2

1

NEW THERAPEUTIC CANDIDATES FOR THE TREATMENT OF Malassezia

pachydermatis -ASSOCIATED INFECTIONS

3 Angie Sastoque, Sergio Triana, Kevin Ehemann, Lina Suarez, Silvia Restrepo, Han Wösten,

4 Hans de Cock, Miguel Fernández-Niño, Andrés González Barrios, Adriana Marcela Celis

5 Ramírez

6

SUPPLEMENTARY INFORMATION

7 Supplementary Table S1: Biomass composition used as objective function in the metabolic

8 network²⁸ with the metabolites with pathologies emphasized.

KEGG ID	Coefficient	Compound	METANETX ID	Pathology
C00001	-59,276	H2O	MNXM2	NO
C00002	-59,276	atp	MNXM3	NO
C00965	-11,348	1,3-beta-D-Glucan	MNXM6492	NO
C00096	-0.8079	GDP-mannose	MNXM82	NO
C00369	-0.5185	starch/glycogen	MNXM93732	NO
C00041	-0.4588	ala-L	MNXM32	NO
C00025	-0.3018	glu-L	MNXM89557	NO
C00049	-0.2975	asp-L	MNXM42	NO
C00123	-0.2964	leu-L	MNXM140	NO
C00037	-0.2904	gly	MNXM29	NO
C00047	-0.2862	lys-L	MNXM78	YES
C00183	-0.2646	val-L	MNXM199	YES
C00407	-0.1927	ile-L	MNXM231	YES
C00188	-0.1914	thr-L	MNXM142	YES
C00065	-0.1854	ser-L	MNXM53	YES
C00148	-0.1647	pro-L	MNXM114	YES
C00062	-0.1607	arg-L	MNXM70	YES
C00079	-0.1339	phe-L	MNXM97	YES
C00064	-0.1054	gln-L	MNXM37	YES
C00082	-0.102	tyr-L	MNXM76	NO
C00152	-0.1017	asn-L	MNXM147	NO
C00135	-0.0663	his-L	MNXM134	YES
C00105	-0.0599	ump	MNXM80	YES
C00073	-0.0507	met-L	MNXM61	YES
C00144	-0.046	amp	MNXM113	YES
C00020	-0.046	gmp	MNXM14	NO
C00055	-0.0447	cmp	MNXM31	NO

C00078	-0.0284	trp-L	MNXM94	YES
C01083	-0.0234	tre	MNXM198	YES
C00059	-0.02	SO4	MNXM58	NO
C00097	-0.0066	cys-L	MNXM55	YES
C00364	-0.0036	damp	MNXM257	YES
C00360	-0.0036	dtmp	MNXM432	NO
C00239	-0.0024	dcmp	MNXM266	NO
C00362	-0.0024	dgmp	MNXM546	NO
C05437	-0.0015	zymst	MNXM574	YES
C00255	-0.00099	rib	MNXM270	YES
C01694	-0.0007	ergst	MNXM922	NO
C00010	-0.000001	NAD	MNXM12	NO
C00575	-0.000001	СоА	MNXM243	NO
C00461	-0.000001	FAD	MNXM46301	NO
C00051	-0.000001	gthrd	MNXM57	YES
C00101	-0.000001	thf	MNXM79	NO
C00003	-0.000001	chitin	MNXM8	NO
C00016	-0.000001	camp	MNXM96415	NO
C00035	0.8079	GDP	MNXM30	NO
C00008	59,276	ADP	MNXM7	NO
C00009	59,305	Orthophosphate	MNXM9	NO
C00080	11,740,002	Н	MNXM1	NO

10	Supplementary	y Table S2.	Reactions added to the network after the manual curation.
----	---------------	-------------	---

