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A Priors and proposal densities for parameters

In several types of Metropolis-Hastings steps we use Gaussian mixture proposal densities, which simplify
Metropolis-Hasting acceptance ratios to Metropolis acceptance ratios due to symmetry (Metropolis et al.,
1953; Hastings, 1970). These proposals are mixtures of two Gaussian distributions g̃x and g̃′x with mean
being the current value x and different standard deviations. With a probability of 0.5 the new proposal x′

has probability density g̃x(x′), and else g̃′x(x′).

A.1 Estimating a new IWE rate

We estimate the logarithm of the IWE rate µ. As prior we used a normal distribution with mean −2 and
standard deviation of 1. The Gaussian mixture proposal probabilities for log(µ) were normally distributed
with a standard deviation of 1 or 0.2, each of them chosen with 50% probability. When computing the
acceptance probability a (log(µ)′, log(µ)), not the whole conditional probability of the data needed to be
computed. In particular the probability of the data given the tree and IWEs on the trees does not change,
and hence

a (log(µ)′, log(µ)) = min

{
1,
P (D|µ′, T )

P (D|µ, T )
· π(log(µ′))

π(log(µ))

}
= min

{
1,
P (D|T ) · P (T |µ′)
P (D|T ) · P (T |µ)

· π(log(µ′))

π(log(µ))

}
, (1)

where T denotes branch lengths, number and location of IWEs and associated probabilities and probabil-
ities at the root. Terms deriving from the proposal probability are not considered because the proposal is
symmetric. Since T only depends on µ via the number of IWEs in the tree, and the number of IWEs in the
tree is Poisson distributed with rate µ · L · N , L being the length of the tree and N being the number of
CpG islands, we obtain

a (log(µ)′, log(µ)) = min

{
1,
µ′n

µn
· exp(−L ·N · (µ′ − µ)) · π(log(µ′))

π(log(µ))

}
, (2)

where n is the number of IWEs.

A.2 Estimating a new shape parameter

For the logarithm of the shape parameter α we used a normal prior of mean 2 and standard deviation 1.
Proposal probabilities for the logarithm of α were normally distributed with a standard deviation of 0.1.
When determining acceptance of a newly proposed shape parameter, the conditional probability of the data
had to be recalculated. Terms from the proposal probability do not have to be considered due to symmetry.
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A.3 Estimating a new invariant probability

For the invariant probabilities we used a uniform prior, and proposal probabilities were normally distributed
and are reflected on the boundaries of the interval [0, 1]. The standard deviation of the normal distribution
was 0.1. When estimating a new invariant probability the whole conditional probability of the data given T
had to be updated.

A.4 Other priors and relative frequency of steps

Logarithms of branch lengths had a normal prior with mean −2 and standard deviation 1. Proposals for
adding an IWE and deleting an IWE (if IWE existed) happened with probability 0.5 each.

The relative frequency of proposing new branch lengths, sampling new shape parameters, sampling new
µ, sampling or deleting an IWE, sampling an invariant probability, and sampling a new beginning frequency
in an island were 0.1, 0.01, 0.1, 1, 0.01 and 0.3, respectively.

B Deriving acceptance probabilities

When new IWEs are inserted on a branch, the parameter space from which our MCMC procedure samples
is augmented by the location of the IWE on the branch and by the new methylation state probabilities. The
varying dimensionality of the MCMC state space is handled by reversible jump MCMC (Green, 1995). Here,
we follow the formalism of Hastie and Green (2012), in which the proposal to move from state x to state
x′ is constructed with an additional random vector u with probability density g(u) and a (deterministic)
diffeomorphism h : U × V → Rn′ × Rr′ , (x, u) 7→ (x′, u′) with U ⊆ Rn, V ⊆ Rr and n + r = n′ + r′. The
Metropolis-Hastings acceptance probability is then

a(x, x′) = min

{
1,
P (x′) · g′(u′)
P (x) · g(u)

·
∣∣∣∣det

(
∂h(x, u)

∂(x, u)

)∣∣∣∣} , (3)

where P (.) is the target probability density (usually the posterior), and g′(u′) is the proposal density of u′

if the current state is x′ (Hastie and Green, 2012).

B.1 Deriving transition probabilities for number of IWEs

We are sampling new IWEs and deleting existing IWEs according to the following procedure. For this, we
first decide with a fair coin flip whether a deletion or an insertion shall be proposed.

