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Supplementary Information
Method testing for synthetic data.

We generated synthetic data as described in Methods under three scenarios to test the efficacy of the KNN
eigengene method versus the gene-based method. The first scenario, reflected in fig. S2 (A and B), shows
that the correlation-based method does indeed perform better than the gene-based method. In fig. S2A, the
rate at which the correlation method correctly identifies at least one of the cell-type defining eigengenes
climbs steeply between as the SNR varies from 1 to 10. In fig. S2B, the correlation method, but not the gene
method, accurately identifies cell types over this SNR range, as measured by the root mean squared error
between the KNN-predicted probability of cell type membership (w;,,) and the actual cell type measurement.
If the probability of belonging to a cell type were uniformly distributed between 0 and 1, this measurement
would converge to v/2, while perfect prediction corresponds to 0. The deviation from /2 for small SNR is
attributable to the feature optimization step, as it selects the best feature out of a set of 100. We note that
incorrect identification of one of the eigengenes tends to penalize model accuracy. This reflects eigengenes
with small eigenvalues being selected to define the difference between cell types, resulting in the effective SNR
being much smaller than the nominal SNR. fig. S2 (C and D) shows that the correlation method still manages
to perform well, even when the genes define the cell type in lieu of the eigengenes. While the probability
of identifying the correct gene increases faster than the probability of identifying the correct eigengene, the
gene-based method fails more drastically when it cannot identify the correct gene. The superior performance
of the correlation method in this case is explained by the fact that the difference in a given gene is distributed
across all of the correlation eigenvectors so that the method is not sensitive to whether the correct gene is
deduced or not. Finally, we consider the case in which cell type differences are defined by a correlation
difference, but a single gene is spuriously differentially expressed in the training set, but not in the test set
(fig. S2 E and F). When the correlation eigenvector can be identified, which happens almost as often as in
(fig. S2A), the correlation method uniformly outperforms the gene-based method. Thus, the correlation-based
method is robust to single-gene errors and can work even in cases where the cell types are defined by genes.
We note that our method performs well because there is an underlying correlation structure to the data in all
cases, which is a well grounded assumption for biological systems. In contexts where the underlying variables

are uncorrelated, we would expect the performance of the correlation-based method to deteriorate relative to



single-feature methods.

Assessing unsupervised methods.

Since PDM (22) and SC3 (23) are unsupervised methods, the number of clusters C' that it produces is not
constrained to be equal to the number of cell types K. If C' < K, (as is the case in which PDM is applied to
the GeneExp dataset), then PDM will necessarily have limited accuracy, but we can assign a cell type to each
cluster by determining the cell type of the largest fraction of measurements belonging to that cluster. However,
in the case that C' = M, where M is the number of experiments, assignment of each cluster to the cell type of
that experiment would rate as “perfect” prediction. Such a partition is uninformative. Thus, simply assigning
each cluster to the largest fraction cell type will overstate the method’s accuracy when the clustering method
subdivides the experiments to many groups.

Therefore, we calculate the accuracy using the following thought experiment. Suppose that we sample one
experiment from each cluster, chosen at random, and determine the cell type. Then pgk) = mgk) /m®) is the
probability of sampling cell type 7 in cluster k, where m(*) is the total number of measurements in cluster &,
(

of which mik) belong to cell type 7. The average number of experiments correctly predicted in the cluster is

n® =" pm®, (1)
1e{k}
where {k} is the set of cell types in cluster k. The total fraction predicted is then

1
h=— > ), )
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Suppose further that each cell type is only able to be assigned once, then Eq.|(1) remains the same, but Eq.
must be modified so that no cell type is assigned to two different clusters. We look for the best assignment
of cell types to clusters by randomly assigning cell types to each cluster, and continue until either all clusters
have a cell type or all cell types have been assigned. We repeat this 1,000 times and take the maximum value

found as the method accuracy.

On the role of long-range contacts in Hi-C data.

Previous work has used Hi-C data to investigate the short-range structure (< 500 kb) of chromatin and under-

stand how proteins like CTCF package DNA into loops called TADs (27). In fig. S8, we show that long-range



contacts, rather than short-range contacts, arise as important for predicting cell type. This is significant be-
cause short-range contacts have been well-studied and are thought to be highly conserved between cell types
and even species, whereas less is known about the nature of long-range contacts. To assess the contribution
of long-range versus short-range contacts to predict cell type, we removed all contacts in a range either below
(fig. S8A) or above (fig. S8B) the distance indicated by the legend. We observe that removal of all contacts
< 500 kb does not meaningfully impact the predictive accuracy, but removing contacts above this range causes
accuracy to decrease. In addition, when keeping only the local contacts, the method is relatively poor at distin-
guishing cell types. Keeping contacts in the 500—1000 kb range and the 2.5-10 Mb range appears to enhance
predictive accuracy.

