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for Multi-armed Clinical Trials with Normally Distributed Outcomes”

by S. Faye Williamson and Sof́ıa S. Villar

Web Appendix A: The Multi-Armed Bandit Problem and the Forward-Looking

Gittins Index Rule for Normally Distributed Endpoints

In this Web Appendix, we provide a more detailed description of the multi-armed bandit

problem (MABP) for normally distributed endpoints, its solution by the Gittins index (GI)

and an additional example of the Forward-Looking Gittins Index (FLGI) probabilities for

normally distributed endpoints with a known variance.

The MABP in this case involves a multi-armed clinical trial that will test the effectiveness

of K experimental treatments against a control treatment on a sample of T patients, with K

and T fixed and known in advance. Patients are labeled by t (t = 1, . . . , T ) and treatments by

k (k = 0, . . . , K), where k = 0 denotes the control. The response of patient t allocated to arm

k is a random variable denoted by Yk,t and assumed to follow a normal distribution Yk,t ∼

N(µk, σ
2
k). Without loss of generality, we also assume that a larger response is preferable

and that σ2
k is known.

In order to derive the FLGI rule, we first need to obtain the GI for a normally distributed

variable and the MABP associated with this trial design problem. For this purpose, we

assume the following. (i) Each unknown parameter µk has a prior distribution πk,0 at the

start of the trial (before any observation has been made) which we take to be the normal prior

N(µ0
k,

σ2
k

n0
k
). Note that the form of the prior when both µk and σ2

k are unknown is provided

below. (ii) Patients enter the trial one-by-one and responses are observed immediately after

treatment. We will remove these assumptions when we formulate the FLGI rule. (iii) Only one

treatment can be allocated per patient and we let ark,t be a binary indicator variable denoting

whether patient t+1 is assigned to treatment k for patient allocation rule r or not, given the
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information available on all treatments. (iv) Given the conjugacy of the prior and normally

distributed responses, prior distributions are converted into normal posterior distributions for

each µk via Bayes’ Theorem. After treating patient t, if nk,t responses from treatment k have

been observed (each denoted by yk,i with i = (1, . . . , nk,t) and nk,t 6 t), then the posterior

distribution of µk at time t is πk,t(µk|yk,1, . . . , yk,nk,t
) ∼ N

(
nk,tyk,t+n

0
kµ

0
k

nk,t+n
0
k

,
σ2
k

nk,t+n
0
k

)
by Bayes’

Theorem, where yk,t = 1
nk,t

∑nk,t

i=1 yk,i is the sample mean and n0
k is the implicit sample size

from the prior information (Spiegelhalter et al., 2004, p. 62). The posterior distribution, πk,t,

can be identified by the parameters ỹk,t (posterior mean) and n0
k+nk,t, which we subsequently

refer to as the state (of the bandit) (Gittins et al., 2011). Note that when the variance is

unknown, an additional parameter s̃2k,t, denoting the posterior variance of patient t on arm

k, is required to identify πk,t and in this case, we need to specify a joint prior distribution for

µk and σ2
k at the start of the trial. We take this to be the normal-inverse-gamma distribution

(where the variance follows an inverse-gamma distribution and the mean, conditional on the

variance, has a normal distribution). Consequently, the marginal prior distribution for µk

has a Student’s t-distribution. When we observe an outcome yk,t+1 from patient t+1 on arm

k, the state (ỹk,t, s̃k,t, n
0
k + nk,t) is updated as follows(

(n0
k + nk,t)ỹk,t + yk,t+1

n0
k + nk,t + 1

,

(
s̃2k,t(n

0
k + nk,t − 1)

n0
k + nk,t

+
(yk,t+1 − ỹk,t)2

n0
k + nk,t + 1

) 1
2

, n0
k + nk,t + 1

)
. (1)

The MABP is to find a patient allocation rule r that attains the maximum expected

patients’ response given the initial information about the treatments before the start of the

trial. Mathematically, this is expressed as

max
r∈R

Er

[(
T−1∑
t=0

K∑
k=0

dtE[Yk,t|xk,t]ark,t

)∣∣∣x̃0

]
, (2)

where xk,t = (yk,t, nk,t, µ
0
k, n

0
k), x̃0 = {xk,0}Kk=0 is the initial joint state with all the prior

parameters, R is the set of admissible allocation rules, Er[·] denotes expectation under

allocation rule r, and 0 6 d < 1 is a discount factor. In MABPs, rewards are geometrically

discounted so that an infinite horizon can be considered, i.e. patient t’s response yields a
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reward of dtYk,t for some k. In practice, a solution that depends on d, such as the GI, can

be adapted to solve an undiscounted problem with a specific finite horizon, as explained in

Edwards et al. (2017, Definition 6.6).

The exact solution to (2), obtained via dynamic programming, uses a backward induction

algorithm which becomes computationally infeasible very quickly as T and K grow. The

GI solution, first introduced by Gittins and Jones (1979), eliminates this computational

infeasibility by ensuring that the optimal solution to (2) can be obtained by simply allocating

every patient to the arm with the highest GI. Similarly to equation (1) in the main paper

for the unknown variance case, the GIs, G(ỹk,t, σk, nk,t), for the known variance case in (2)

can be expressed as

G(ỹk,t, σk, nk,t) = ỹk,t + σkG(0, 1, n0
k + nk,t, d), (3)

where G(0, 1, n0
k+nk,t, d) denotes the GI value of a standardized bandit problem with posterior

mean 0, standard deviation 1, implicit sample size n0
k, nk,t observations and discount factor

d (Gittins et al., 2011, Theorem 7.13). These were first computed in Jones (1975). Table 1

shows indices corresponding to the unknown variance case, as used in the main paper, based

on those presented in Gittins et al. (2011, Table 8.3).