ID	Compartment	Equation Description		Source
MNXR3255	Cytoplasm	1 MNXM1036 + 4 MNXM2 + 1 MNXM39 + 3 MNXM5 = 2 MNXM1 + 3 MNXM4 + 1 MNXM482 + 3 MNXM6	MNXM1036 + 4 MNXM2 + 1 `4,4-dimethyl-5alpha-cholesta-8,14,24-trien- MNXM39 + 3 MNXM5 = 2 3beta-ol` + 4 `H2O` + 1 `formate` + 3 `NADP(+)` NXM1 + 3 MNXM4 + 1 = 2 `H(+)` + 3 `O2` + 1 `lanosterol` + 3 `NADPH`	
MNXR3256	Cytoplasm	1 MNXM130 = 1 MNXM482	1 `(S)-2,3-epoxysqualene` = 1 `lanosterol`	rhea:14621
MNXR56252	Cytoplasm	1 MNXM1804 + 1 MNXM5 = 1 MNXM1 + 1 MNXM36392 + 1 MNXM6	1 $4alpha-methyl-5alpha-cholesta-8,24-dien-3beta-ol + 1 NADP(+) = 1 H(+) + 1 4alpha-methyl-5alpha-cholesta-8,24-dien-3-one + 1NADPH$	rhea:36379
MNXR65591	Cytoplasm	1 MNXM13 + 1 MNXM36392 + 1 MNXM6 = 1 MNXM37762 + 1 MNXM5	1 `CO2` + 1 `4alpha-methyl-5alpha-cholesta- 8,24-dien-3-one` + 1 `NADPH` = 1 `4alpha- carboxyl-4beta-methyl-5alpha-cholesta-8,24- dien-3beta-ol` + 1 `NADP(+)`	rhea:33447
MNXR65590	Cytoplasm	2 MNXM1 + 3 MNXM4 + 3 MNXM6 + 1 MNXM913 = 4 MNXM2 + 1 MNXM37762 + 3 MNXM5	2 H(+) + 3 O2 + 3 NADPH + 1 4,4-dimethyl-5alpha-cholesta-8,24-dien-3beta-ol = 4 H2O + 1 4alpha-carboxyl-4beta-methyl-5alpha-cholesta-8,24-dien-3beta-ol + 3 NADP(+)	rhea:33443
MNXR29289	Cytoplasm	1 MNXM1 + 1 MNXM10 + 1 MNXM2563 + 1 MNXM53 = 1 MNXM2 + 1 MNXM2623 + 1 MNXM29 + 1 MNXM8	1 `H(+)` + 1 `NADH` + 1 `tetrahydropteroyltri-L- glutamate` + 1 `L-serine` = 1 `H2O` + 1 `5- methyltetrahydropteroyltri-L-glutamate` + 1 `glycine` + 1 `NAD(+)`	seed:rxn12215
MNXR69079	Cytoplasm	1 MNXM1 + 1 MNXM1617 + 1 MNXM2 = 1 MNXM245	1 `H(+)` + 1 `1-pyrroline-5-carboxylate` + 1 `H2O` = 1 `L-glutamate 5-semialdehyde`	rhea:28234
MNXR31743	Cytoplasm	1 MNXM20 + 1 MNXM231 = 1 MNXM439 + 1 MNXM89557	1 `2-oxoglutarate` + 1 `L-isoleucine` = 1 `(S)-3- methyl-2-oxopentanoate` + 1 `L-glutamate`	rhea:24801
MNXR3145	Cytoplasm	1 MNXM1 + 1 MNXM426 + 1 MNXM6 = 1 MNXM5 + 1 MNXM734	1 $H(+) + 1 2$ -acetolactate + 1 $NADPH = 1$ NADP(+) + 1 2,3-dihydroxy-3- methylbutanoate	kegg:R03051
MNXR32586	Cytoplasm	1 MNXM199 + 1 MNXM20 = 1 MNXM238 + 1 MNXM89557	1 `L-valine` + 1 `2-oxoglutarate` = 1 `3-methyl-2- oxobutanoate` + 1 `L-glutamate`	rhea:24813