• If insertion, do the following:

1. Pick a branch with probability proportional to the branch length.

2. Pick an island at random.

3. An event is inserted at a random location on that island while the rest remains the same.

4. Calculate acceptance probability and determine whether we accept.

5. Revert the tree if not accepted, or else proceed.

• If deletion, do the following:

1. Pick an IWE at random and delete it. (If no events present, do nothing).

2. Calculate acceptance probability and determine whether we accept.

3. Revert the tree if not accepted, or else proceed.

The acceptance probability for an insertion is then

min

{
1,
µNt

n+ 1

Ln+1

Ln

}
, (4)
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where t is the total length of the tree n is the number of IWEs in the tree, µ is the IWE rate, N is the number
of islands and Ln and Ln+1 are the conditional probabilities of the data given the state with n events and
the state with n+ 1 events respectively.

The acceptance probability of a deletion on the other hand is

min

{
1,
n+ 1

µNt

Ln
Ln+1

}
. (5)

This probability is derived following the proof of Huelsenbeck et al. (2000) of a similar proposition for a
compound Poisson process used for relaxing molecular clock assumptions in phylogenetics. First we define
T = N · t which is the total length of the tree counting all islands separately. Our model requires that each
event has a uniform position along the tree, which is equivalent to having a uniform position along [0, T ],
when we regard the tree as constant and only treat steps concerning the deletion and insertion of IWEs. We
can a state x as a vector of the form

x = (n, t1, πu1, πp1, πm1, . . . , tn, πun, πpn, πmn), (6)

where ti is the time of occurrence for event i and (πui, πpi, πmi) are the equilibrium frequencies of that
event and n is the number of events present. The density of ti is a uniform density on [0, T ], the triples
(πui, πpi, πmi) follow a Dirichlet(1,1,1) distribution. n in our model is Poisson distributed with mean Tµ.
Hence the conditional prior density is

π(x) =
(Tµ)n

n!
e−Tµ

1

Tn
2n
√

3
n . (7)

We write the other state x′ as

x′ = (n+ 1, t1, πu1, πp1, πm1, . . . , tk−1, πu(k−1), πp(k−1), πm(k−1),

tnew, πu new, πp new, πm new,

tk, πuk, πpk, πmj , . . . , tn, πun, πpn, πmn).

Note here that the position where the new elements were inserted were between element k−1 and k. We call
this move m and the probability of inserting at this position in the vector is uniformly jm(x′) = 1/2(n+ 1).
The reverse probability of deleting one of the n+ 1 events is again jm(x) = 1/2(n+ 1), which corresponds to
taking one of the IWEs at random and deleting it. Note here that the two move types are exactly inverse to
each other: Either we insert at position j into the vector or we delete at this position, instead of for example
always inserting at the back, which would make deletion not occurring at the back not a reversible move.
The factor of 2 comes from deciding whether we delete or accept an event with a fair coin. The conditional
prior density is, analogously to x

π(x′) =
(Tµ)n+1

(n+ 1)!
· e−Tµ · 1

Tn+1
· 2n+1

√
3
n+1 . (8)

Following Hastie and Green (2012), we construct the dimension jump from x to x′ with a random vector
u = (ut, uu, up, um), in which ut follows an uniform distribution on [0, T ], while the triple uu, up, um follows
a Dirichlet(1,1,1) distribution. This leads to the joint density of

g(u) =
2√
3T

. (9)

This density defines the probability of a given set on [0, T ] × ∆3 as the product of the uniform densitis
on [0, T ] and on the 3-Simplex ∆3, which is equivalent to a proposal distribution where the time of a new
event is sampled uniformly along the tree and the probabilities corresponding to the event are Dirichlet(1,1,1)
distributed and sampled independently from the position of the new event. This contribution of the proposal
density is in addition to the contribution of the move type discussed above. The corresponding random vector
u′ when moving from n+ 1 events to n events is just a length zero vector with probability of 1, due to the
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fact that no new parameters are sampled and the proposition only depends on the move type determining
which event is deleted. Define

h : {n} ×
n+1∏
i

([0, T ]×∆3) → {n+ 1} ×
n+1∏
i

([0, T ]×∆3)

(n, t1, πu1, πp1, πm1, . . . , tn, πun, πpn, πmn, ut, uu, up, um) 7→ (n+ 1, t1, πu1, πp1, πm1, . . . ,

tj−1, πu(j−1), πp(j−1), πm(j−1),

ut, uu, up, um,

tj , πuj , πpj , πmj , . . . , tn, πun, πpn, πmn).