We implement the solution in (3) at a very low computational cost by calculating the

values of G(0, 1, n0
k + nk,t, d) in advance and interpolating from the tables printed in Gittins

et al. (2011, pp. 261-262). Details on how to compute these indices using value iteration

can be found in Gittins et al. (2011, Chapters 7 and 8). Using (3) and the GI rule, we can

compute the FLGI probabilities for normally distributed endpoints (with known variance)

using equation (3) in Villar et al. (2015). We now assume that instead of enrolling patients

one-by-one, patients are enrolled in groups of size b over J stages, so that J × b = T . Our

response-adaptive rule will sequentially randomize the next b patients among the K + 1
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treatments at stage j (j = 1, . . . , J) given the data up to and including block j−1 according

to what the GI rule would do.

Example

We now illustrate the rule’s implementation using an example for the case of known variances.

We calculate the FLGI probabilities using the simplest possible case of a two-arm trial

testing a control treatment (k = 0) against an experimental treatment (k = 1) with a block

of size two (b = 2) and a known, common variance of σ2
k = σ2 = 1. We assume a prior

of µk ∼ N(0, 1) so that the initial state, (ỹk,0, n
0
k), is (0, 1) for both k = {0, 1}. Suppose

further that both patients are allocated to the control treatment in the first block of the

trial resulting in responses y0,1 = 3.1 and y0,2 = −0.4. The updated state after the first

observation becomes (ỹ0,1, n
0
0 + n0,1) = (1.55, 2) and after the second observation becomes

(ỹ0,2, n
0
0 + n0,2) = (0−0.4+3.1

3
, 3) = (0.9, 3). Consequently, for the second block, the prior

parameters for each treatment respectively are (0.9, 3) and (0, 1), i.e. µ0 ∼ N(0.9, 1
3
) and

µ1 ∼ N(0, 1).

From equation (3), setting d = 0.995 and using Table 8.1 in Gittins et al. (2011), the GI

for the control treatment is G0(0.9, 1, 2) = 0.9 + 0.20137

3(1−0.995)
1
2

= 1.8493. For the experimental

treatment, we only have the information available from the initial state (since no observations

have yet been observed on this arm). Thus, the corresponding GI for this arm is G1(0, 1, 0) =

0 + 0.12852

(1−0.995)
1
2

= 1.8175.

Given that the control treatment has the maximum GI, the first patient of the second

block (i.e. patient 3) is allocated to the control treatment with probability (w.p.) 1 since

there is only one optimal action possible at this point. If we denote the random outcome of

this patient by Y0,3, then the updated state for the control treatment is (Ỹ0,3, n
0
0 + n0,3) =(

0−0.4+3.1+Y0,3
4

, 4
)

. Thus, the corresponding index for the control treatment can be expressed
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as a function of the random outcome from patient three as follows: G0(Ỹ0,3, 1, 3) = Y0,3+2.7

4
+

G0(0, 1, 4, 0.995) = Y0,3
4

+ 1.4669.

For the experimental treatment, we have no new information and so the corresponding

index remains unchanged at 1.8175. According to the GI rule, it will be optimal to allocate

the control treatment to the second patient of the second block if and only if G0(Ỹ0,3, 1, 3) >

G0(0, 1, 0) = 1.8175, that is, if Y0,3 > 1.4024. Since Y0,3 ∼ N(0.9, 1), we expect this to

happen w.p. Pr(Y0,3 > 1.4024) = 0.3077. If Y0,3 < 1.4024, which happens w.p. 0.6923, then

G0(Ỹ0,3, 1, 3) < G1(0, 1, 0) and the second patient of the second block is optimally allocated

to the experimental treatment. Notice that if Y0,3 = 1.4024, then there is a tie in the index

values and it is equally optimal to allocate any of the two treatments. Although theoretically

we expect this to happen w.p. 0 (since we are dealing with a continuous distribution), in

practice this is possible and if it were to happen, we would simply randomize w.p. 0.5.

Hence, the probability of a patient receiving either the control or experimental treatment

when using the normal FLGI procedure in this block is 1+1×Pr(Y0,3>1.4024)

2
= 0.6538 and

0+1×Pr(Y0,3<1.4024)

2
= 0.3462, respectively. Figure 1 illustrates how the FLGI probabilities for

block two, given the data in block one, are computed via a probability tree.

[Table 1 about here.]

[Figure 1 about here.]

Web Appendix B: Effect of Discount Factor on FLGI Performance

A practical consideration for our design is the choice of discount factor, d. We recommend

choosing d to be close to that obtained when applying the formula suggested by Wang

(1991), namely, d = 1 − 1/T , where T is the trial size. Here, we discuss the implications of

not following this recommendation on the performance of the FLGI (with known variance)

by presenting results corresponding to d = 0, 0.5 and 0.99 in Table 2. Note that the results

for d = 0.995 (the discount factor used throughout the main paper) are shown in (i) of
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Table 3. When d = 0, the design is analogous to a fully myopic policy which treats every

patient as if they are the last one in the trial. In contrast, the closer d is to 1, the greater

the influence that potential responses from future participants have on allocation decisions

made earlier in the trial, that is, the more “forward looking” the design will be. Thus, we

expect the patient benefit measures to increase with d (up to a limit determined by the actual

population size), as illustrated in Table 2. In particular, Table 2 shows that as d increases

from 0 to 0.995 for b = 1, E(p∗) increases by 0.164, which is equivalent to 11 more patients

receiving the superior arm, and the relative ETO increases by 17.77%. As a result of the

greater imbalance between the treatment arms for larger d, the bias of the treatment effect

estimator (under H1) is also increased.