MNXR56338	Cytoplasm	1 MNXM2 + 1 MNXM20 + 1	1 `H2O` + 1 `2-oxoglutarate` + 1 `L-2-	biopath:RXN01
		MNXM268 = 1 MNXM2 + 1	aminoadipate` = 1 `H2O` + 1 `2-oxoadipate` + 1	183
		MNXM263 + 1 MNXM89557	`L-glutamate`	
MNXR13125	Cytoplasm	1 MNXM2378 + 1 MNXM77 =	1 `glyceraldehyde 3-phosphate` + 1 `glycerone	rhea:14729
		1 MNXM417	phosphate` = 1 `D-fructose 1,6-bisphosphate`	
MNXR81572	Mithochondri	1 MNXM11 + 1 MNXM33 = 1	1 $$ diphosphate $$ + 1 $$ FAD $$ = 1 $$ H(+) $$ + 1 $$ FMN $$	rhea:17237
	а	MNXM1 + 1 MNXM119 + 1	+ 1 `ATP`	
		MNXM3		
MNXR10784	Cytoplasm	1 MNXM26 + 1 MNXM320 =	1 `acetate` + 1 `phenol` = 1 `H2O` + 1	rhea:17309
		1 MNXM2 + 1 MNXM497	`phenylacetate`	
MNXR84842	Cytoplasm	1 MNXM1 + 1 MNXM2415 +	1 `H(+)` + 1 `phenyl sulfate` + 1 `adenosine	kegg:R01242
		1 MNXM45 = 1 MNXM320 +	3',5'-bisphosphate` = 1 `phenol` + 1 `3'-	
		1 MNXM49	phosphoadenylyl sulfate	
MNXR3900	Cytoplasm	1 MNXM1 + 1 MNXM11 + 1	1 H(+) + 1 diphosphate + 1 dAMP = 1	rhea:28334
		MNXM432 = 1 MNXM2 + 1	`H2O` + 1 `dATP`	
		MNXM286		
MNXR3902	Cytoplasm	1 MNXM1 + 1 MNXM11 + 1	1 H(+) + 1 diphosphate + 1 dTMP = 1 H2O	rhea:28534
		MNXM257 = 1 MNXM2 + 1	+ 1 `dTTP`	
		MNXM394		
MNXR3898	Cytoplasm	1 MNXM1 + 1 MNXM11 + 1	1 H(+) + 1 diphosphate + 1 dCMP = 1	rhea:22636
		MNXM266 = 1 MNXM2 + 1	`H2O` + 1 `dCTP`	
		MNXM360		
MNXR69877	Cytoplasm	1 MNXM1 + 1 MNXM6 + 1	1 `H(+)` + 1 `NADPH` + 1 `L-glutamate` + 1 `(S)-	rhea:10020
		MNXM89557 + 1	2-amino-6-oxohexanoate` = 1 `H2O` + 1 `L-	
		MNXM89905 = 1 MNXM2 + 1	saccharopine` + 1 `NADP(+)`	
		MNXM384 + 1 MNXM5		
MNXR7299	Cytoplasm	1 MNXM114 + 1 MNXM5 = 2	1 `L-proline` + 1 `NADP(+)` = 2 `H(+)` + 1 `1-	rhea:14109
		MNXM1 + 1 MNXM1617 + 1	pyrroline-5-carboxylate` + 1 `NADPH`	
		MNXM6		
MNXR29715	Cytoplasm	1 MNXM10287 = 1	1 1-(5-phospho-D-ribosyl)-5-[(5-phospho-D-	seed:rxn12992
		MNXM1397	ribosylamino)methylideneamino]imidazole-4-	
			carboxamide(4-) = 1 5-[(5-phospho-1-deoxy-D-	
			ribulos-1-ylamino)methylideneamino]-1-(5-	
			phospho-D-ribosyl)imidazole-4-carboxamide	

12 Supplementary Table S3. Reactions which upper and lower bounds were modified after the

13 manual curation.

ID	Compartment	Old bounds	New bounds
MNXR74425	Mitochondria	-1000;1000	0;1000
MNXR74425	Cytoplasm	-1000;1000	0;1000
MNXR74186	Cytoplasm	-1000;1000	0;1000
MNXR70061	Cytoplasm	-1000;1000	0;1000
MNXR69932	Cytoplasm	-1000;1000	0;1000
MNXR68605	Cytoplasm	-1000;1000	0;1000
MNXR68447	Cytoplasm	-1000;1000	0;1000
MNXR66179	Cytoplasm	-1000;1000	0;1000
MNXR53521	Cytoplasm	-1000;1000	0;1000
MNXR4195	Cytoplasm	-1000;1000	0;1000
MNXR39679	Mitochondria	-1000;1000	0;1000
MNXR39679	Cytoplasm	-1000;1000	0;1000
MNXR35885	Peroxisome	-1000;1000	0;1000
MNXR35885	Mitochondria	-1000;1000	0;1000
MNXR35885	Cytoplasm	-1000;1000	0;1000
MNXR2911	Cytoplasm	-1000;1000	0;1000
MNXR13313	Cytoplasm	-1000;1000	0;1000
MNXR13031	Cytoplasm	-1000;1000	0;1000

