron didemni
- **S24.** Percent identity (similarity) shared between the DUF domains of ScdA and ScdMT with PatA and three PatA homologues.
- **S25.** Percent identity (similarity) shared between the DUF domains of ScdA and ScdMT with PatG and three PatG homologues.





S2. Phylogenetic analysis of Scytonema sp. 10036



\* Reference strains are indicated by an asterisk

#### S3. MS/MS spectrum of 1





**S4.** <sup>1</sup>H NMR spectrum (900 MHz, methanol-d<sub>4</sub>) of **1**. X: impurities







S7. COSY spectrum (900 MHz, methanol-d<sub>4</sub>) of 1. X: impurities



f1 (ppm)

**S8.** COSY spectrum (900 MHz, methanol- $d_3$ ) of **1** 



**S9.** TOCSY spectrum (900 MHz, methanol-d<sub>4</sub>) of **1**. X: impurities



**S10.** Edited HSQC spectrum (900 MHz, methanol-d<sub>4</sub>) of **1**. X: impurities



f1 (ppm)

**S11.** HMBC spectrum (900 MHz, methanol-d<sub>4</sub>) of **1**. X: impurities



**S12.** HMBC spectrum (900 MHz, methanol-d<sub>3</sub>) of **1** 





#### **S14.** DEPTQ spectrum (226 MHz, pyridine-d<sub>5</sub> with TFA vapour) of **1**





**S15.** COSY spectrum (900 MHz, pyridine-d₅ with TFA vapour) of **1** 



**S16.** TOCSY spectrum (900 MHz, pyridine-d<sub>5</sub> with TFA vapour) of **1** 





**S18.** HMBC spectrum (900 MHz, pyridine-d₅ with TFA vapour) of **1** 



**S19.** Band-selective HMBC spectrum (900 MHz, pyridine-d₅ with TFA vapour) of **1** 

#### S20. Marfey's analysis of 1

| Aming gold $(m/z)$    | Re   | Assignment |          |            |
|-----------------------|------|------------|----------|------------|
|                       | L    | D          | Measured | Assignment |
| Val (412.18)          | 4.35 | 5.76       | 4.35     | L          |
| Ser (400.14)          | 2.70 | 2.89       | 2.67     | L*         |
| Leu (426.19)          | 5.03 | 6.57       | 5.03     | L          |
| Ala (384.14)          | 3.55 | 4.36       | 3.52     | L          |
| Pro (410.16)          | 3.56 | 4.16       | 3.54     | L          |
| N-Me-Ile (440.2)      | 5.58 | 6.47       | 5.61     | L*         |
| allo-N-Me-Ile (440.2) | 5.64 | 6.52       |          |            |

\*Verified by co-injection (see below)

#### a) Extracted ion chromatograms (EIC) of the hydrolysate of 1 derivatized with L-FDLA



### b) Co-injection of the Marfey's derivatives of the hydrolysate of 1 and L-Ser standard (EIC)



b) Co-injections of the Marfey's derivatives of the hydrolysate of **1** and D-*N*-Me-IIe or D-*allo-N*-Me-IIe standards (EIC)



| S21. BLASTP <sup>*</sup> r | results for putative sco | d biosynthetic gene cluster |
|----------------------------|--------------------------|-----------------------------|
|----------------------------|--------------------------|-----------------------------|