Interestingly, for smaller d, we observe that the patient benefit measures increase (up to

around b = 9) followed by a decrease. This is due to an interaction between the discount

factor and block size, whereby the increase in block size counteracts the myopic effect of

a small d by forcing learning and consequently improving patient benefit. However, as the

block size continues to grow, the effect of the design becoming more balanced supersedes

the effect of the discount factor, causing the patient benefit to now reduce. Therefore, when

choosing d, it is important to consider which block size will be used.

In terms of the power of the design, it increases somewhat with the size of d as illustrated

by Table 2 which shows that the power exhibited for the FLGI when d = 0 and b = 1 is

0.213 compared to 0.229 when d = 0.995. This makes sense because increasing d from a value

that is much smaller than its recommendation for a fixed T reduces the myopic nature of

the rule, meaning it will explore more of the arms (thus increasing power) and make better

choices (also increasing patient benefit).

The discount factor also affects the variability of the expected allocations, which decreases

considerably with the value of d under both H0 and H1. For example, Table 2 shows that
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under H1, the standard deviation (s.d.) of E(p∗) when d = 0 and b = 1 is 0.43, which is 2.7

times larger than the corresponding s.d. when d = 0.995. Given that allocations under index

based designs (and response-adaptive designs more generally) can already be very variable,

it does not make sense to choose a discount factor which exacerbates this even further.

A further practical drawback of using a discount factor that is too small is that it will

increase the likelihood of the design allocating all patients to only one of the treatments

(due to an under exploration). The number of times this occurred out of the 50,000 trial

realizations is reported in the “Discarded” column of Table 2. For example, when d = 0 and

b = 1, more than half of the 50,000 trial realizations under H0 (namely 25,621) resulted

in this extreme allocation. Therefore, for the purpose of calculating the test statistic (and

hence power) and bias values in these cases, we randomly sampled an observation from the

distribution corresponding to the missing arm instead. In contrast, when d = 0.995, this

problem did not occur in any of the 50,000 trial realizations (and similarly when d = 0.99).

Note that all of the aforementioned differences are most pronounced for smaller block sizes

(which is when the design is most adaptive) since as the block size grows and the FLGI

design becomes more balanced, the respective performance measures eventually converge,

irrespective of the value of d.

Overall, provided that d is near to the recommendation suggested by Wang (1991), the

performance of the FLGI will be similar — as illustrated by the results for d = 0.99 (Table

2) and d = 0.995 (Table 3). However, choosing d to be too small in relation to T can alter the

behaviour of the design significantly. Moreover, if we were to use this design in a rare disease

context, where we envisage it would be best suited, d should be chosen to be large enough so

that we account for all of the patient outcomes in the adaptations and hence ensure patient

benefit for all.

[Table 2 about here.]
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Web Appendix C: Effect of Prior Information on FLGI Performance

In this Web Appendix, we investigate how sensitive the FLGI is to the choice of prior on

the location parameter µk when the variance is assumed known. Ultimately, the choice of

prior on µk determines which GI we start the allocation rule with. The minimum amount

of information we can assume, a priori, in order to initiate the GI policy is n0
k = 1 (known

variance case) and n0
k = 2 (unknown variance case) since the GI is undefined for n0

k = 0.

This gives rise to a normal prior with large variance (see Figure 2) which can be used as a

so-called ‘non-informative’ prior (Spiegelhalter et al., 2004, p. 62). All results in the main

paper correspond to this ‘non-informative’ prior so that we can report the effects on patient

response and other relevant statistical properties of the FLGI alone, without the influence

of additional prior information. However, we now turn our attention to using different priors

in conjunction with the FLGI. We use the results for the ‘non-informative’ prior (in (i) of

Table 3) as a reference, and therefore refer to it as a ‘reference’ prior from hereon.

Taking the two-armed example of Section 3.2 in the main paper (but now assuming known

variance), we follow the suggestion provided in Spiegelhalter et al. (2004, Chapter 5) and

consider two archetypal priors on µ1, namely, the sceptical and enthusiastic prior (with the

reference prior on µ0).

The sceptical prior attempts to formalize the belief that large treatment differences are

unlikely. In particular, the sceptical normal prior on µ1 is centered around the (null hypoth-

esis) value of 0.155 with only a small probability, say 5%, that the true value exceeds the

alternative hypothesis value of 0.529, i.e. Pr(µ1 > 0.529) = 0.05. This corresponds to a prior

distribution of µ1 ∼ N
(

0.155, 0.64
2

n0
1

)
, which has the following property

− 0.64× z0.05√
n0
1

= 0.529− 0.155, (4)

where n0
1 is the implicit (prior) sample size and z0.05 = −1.645 is the fifth percentile of

the standard normal distribution. Rearranging equation (4) gives n0
1 ≈ 8. Intuitively, this is
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equivalent to having eight patients’ worth of information (with null mean) available at the

start of the trial, that is, approximately 11% of the trial sample size expressing scepticism

and showing no treatment difference. The performance measures of our design when starting

with this prior on the experimental arm are shown in (ii) of Table 3 for all block sizes, b.

The enthusiastic prior, on the other hand, is centred on the alternative hypothesis value

of 0.529 (with the same variance as the sceptical prior) and specifies that there is little

evidence of no treatment effect a priori, i.e. there is a 5% chance of observing a value less

than the null mean of 0.155. This corresponds to the following normal prior distribution

µ1 ∼ N
(

0.529, 0.64
2

8

)
, which is equivalent to having already observed eight ‘enthusiastic’

responses before the start of the trial. The corresponding results when starting with this

prior on the experimental arm are displayed in (iii) of Table 3.