Note that h is a permutation. Hence it is a diffeomorphism and the absolute value of the determinant of its
Jacobian is 1. Thus, the acceptance probability for the proposed step is

min

{
1,
π(x′)

π(x)
· L(x′)

L(x)
· jm(x′)

jm(x)
· g
′(u′)

g(u)

}
. (10)

Inserting the distributions we have described exactly produces the acceptance probability of insertion dis-
cussed above. The acceptance probability of deletion can be derived analogously.

B.2 Acceptance probabilities for branch length changes

When a branch length is changed, the dimensionality of the state does not change, but its size does. In this
case we can also apply the formalism of Hastie and Green (2012) to derive the acceptance probability. We
operate on log scaled branch lengths. The proposal is normally distributed with mean at log(l) and standard
deviation σ. In our example x = (x1, . . . , xn, log(l)), x′ = (x′1, . . . , x

′
n, log(l′)), and the random variable u is

one-dimensional as e we are only sampling log(l) and adjust the other parameters according to the newly
sampled length. We assume g to be normally distributed with mean 0 and standard deviation σ, and g′ = g.
We define

h : Rn+1
+ × R→ Rn+1

+ × R

(x1, . . . , xn, log(l), u) 7→
(

exp(log(l) + u)

l
x1, . . . ,

exp(log(l) + u)

l
xn, log(l) + u, u

)
(11)

This produces our wished proposal density for log(l′). The probability that log(l′) > L is the probability
that u+ log(l) > L which means that the proposal density derived from g is normally distributed with mean
log(l), which is the proposal density we are using. To calculate a note that u′ = u and g′ = g, so the proposal
does not exert influence. We now need to evaluate the determinant of the Jacobian. Clearly

∂x′i/∂xj =
l′

l
δi,j

∂ log(l)′/∂ log(l) = 1

∂u′/∂ log(l) = 0

∂u′/∂u = 1.

Hence the Jacobian is an upper triangular matrix, whose determinant is the product of the diagonal entries.
This yields

det

(
∂h(x, u)

∂(x, u)

)
=
l′n

ln
. (12)

C Simulation study figures

The following figures show the mean of the posterior distribution and the 95%credibility intervals plotted
against the ground truth.
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Figure 1: This plot shows all 1800 estimated logarithmic branch lengths compared to the respective actual
values used to produce the sequences we infer upon. Black line is the identity. Dotted lines indicate the 95%
credibility interval. The true value is expected to fall within in this interval 95% of the time.
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Figure 2: All 150 estimated logarithmic IWE rates compared to the respective actual values used to produce
the sequences we infer upon. Red line is the identity. Dotted lines indicate the 95% credibility interval. The
true value is expected to fall within in this interval 95% of the time.
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Figure 3: 150 estimated logarithmic branch lengths for the formation of MPP1, MPP2, CLP and CD4
respectively, compared to the actual values used to produce the sequences we infer upon. The true value is
expected to fall within in this interval 95% of the time. Red line is the identity.
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B cell
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Figure 4: 150 estimated logarithmic branch lengths for the formation of CD8, Bcell, CMP and MEP re-
spectively, compared to the actual values used to produce the sequences we infer upon. The true value is
expected to fall within in this interval 95% of the time. Red line is the identity.
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Figure 5: 150 estimated logarithmic branch lengths for the formation of Eryth, GMP, Granu and Mono
respectively, compared to the actual values used to produce the sequences we infer upon. Dotted lines
indicate the 95% credibility interval. The true value is expected to fall within in this interval 95% of the
time. Red line is the identity.
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Figure 6: Comparison between infered branch lengths by lyne (a and b) and the IWE-SSE inference (c and
d) when data was simulated according to the model of Capra and Kostka (2014), on which lyne is based.
Plots a and c refer to the branches that are adjacent to the leaves and plots b and d to the branches that
are adjacent to the root.
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Figure 7: Comparison of the cumulative relative length of estimated branches to ground truth.

11



GSM2481532

Logarithmic Branch Length

F
re

qu
en

cy

−4 −2 0 2 4

0
20

0
60

0

GSM2481533

Logarithmic Branch Length

F
re

qu
en

cy

−4 −2 0 2 4
0

20
0

50
0

GSM2481534

Logarithmic Branch Length

F
re

qu
en

cy

−4 −2 0 2 4

0
20

0
50

0

GSM2481535

Logarithmic Branch Length

F
re

qu
en

cy

−4 −2 0 2 4

0
20

0
60

0

Figure 8: Posterior distributions of logarithmic branch lengths for the branches going to the two cell stage
single cell samples GSM2481532, GSM2481533,GSM2481534 and GSM2481535 from an ancestral node rep-
resenting the mean zygotic state. .
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