To further substantiate whether Hi-C structures are different in different cell types, we employed a func-
tional attribution method in which we removed the contacts of all loci associated with Variable-Diversity-
Joining (VDJ) recombination (¢gH, 1g K, and igL) (43) and re-ran our prediction model. Since VDJ is present
in only the B cells in our dataset, the masking of this data should reduce the confidence of classifying B cells,
which is exactly what happens. We calculated the number of B cell measurements whose prediction accuracy
improves upon inclusion of VDJ loci and found that 40 instances do under the correlation-based model with
three eigenloci. We calculated a bootstrapped distribution by randomly selecting the same number of loci and
examining how many total B cell measurements improved, and we found that the observed number is > 5
standard deviations larger than the null expectation. This analysis demonstrates that (i) aspects of chromatin
structure are cell-type and species specific, as these chromosomal regions are not conserved across organisms
or human cell types and (ii) functional attribution is achievable by masking the loci and observing the change

in probability.
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Fig. S1. Confusion matrices for discerning actual and simulated data. (A) Distinguishability of actual data
from the GeneExp dataset from uncorrelated simulated data (Uncorrelated), and correlated simulated data
(Correlated), with accuracies color-coded as a fraction of the number of states predicted. In the confusion
matrix, rows correspond to the actual method used to generate the data and columns map to the predicted
method used to generate the data. (B) Same as (A), but for the Hi-C dataset. In both datasets, the actual data are
confused with the simulated, correlated data much more frequently than they are with simulated, uncorrelated
data. The misclassification rates are > 33% for GeneExp and > 70% for Hi-C.
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Fig. S2. Method testing results as a function of the SNR under three scenarios (rows) for two criteria
(columns). (A) Probability of identifying a differentially expressed eigengene as a function of the SNR and the
number of experiments (color-coded), with error bars denoting the standard error of the mean, for eigengene-
based cell types. (B) Root mean square deviation between the KNN-inferred probability «;,,, and the actual
cell type as a function of SNR. Instances in which differentially expressed genes or eigengenes are not
identified are colored in gray. (C and D) Results for gene-based cell types. Axes, colors, and symbols are
as defined in (A and B), respectively. (E and F) Results for eigengene-based cell types with one confounding
differentially expressed gene between the cell types in the training set. Axes, colors, and symbols are as
defined in (A and B), respectively.



Fig. S3. Comparison of forward selection with PCA. (A) Accuracy of PCA (grey) and forward selection
(orange) as a function of the test set size, expressed as a fraction of the total number of experiments in the
GeneExp dataset. (B) Accuracy as a function of the number of features for the GeneExp dataset. (C) Same
as (A), but for the Hi-C dataset. (D) Same as (B), but for the Hi-C dataset. Axes labels for (A-D) retain
their meanings from Fig. 4. Differences in all distributions in (A and C) are significant at the p < 0.01 level
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Fig. S4. Distinguishing cell types for the Hi-C dataset. (A) Cell type homogeneity, where axes and color
code retain their meanings from Fig. 3. (B) Nonconvex fraction for a sampling of chords between pairs of
same cell type measurements with predicted cell types on the y axis and actual cell types on the z axis. Each
square is colored if > 0.1% of chords of the actual cell type are classified as the predicted cell type using the
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Fig. S5. KNN classification accuracy by cell type for the GeneExp dataset under LOGO cross-
validation. The version abbreviations and colors bars are defined in Fig. 5A, and the grey and white check-
ered background and tick label legend retain their meaning from Fig. 3. The number of experiments for each
cell type are listed in table S2. The accuracies averaged by cell type group correspond to those presented in

Fig. 5A.
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Fig. S6. Fraction of nonconvex chords for each cell type. Colors, background, abbreviations and tick label
legend retain their values described in Fig. 3. The predicted cell type was distinguishable from the actual one
if < 0.1% of the chords from the actual cell type (column) were classified as the predicted cell type (row).
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Supplementary Tables

Table S1. Version comparison results and KS test P values. Supplementary File: Supplementary Table
S1.xlsx

Table S2. Cell type counts, tick labels for Figs. 2C, 3, and 5 and figs. S5 and S6, and database acces-
sion numbers for the GeneExp and Hi-C datasets. Supplementary File: Supplementary Table S2.xIsx
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