[Table 3 about here.]

Conclusions

The main conclusions to draw from these experiments are that when using the FLGI in the

known variance case with a sceptical prior on the experimental arm, the power of the design

increases whilst the patient benefit measures decrease relative to the corresponding results

when starting with the reference prior. This is what we would expect to observe because the

sceptical prior implies that there is a 0.95 probability that µ1 lies below 0.529 (as depicted

in Figure 2) which is incorrect under H1, and as such it provides the FLGI algorithm with a

‘false start’. Thus, it takes longer for the design to correctly identify the best arm, resulting

in fewer patients allocated to the superior arm but a larger power due to less imbalance.

In contrast, when starting with an enthusiastic prior on the experimental arm, the reverse

happens (as shown in (iii) of Table 3); the power decreases whilst the patient benefit measures

increase (relative to starting with the reference prior). Again, this is not surprising because

the enthusiastic prior specifies that the most likely value of µ1 is 0.529 (as illustrated in Figure

2). Under H1, this is correct and so it gives the algorithm a ‘head start’ in the right direction
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meaning it identifies the superior arm quicker. Thus, less allocations are made to the control

arm resulting in more imbalance and hence reduced power. Under H0, however, this prior

specification on the experimental arm is incorrect and so the FLGI incorrectly allocates fewer

patients to the control arm, as observed in (iii) of Table 3 (where the control arm is taken to

be the ‘superior’ arm under H0). This explains why only ≈ 33% of patients in the trial are

allocated to the control arm for all block sizes under H0. Fewer observations on the control

arm leads to an underestimation of µ̂0 and consequently the treatment effect estimator under

H0 exhibits bias. It is also worth noting that the variability in the allocations decreases when

using the enthusiastic prior (relative to the reference prior) since, under H1, the observed

data and prior information match which reduces the uncertainty of the allocations.

Overall, our recommendation is to be very cautious when incorporating prior information

into bandit-based designs such as the FLGI because it influences the speed at which the

design updates and favors an arm (depending on how informative the prior is). Since these

designs are so dynamic anyway, there is not as much to gain from using prior information

as there may be with less responsive designs. If the prior specification is correct, then the

incoming data will further enhance the effect of the prior and the design will favor the

superior arm sooner, whereas if the prior is misspecified, the bandit may spend more time in

the exploration phase or degenerate to allocating all patients to one arm. However, it is likely

that the incoming data during the trial will eventually dilute the effect of the misspecified

prior. How long the design takes to correct for the misspecification depends on the value of

n0
k; the greater its value, the more influence the prior will have. Therefore, if one wishes to

use prior information in conjunction with the FLGI, we suggest setting a small value for n0
k

(as we have in the main paper).

[Figure 2 about here.]

[Table 4 about here.]
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aGI0,3 = 1
G0(0.9,1,2) = 1.8493
G1(0, 1, 0) = 1.8175

aGI1,4 = 1 G0(Ỹ0,3, 1, 3) <
1.8175 G1(0,1,0) = 1.8175

Y1,3 < 1.4024
w.p. 0.6923

aGI0,4 = 1

G0(Ỹ0,3,1,3) > 1.8175
G1(0, 1, 0) = 1.8175Y0,3

> 1.4024

w.p. 0.3077

Figure 1. The FLGI rule and a probability tree of all trial histories using the GI rule when
K+ 1 = 2, b = 2, d = 0.995 and the state at the start of the second block, (ỹk,3, n

0
k +nk,3), is

(0.9, 3) for arm k = 0 and (0, 1) for arm k = 1. Bold text indicates the allocated treatment
under the GI rule {aGIk,t}. (Note that for simplicity of the illustration we have omitted the
branch corresponding to the case when Y0,3 = 1.4024 since Pr(Y0,3 = 1.4024) = 0).
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Figure 2. Sceptical and enthusiastic prior densities with the reference prior depicted in
black. The sceptics’ probability that the true mean response is greater than 0.529 (the
alternative value) is 0.05, shown by the purple shaded region. The enthusiasts’ probability
that the true mean response is less than 0.155 (the null value) is also 0.05, shown by the green
shaded region. NB By ‘reference’ prior, we refer to the prior containing the least amount
of information in order to initiate the Gittins index policy (i.e. a normal prior with large
variance).
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d 0.5 0.6 0.7 0.8 0.9 0.95 0.99 0.995
n0
k + nk,t