| Protein | Length<br>(aa) | Description                                                                                                                                                                 | Organism                                | Accession<br>number | Identity/<br>coverage<br>(%) |
|---------|----------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------|---------------------|------------------------------|
| ORF-2   | 188            | hypothetical protein                                                                                                                                                        | Scytonema<br>hofmannii                  | WP_017742275.1      | 84/100                       |
| ORF-1   | 119            | hypothetical protein                                                                                                                                                        | <i>Pseudomonas</i> sp.<br>286           | WP_122523577.1      | 27/71                        |
| ScdC    | 56             | cyanobactin<br>biosynthesis<br>PatC/TenC/TruC family<br>protein                                                                                                             | Nostoc linckia                          | WP_099072933.1      | 82/87                        |
| ScdB    | 65             | cyanobactin<br>biosynthesis system<br>PatB/AcyB/McaB family<br>protein                                                                                                      | Nostoc linckia                          | WP_099068421.1      | 91/100                       |
| ScdMT   | 587            | PatA/PatG family<br>cyanobactin maturation<br>protease (Blast<br>identifies two<br>methyltransferase<br>domains at the N-<br>terminus of this<br><i>Cyanothece</i> protein) | <i>Cyanothece</i> sp.<br>PCC 7822       | WP_013335048.1      | 79/100                       |
| ScdA    | 697            | PatA/PatG family<br>cyanobactin maturation<br>protease                                                                                                                      | Nostoc linckia                          | WP_099068419.1      | 77/100                       |
| ScdE    | 70             | hypothetical protein                                                                                                                                                        | <i>Cyanothece</i> sp.<br>PCC 7822       | WP_013335046.1      | 63/95                        |
| ScdTA   | 627            | asparagine synthase<br>(glutamine-hydrolyzing)                                                                                                                              | Nostocales<br>cyanobacterium<br>HT-58-2 | WP_087538154.1      | 89/99                        |
| ORF+1   | 82             | hypothetical protein                                                                                                                                                        | Scytonema<br>hofmannii                  | WP_017742276.1      | 99/100                       |
| ORF+2   | 415            | CCA tRNA<br>nucleotidyltransferase                                                                                                                                          | Tolypothrix<br>bouteillei               | WP_038080351.1      | 90/99                        |

\* protein-protein blast against refseq protein database, accessed April 2019

| Protein | Organism                    | Accession<br>number | Leader sequence              | RSI       | Spacer       | RSII  | Core          | RSIII    | Compound        |
|---------|-----------------------------|---------------------|------------------------------|-----------|--------------|-------|---------------|----------|-----------------|
| ScdE    | Scytonema sp.               | This study          | MRPENQKENRCLQPKLSEPAMRSHAGM  | PVDLSEEEL | TAEVVNG      | GVFAS |               |          | scytodecamide   |
|         | 01010036                    |                     |                              |           |              | GVIAS | ISPALLASLV    |          |                 |
| . –     | MICrocystis                 |                     | MDKKNILPHQGKPVLR'I'I'NGKLPSH | LAELSEEAL | GGA          | GMDAS | FFPC          | SYD      | ,               |
| Age⊨    | aeruginosa                  | VVP_043998581.1     |                              |           |              | GADAS | FFPVC         | SYD      | aeruginosamide  |
|         | PCC 9432                    |                     |                              |           |              | GADAS | FFPC          | SYDDGDA  |                 |
|         | <i>Lyngbya</i> sp.          |                     | MDKKNILPHQGKPVLRTTNGKLPSH    | LAELSEEAL | GGN          | GVDAS | ACMPCYP       | SYD      |                 |
| LynE    | PCC 8106                    | WP_071941443.1      |                              |           |              | GVDAS | VCMPCYP       | SYD      | aestuaramide    |
|         |                             |                     |                              |           |              | GVDAS | VCMPCYP       | SYDDAE   |                 |
|         | Microcystis                 |                     | MDKKNLLPNQGAPVIRGISGKLPSH    | LAELSEEAL | GGN          | GLEAS | YTSSIC        | AFD      |                 |
| McaE    | aeruginosa                  | CCI23769.1          |                              |           |              | GAEAS | VLATFC        | AFD      | microcyclamide  |
|         | PCC 9809                    |                     |                              |           |              | GAEAS | VTVTIC        | AFDGDEA  |                 |
|         | Planktothrix                |                     |                              |           |              |       |               |          |                 |
| PagE6   | agardhii NIES-              | AED99432.1          | MTKKNLKPQQAAPVQREINTTSSES    |           | GTST         | GLTPH | INPYLYP       | FAGDDAE  | prenylagaramide |
|         | 596                         |                     |                              |           |              |       |               |          |                 |
| PatF1   | Prochloron                  | AAY21154 1          | MNKKNILPOOGOPVIRLTAGOLSSO    | LAELSEEAL | GDA          | GLEAS | VTACITFC      | AYD      | natellamide     |
| 1 at    | didemni                     | 77121134.1          |                              |           |              | GVEPS | ITVCISVC      | AYDGE    | patenamide      |
|         | Nostoc                      |                     | MDKKNILPQQGKPVIRITTGQLPSF    | LAELSEEAL | GDA          | GVGAS | ATGCMC        | AYD      |                 |
| TonE    | spongiaeforme               | ACA04494 1          |                              |           |              | GAGAS | ATGCMC        | AYD      |                 |
| Tene    | var. tenue str.             | ACA04404.1          |                              |           |              | GAGAS | ATACAC        | AYD      | tenuecyclamide  |
|         | Carmeli                     |                     |                              |           |              | GAGAS | ATACAC        | AYE      |                 |
| ThcF4   | Cyanothece                  | WP 012626005 1      | MDLONLLPOOSOPTORATAGOLPTE    | LAELTEEAL | NNES         | AVLAS | SCDCSLYGGCESC | SYEGDEAE | cvanothecamide  |
|         | sp. PCC 7425                |                     |                              |           |              |       | Sebebliedelbe | DILODIN  | oyunotnoounnuo  |
| TriG    | Trichodesmium<br>erythraeum | WP_044136730.1      | MGKKNIQPNSSQPVFRSLVARPA      | LEELREENL | TEGNQGHGPLAN | GPGPS | GDGLHPRLCSCS  | -YDGDDE  | trichamide      |