14

15	Supplementary	y Table S4.	Primers sequences	for cassettes des	signed in this study	

NAME	SEQUENCE	LENGTH (bp)
HCS-F	taaggcctctgtcgaATGGCGGGTGTAGGCG	31
HCS_R	cagaattcgcaagctTTACGCATCCCACATAGCCCG	36
HSD_F	taaggcctctgtcgaATGGAGTCTGTGGTACAGC	34
HSD_R	cagaattcgcaagctTTAGCCACGGCGCTCC	31

17

18 19

Supplementary Figure S1. Expression cassettes and cropped pictures of SDS-PAGE of MpHSD, 20 MpHCS and MpSDH elutions. A. Topology of expression cassette and plasmid used for the 21 22 heterologous expression of MpHSD as detected after HIS-tag purification and SDS PAGEas a 23 band of 81 kDa (lane E1 black arrow). B. Topology of expression cassette and plasmid used for the heterologous expression of MpHCS as detected after HIS-tag purification and SDS PAGE as 24 25 a band of 51 kDa (lane E1 black arrow). C. Topology of expression cassette and plasmid used for the heterologous expression of MpSDH as detected after HIS-tag purification and SDS PAGEas 26 27 a band of 41 kDa (lane E1 black arrow). The expression cassettes with mphsd and mphcs CDS were flanked by the oligonucleotide sites, while *mpsdh* CDS was flanked by restriction enzymes. 28 Cropped pictures from three different SDS-PAGE gels are shown. Full-length (uncropped) gels 29 30 are presented in Supplementary Fig. S2.

- 36 molecular weight; S, sample; W, washed; E, elution. Full-length (uncropped) gels are presented.
- Pictures were recorded using a Gel Doc[™] EZ System (Bio-Rad Laboratories, USA).

Supplementary Figure S3. Evaluation of the inhibitory capacity of amino acids upon candidates as therapeutic targets. **A.** Enzymatic activity of HSD with ethanol as substrate and NADH as reaction indicator. **B.** Enzymatic activity of HSD with ethanol as substrate, NADH as reaction indicator and L-threonine 1 mM as an inhibitor. **C.** Enzymatic activity of HCS with 2-OG as substrate and CoA as reaction indicator. **D.** Enzymatic activity of HCS with 2-OG as substrate, CoA as reaction indicator and L-lysine 1 mM as inhibitor. **E.** Enzymatic activity of SDH with 2-OG as substrate and NAD as reaction indicator. **F.** Enzymatic activity of SDH with 2-OG as substrate, NAD as reaction indicator. **F.** Enzymatic activity of SDH with 2-OG as substrate, NAD as reaction indicator and L-lysine 75 mM as inhibitor. Representative results of two biological replicates.

Supplementary Figure S4. Analysis of enzymatic activity assays by *Lineweaver-Burk* diagrams. **A., B.** Initial velocity pattern obtained for ethanol in different concentrations with NAD and MpHSD in a fixed concentration, compared to the inhibition of the substrate in the presence of 1 mM L-threonine. **C.,D.** Initial velocity pattern obtained for 2-OG in different concentrations with AcetylCoA and MpHCS at a fixed concentration, compared to substrate inhibition in the presence of 1 mM L-lysine. **E.,F.** Initial velocity pattern for 2-OG in different concentrations with NADH and MpSDH at a fixed concentration, compared to substrate inhibition in the presence of 75 mM L-lysine. The data shown are values for two biological replicates of each enzyme.

Supplementary Figure S5. MTT cell viability assay evaluating the cytotoxic activity of Llysine on HEKa cells. The viability percentage with standard deviations is shown for each concentration. Experiments were performed 3 times.