2 0.23984 1.04741 1.55545 2.81630 5.16921 10.14092 39.33433 65.58475
3 0.15620 0.21476 0.29804 0.43425 0.73571 1.16561 3.10200 4.60490
4 0.09486 0.13001 0.17914 0.25664 0.41606 0.61934 1.34279 1.81263
5 0.07058 0.09673 0.13323 0.19047 0.30608 0.44776 0.90524 1.17299
6 0.05679 0.07791 0.10742 0.15369 0.24666 0.35900 0.70542 0.89632
7 0.04779 0.06564 0.09061 0.12983 0.20866 0.30352 0.59010 0.74336
8 0.04135 0.05685 0.07858 0.11278 0.18165 0.26451 0.51233 0.64259
9 0.03649 0.05021 0.06948 0.09988 0.16128 0.23525 0.45557 0.57012
10 0.03268 0.04500 0.06234 0.08974 0.14527 0.21234 0.41187 0.51498
20 0.01611 0.02228 0.03106 0.04515 0.07444 0.11090 0.22299 0.28120
30 0.01072 0.01485 0.02076 0.03032 0.05049 0.07615 0.15786 0.20137
40 0.00804 0.01115 0.01560 0.02285 0.03829 0.05821 0.12347 0.15903
50 0.00643 0.00892 0.01250 0.01834 0.03086 0.04719 0.10189 0.13229
60 0.00536 0.00744 0.01043 0.01532 0.02586 0.03971 0.08697 0.11368
70 0.00459 0.00638 0.00895 0.01316 0.02225 0.03429 0.07599 0.09991
80 0.00402 0.00558 0.00784 0.01153 0.01953 0.03018 0.06755 0.08927
90 0.00357 0.00496 0.00697 0.01026 0.01741 0.02696 0.06084 0.08077
100 0.00321 0.00447 0.00627 0.00924 0.01570 0.02436 0.05538 0.07381
200 0.00161 0.00224 0.00314 0.00464 0.00793 0.01242 0.02944 0.04024
300 0.00107 0.00149 0.00210 0.00310 0.00531 0.00834 0.02015 0.02790
400 0.00080 0.00112 0.00157 0.00233 0.00399 0.00628 0.01534 0.02142
500 0.00064 0.00090 0.00126 0.00186 0.00319 0.00504 0.01239 0.01740
600 0.00054 0.00075 0.00105 0.00155 0.00266 0.00421 0.01040 0.01466
700 0.00046 0.00064 0.00090 0.00133 0.00228 0.00361 0.00896 0.01268
800 0.00040 0.00056 0.00079 0.00116 0.00200 0.00316 0.00787 0.01117
900 0.00036 0.00050 0.00070 0.00104 0.00178 0.00281 0.00702 0.00999
1000 0.00032 0.00045 0.00063 0.00093 0.00160 0.00253 0.00634 0.00903

Table 1
Gittins indices for a normal reward process with unknown variance where d and n0

k + nk,t denote the discount factor
and total amount of information, respectively. These values are based on those reported in Table 8.3 of Gittins et al.

(2011).
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µ0 = µ1 = 0.155 µ0 = 0.155, µ1 = 0.529

b z1−α α E(p∗) (s.d.) RelETO% (s.d.) Bias (s.d.) Discarded 1− β E(p∗) (s.d.) RelETO% (s.d.) Bias (s.d.) Discarded

d = 0 (Myopic)

1 1.827 0.050 0.498 (0.48) -0.14 (5.45) 0.00 (0.69) 14707 0.213 0.718 (0.43) 23.92 (12.49) 0.08 (0.68) 25621
2 1.829 0.049 0.497 (0.46) 0.02 (5.42) 0.00 (0.60) 7970 0.222 0.761 (0.39) 28.52 (11.53) 0.06 (0.60) 13789
4 1.799 0.050 0.501 (0.43) 0.12 (5.49) -0.00 (0.50) 2211 0.266 0.810 (0.32) 33.87 (10.13) 0.05 (0.48) 3889
6 1.776 0.050 0.499 (0.41) -0.24 (5.44) -0.00 (0.42) 598 0.312 0.832 (0.27) 36.44 (9.03) 0.05 (0.39) 1093
9 1.752 0.050 0.501 (0.38) 0.05 (5.41) -0.00 (0.33) 94 0.383 0.840 (0.22) 37.12 (8.06) 0.04 (0.31) 174
12 1.720 0.052 0.502 (0.35) 0.46 (5.43) -0.00 (0.29) 15 0.448 0.837 (0.19) 36.87 (7.44) 0.03 (0.26) 28
18 1.708 0.050 0.499 (0.31) -0.07 (5.45) 0.00 (0.24) 2 0.533 0.814 (0.15) 34.39 (6.80) 0.02 (0.22) 3
36 1.676 0.050 0.499 (0.21) 0.11 (5.40) 0.00 (0.18) 0 0.694 0.720 (0.10) 24.23 (6.05) 0.00 (0.17) 0

d = 0.5

1 1.819 0.050 0.497 (0.46) 0.02 (5.42) 0.00 (0.66) 4894 0.228 0.772 (0.39) 29.64 (11.38) 0.07 (0.66) 18359
2 1.818 0.049 0.501 (0.44) 0.03 (5.45) -0.00 (0.58) 2637 0.243 0.804 (0.35) 33.38 (10.54) 0.07 (0.58) 9769
4 1.770 0.054 0.497 (0.42) -0.15 (5.47) 0.00 (0.49) 669 0.287 0.832 (0.29) 36.20 (9.45) 0.07 (0.46) 2696
6 1.765 0.052 0.499 (0.40) -0.25 (5.45) -0.00 (0.41) 192 0.329 0.844 (0.25) 37.72 (8.60) 0.06 (0.38) 763
9 1.757 0.049 0.501 (0.37) 0.14 (5.45) -0.00 (0.33) 24 0.391 0.844 (0.21) 37.41 (7.80) 0.05 (0.30) 101
12 1.749 0.048 0.500 (0.34) -0.05 (5.39) -0.00 (0.29) 3 0.441 0.838 (0.18) 37.13 (7.26) 0.04 (0.26) 25
18 1.707 0.050 0.503 (0.30) -0.17 (5.43) -0.00 (0.24) 0 0.543 0.816 (0.15) 34.62 (6.70) 0.03 (0.22) 0
36 1.677 0.049 0.501 (0.21) -0.16 (5.43) -0.00 (0.18) 0 0.693 0.720 (0.10) 24.04 (6.09) 0.01 (0.17) 0