## Table S22. Sequence comparison of known cyanobactin precursor peptides and ScdE.

| TruE1 | uncultured<br><i>Prochloron</i> sp.<br>06037A | ACA04491.1 | MNKKNILPQLGQPVIRLTAGQLSSQ | LAELSEEAL | G   | GVDAS<br>GVDAS                   | TLPVPTLC<br>TVPTLC       | SYD<br>SYDD    | trunkamide   |
|-------|-----------------------------------------------|------------|---------------------------|-----------|-----|----------------------------------|--------------------------|----------------|--------------|
| VirE  | Oscillatoria<br>nigroviridis<br>PCC 7112      | AFZ08006.1 | MNKKNILPNPGKPVIRGISGKLPSY | LAELSEEAL | GDA | GADAS<br>SVDAS<br>SVDAS<br>SVDAS | FIC<br>FIC<br>FIC<br>FIC | <br><br>SVDGDA | viridisamide |

<sup>1</sup>This putative core peptide was not identified.

<sup>2</sup>Scytodecamide.

**S23.** Comparison of ScdMT from *Scytonema* sp. UC 10036 and PatA from *Prochloron didemni* (accession number AAY21150.1). Predicted domains are shown below the genes. The dotted line indicates the approx. 120 aa linker between the protease and DUF domains. Catalytic triad of the S8A protease is highlighted in yellow. The homolog region is connected by a grey area.



**S24.** Percent identity (similarity) shared between the DUF domains of ScdA and ScdMT with PatA and three PatA homologues.

|           | AgeA-DUF  | PatA-DUF  | TruA-DUF  | VirA-DUF  |
|-----------|-----------|-----------|-----------|-----------|
| ScdA-DUF  | 72% (92%) | 72% (92%) | 72% (92%) | 72% (91%) |
| ScdMT-DUF | 65% (89%) | 65% (89%) | 65% (89%) | 66% (88%) |

**S25.** Percent identity (similarity) shared between the DUF domains of ScdA and ScdMT with PatG and three PatG homologues.

|           | AgeG-DUF  | PatG-DUF  | TruG-DUF  | VirG-DUF  |
|-----------|-----------|-----------|-----------|-----------|
| ScdA-DUF  | 52% (80%) | 53% (80%) | 52% (80%) | 54% (81%) |
| ScdMT-DUF | 55% (82%) | 55% (81%) | 53% (81%) | 54% (81%) |