d = 0.99

1 1.981 0.050 0.498 (0.35) 0.08 (5.43) 0.00 (0.53) 0 0.209 0.882 (0.19) 41.94 (7.38) 0.22 (0.47) 0
2 1.944 0.051 0.502 (0.34) 0.08 (5.44) -0.00 (0.47) 0 0.255 0.879 (0.17) 41.44 (7.20) 0.19 (0.42) 0
4 1.907 0.051 0.501 (0.32) -0.31 (5.45) -0.00 (0.41) 0 0.313 0.871 (0.16) 40.62 (6.91) 0.14 (0.36) 0
6 1.885 0.049 0.500 (0.31) -0.20 (5.41) -0.00 (0.36) 0 0.349 0.865 (0.15) 39.95 (6.73) 0.11 (0.31) 0
9 1.850 0.049 0.501 (0.29) 0.36 (5.44) -0.00 (0.31) 0 0.409 0.851 (0.14) 38.38 (6.64) 0.08 (0.26) 0
12 1.816 0.051 0.499 (0.28) 0.16 (5.42) 0.00 (0.27) 0 0.467 0.839 (0.13) 37.11 (6.44) 0.06 (0.23) 0
18 1.758 0.050 0.499 (0.25) -0.10 (5.44) 0.00 (0.23) 0 0.556 0.811 (0.12) 33.89 (6.31) 0.04 (0.20) 0
36 1.684 0.051 0.499 (0.19) -0.03 (5.44) 0.00 (0.18) 0 0.710 0.716 (0.10) 23.45 (6.02) 0.01 (0.17) 0

Table 2
The effect of altering the discount factor, d, on the performance of the FLGI for a two-armed trial when σ2

k = 0.642

is assumed known and T = 72, averaged over 50,000 trial replications. NB The “Discarded” column reports the
number of trials that resulted in an extreme allocation with all patients being allocated to only one arm.
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µ0 = µ1 = 0.155 µ0 = 0.155, µ1 = 0.529

b z1−α α E(p∗) (s.d.) RelETO% (s.d.) Bias (s.d.) 1− β E(p∗) (s.d.) RelETO% (s.d.) Bias (s.d.)

(i) Reference (n0
0 = 1) vs. Reference (n0

1 = 1)

1 1.991 0.053 0.500 (0.33) -0.06 (5.42) -0.00 (0.49) 0.229 0.882 (0.16) 41.69 (7.01) 0.22 (0.45)
2 1.969 0.051 0.500 (0.32) 0.34 (5.42) -0.00 (0.44) 0.270 0.878 (0.16) 41.27 (6.85) 0.19 (0.41)
4 1.949 0.046 0.502 (0.30) 0.32 (5.43) -0.00 (0.38) 0.313 0.870 (0.14) 40.30 (6.65) 0.15 (0.35)
6 1.911 0.048 0.499 (0.29) -0.03 (5.45) 0.00 (0.34) 0.360 0.861 (0.14) 39.38 (6.59) 0.11 (0.30)
9 1.864 0.049 0.498 (0.28) -0.15 (5.43) 0.00 (0.30) 0.423 0.848 (0.13) 38.14 (6.53) 0.08 (0.26)
12 1.825 0.050 0.502 (0.26) 0.11 (5.42) -0.00 (0.27) 0.478 0.834 (0.13) 36.68 (6.41) 0.06 (0.23)
18 1.766 0.051 0.502 (0.24) 0.14 (5.44) -0.00 (0.23) 0.565 0.807 (0.12) 33.72 (6.30) 0.04 (0.20)
36 1.682 0.050 0.500 (0.19) 0.26 (5.45) 0.00 (0.17) 0.712 0.714 (0.09) 23.25 (5.98) 0.01 (0.17)

(ii) Reference (n0
0 = 1) vs. Sceptical (n0

1 = 8)

1 2.004 0.051 0.470 (0.32) 0.25 (5.44) 0.07 (0.43) 0.427 0.844 (0.18) 37.72 (6.51) 0.22 (0.41)
2 1.953 0.050 0.479 (0.31) -0.37 (5.43) 0.05 (0.38) 0.491 0.833 (0.17) 36.22 (6.46) 0.17 (0.34)
4 1.913 0.050 0.484 (0.29) -0.21 (5.43) 0.04 (0.33) 0.538 0.820 (0.17) 34.96 (6.38) 0.13 (0.29)
6 1.886 0.049 0.491 (0.28) -0.49 (5.43) 0.03 (0.31) 0.565 0.811 (0.16) 33.92 (6.44) 0.10 (0.26)
9 1.856 0.051 0.494 (0.27) -0.26 (5.45) 0.02 (0.28) 0.590 0.800 (0.16) 32.92 (6.40) 0.08 (0.24)
12 1.844 0.049 0.497 (0.26) 0.27 (5.43) 0.02 (0.25) 0.597 0.788 (0.15) 31.44 (6.41) 0.07 (0.22)
18 1.792 0.051 0.499 (0.24) -0.20 (5.42) 0.02 (0.22) 0.650 0.771 (0.14) 29.61 (6.32) 0.05 (0.20)
36 1.715 0.052 0.483 (0.18) 0.24 (5.43) 0.01 (0.18) 0.710 0.717 (0.12) 23.69 (6.09) 0.02 (0.17)

(iii) Reference (n0
0 = 1) vs. Enthusiastic (n0

1 = 8)

1 1.964 0.047 0.315 (0.24) -0.00 (5.41) 0.14 (0.37) 0.176 0.920 (0.08) 45.86 (5.79) 0.24 (0.41)
2 1.908 0.052 0.323 (0.24) -0.44 (5.45) 0.13 (0.34) 0.234 0.911 (0.08) 44.80 (5.83) 0.20 (0.36)
4 1.892 0.049 0.329 (0.23) -0.02 (5.42) 0.11 (0.31) 0.275 0.902 (0.09) 43.88 (5.82) 0.17 (0.33)
6 1.872 0.050 0.332 (0.22) 0.24 (5.41) 0.10 (0.30) 0.313 0.896 (0.09) 43.38 (5.86) 0.15 (0.31)
9 1.864 0.048 0.337 (0.22) 0.15 (5.39) 0.09 (0.28) 0.348 0.887 (0.09) 42.32 (5.86) 0.13 (0.29)
12 1.834 0.052 0.338 (0.21) -0.10 (5.39) 0.08 (0.27) 0.388 0.878 (0.09) 41.37 (5.87) 0.12 (0.28)
18 1.804 0.054 0.338 (0.20) -0.19 (5.45) 0.07 (0.25) 0.444 0.865 (0.10) 39.83 (5.95) 0.10 (0.25)
36 1.761 0.050 0.324 (0.17) 0.08 (5.41) 0.05 (0.21) 0.515 0.836 (0.11) 36.62 (6.07) 0.05 (0.21)

Table 3
The effect of using archetypal priors on the performance of the FLGI for a two-armed trial when σ2

k = 0.642 is
assumed known, T = 72 and d = 0.995, averaged over 50,000 trial replications.
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µ0 = µ1 = µ2 = −0.05 µ0 = −0.05, µ1 = 0.07, µ2 = 0.13

Design t1−α α E(p∗) (s.d.) RelETO% (s.d.) Bias (s.d.) 1− β E(p∗) (s.d.) RelETO% (s.d.) Bias (s.d.)

ER (b = 1) 1.595 0.0997 0.3332 (0.04) -0.28 (3.79) -0.0007 (0.08) 0.7608 0.3333 (0.04) -0.07 (3.87) -0.0002 (0.08)

FLGI
b = 1 1.731 0.0992 0.3331 (0.20) 0.03 (3.77) 0.0006 (0.12) 0.4936 0.6122 (0.23) 88.13 (4.34) 0.0212 (0.13)
b = 2 1.718 0.0994 0.3336 (0.20) -0.09 (3.79) 0.0002 (0.12) 0.5121 0.6087 (0.22) 87.48 (4.35) 0.0209 (0.13)
b = 4 1.737 0.0979 0.3343 (0.19) 0.10 (3.79) 0.0001 (0.12) 0.5100 0.6024 (0.22) 86.04 (4.35) 0.0203 (0.13)
b = 8 1.741 0.0954 0.3323 (0.19) -0.47 (3.79) -0.0003 (0.11) 0.5235 0.5938 (0.21) 83.52 (4.35) 0.0198 (0.12)
b = 15 1.709 0.1018 0.3337 (0.18) -0.03 (3.79) 0.0001 (0.11) 0.5582 0.5824 (0.21) 80.94 (4.34) 0.0191 (0.12)
b = 20 1.725 0.1001 0.3342 (0.18) 0.00 (3.78) 0.0004 (0.11) 0.5608 0.5716 (0.20) 77.82 (4.32) 0.0166 (0.11)
b = 40 1.662 0.1009 0.3342 (0.17) -0.35 (3.80) -0.0004 (0.10) 0.6100 0.5296 (0.18) 66.48 (4.26) 0.0047 (0.10)
b = 60 1.591 0.1009 0.3337 (0.15) -0.05 (3.80) 0.0004 (0.09) 0.6697 0.4835 (0.16) 51.91 (4.16) -0.0013 (0.09)

FLGI-HZ (γ = 2)
b = 1 1.603 0.0972 0.3333 (0.04) 0.37 (3.79) -0.0001 (0.08) 0.6157 0.5137 (0.05) 67.11 (3.84) -0.0001 (0.10)
b = 2 1.592 0.0996 0.3334 (0.04) -0.41 (3.80) -0.0002 (0.08) 0.6161 0.5137 (0.05) 67.19 (3.85) -0.0005 (0.10)
b = 4 1.587 0.1009 0.3332 (0.04) 0.08 (3.79) 0.0000 (0.08) 0.6209 0.5134 (0.05) 66.96 (3.84) 0.0002 (0.10)
b = 8 1.600 0.0979 0.3331 (0.04) 0.79 (3.79) -0.0002 (0.08) 0.6162 0.5133 (0.05) 67.03 (3.84) -0.0004 (0.10)
b = 15 1.585 0.0994 0.3332 (0.04) -0.18 (3.80) -0.0006 (0.08) 0.6207 0.5131 (0.05) 66.86 (3.85) -0.0002 (0.10)
b = 20 1.605 0.0991 0.3334 (0.04) -0.32 (3.80) -0.0001 (0.08) 0.6187 0.5115 (0.05) 66.74 (3.87) -0.0001 (0.10)
b = 40 1.587 0.1014 0.3334 (0.04) 0.29 (3.80) -0.0002 (0.08) 0.6839 0.4827 (0.06) 53.2 (3.93) 0.0003 (0.09)
b = 60 1.598 0.1000 0.3335 (0.05) 0.25 (3.79) 0.0004 (0.08) 0.7665 0.4240 (0.05) 19.34 (4.08) 0.0000 (0.08)

CFLGI
b = 1 1.530 0.1012 0.2894 (0.16) -0.01 (3.80) -0.0236 (0.10) 0.7254 0.4780 (0.18) 30.41 (4.12) -0.0171 (0.09)
b = 2 1.533 0.1009 0.2922 (0.16) 0.11 (3.78) -0.0223 (0.10) 0.7272 0.4756 (0.17) 30.28 (4.12) -0.0164 (0.09)
b = 4 1.520 0.1017 0.2949 (0.16) -0.06 (3.79) -0.0209 (0.10) 0.7324 0.4734 (0.17) 30.20 (4.09) -0.0157 (0.09)
b = 8 1.522 0.1027 0.2960 (0.15) -0.55 (3.80) -0.0203 (0.10) 0.7366 0.4685 (0.17) 29.11 (4.07) -0.0144 (0.09)
b = 15 1.530 0.0988 0.2976 (0.15) 0.04 (3.80) -0.0190 (0.10) 0.7361 0.4615 (0.16) 27.68 (4.09) -0.0133 (0.09)
b = 20 1.534 0.1020 0.2981 (0.15) -0.53 (3.80) -0.0180 (0.09) 0.7328 0.4554 (0.16) 26.79 (4.07) -0.0130 (0.09)
b = 40 1.538 0.1006 0.3029 (0.14) 0.20 (3.78) -0.0134 (0.09) 0.7425 0.4331 (0.14) 20.98 (4.03) -0.0105 (0.08)
b = 60 1.540 0.1005 0.3077 (0.13) -0.26 (3.79) -0.0082 (0.08) 0.7552 0.4094 (0.12) 15.80 (4.02) -0.0070 (0.08)

TP
b = 1 1.582 0.1009 0.3116 (0.09) 0.11 (3.78) -0.0127 (0.09) 0.7822 0.3403 (0.06) -5.75 (3.82) -0.0019 (0.08)
b = 2 1.580 0.0991 0.3119 (0.09) 0.08 (3.80) -0.0128 (0.09) 0.7791 0.3402 (0.05) -6.68 (3.82) -0.0028 (0.08)
b = 4 1.571 0.0997 0.3121 (0.09) 0.05 (3.79) -0.0128 (0.09) 0.7824 0.3400 (0.05) -5.57 (3.81) -0.0019 (0.08)
b = 8 1.579 0.0991 0.3130 (0.09) -0.33 (3.78) -0.0121 (0.09) 0.7820 0.3393 (0.05) -6.07 (3.83) -0.0016 (0.08)
b = 15 1.570 0.1009 0.3148 (0.08) 0.45 (3.78) -0.0107 (0.09) 0.7793 0.3381 (0.05) -6.31 (3.84) -0.0023 (0.08)
b = 20 1.576 0.0982 0.3146 (0.08) -0.34 (3.79) -0.0098 (0.08) 0.7781 0.3370 (0.05) -6.02 (3.82) -0.0020 (0.08)
b = 40 1.567 0.1042 0.3174 (0.08) -0.11 (3.80) -0.0069 (0.08) 0.7792 0.3331 (0.05) -6.68 (3.91) -0.0013 (0.08)
b = 60 1.574 0.1021 0.3131 (0.07) -0.35 (3.78) -0.0051 (0.08) 0.7738 0.3214 (0.06) -11.58 (3.95) -0.0011 (0.08)

TS
b = 1 1.629 0.1024 0.3331 (0.09) 0.09 (3.78) 0.0002 (0.09) 0.7313 0.4589 (0.10) 47.23 (4.08) 0.0141 (0.10)
b = 2 1.651 0.0985 0.3340 (0.09) -0.10 (3.78) 0.0009 (0.09) 0.7223 0.4574 (0.10) 46.67 (4.07) 0.0132 (0.10)
b = 4 1.641 0.0986 0.3337 (0.09) 0.18 (3.80) 0.0006 (0.09) 0.7267 0.4557 (0.10) 46.10 (4.08) 0.0138 (0.10)
b = 8 1.620 0.1028 0.3336 (0.08) 0.10 (3.79) 0.0000 (0.09) 0.7366 0.4513 (0.10) 44.76 (4.07) 0.0124 (0.09)
b = 15 1.626 0.1012 0.3327 (0.08) 0.38 (3.78) -0.0005 (0.09) 0.7349 0.4443 (0.09) 43.38 (4.07) 0.0121 (0.09)
b = 20 1.632 0.1006 0.3330 (0.08) 0.01 (3.78) -0.0001 (0.09) 0.7344 0.4390 (0.09) 41.59 (4.06) 0.0110 (0.09)
b = 40 1.635 0.0980 0.3329 (0.07) 0.00 (3.79) -0.0003 (0.08) 0.7410 0.4191 (0.08) 34.82 (4.05) 0.0093 (0.09)
b = 60 1.609 0.1016 0.3328 (0.07) 0.03 (3.78) -0.0006 (0.08) 0.7478 0.3979 (0.08) 27.29 (4.02) 0.0055 (0.09)

Gwise
nER = 2 1.778 0.0998 0.3343 (0.08) 0.50 (3.82) 0.0003 (0.09) 0.7101 0.3336 (0.08) 0.12 (4.12) 0.0002 (0.09)
nER = 4 1.620 0.1011 0.3334 (0.05) -0.32 (3.78) 0.0001 (0.08) 0.7599 0.3328 (0.05) -0.13 (3.89) -0.0006 (0.08)
nER = 8 1.618 0.1010 0.3332 (0.04) -0.09 (3.78) -0.0001 (0.08) 0.7627 0.3332 (0.04) -0.01 (3.9) -0.0003 (0.08)

Table 4
Comparison of performance measures for a three-armed trial using different designs when the variance is assumed

unknown and T = 120, averaged over 50,000 trial replications. Note that the true variance of the response is
σ2
k = 0.3462 for k ∈ {0, 1, 2}.
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