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1 Introduction

This document should help to reproduce the simulation studies (along with the supplementary
MATLAB code), provide some more explanations and details and should be self-contained as
many parameters and models were taken from different publications.

2 Lognormal distribution

Since pharmacological parameters are typically positive, e.g., volume of distribution, baseline con-
centrations or rate constants, often a lognormal distribution is appropriate for modelling the inter-
individual variability between patients, i.e., θi = θTV · eηi with ηi ∼ N (0,Ω) for some individual
i. The lognormal distribution results from a transformation of a normal random variable. If
Y ∼ N (µ,Σ), then X = eY is lognormally distributed, i.e X ∼ LN (µ,Σ). The probability density
of the multivariate lognormal distribution is given by

p(x|µ,Σ) =
1

(2π)d/2|Σ|1/2 ·
1∏
k xk

· e− 1
2 (logx−µ)TΣ−1(logx−µ) , (S 1)

where µ ∈ Rd and Σ ∈ Rd×d are the parameters of the associated normal distribution and log
denotes the natural logarithm.Thus, the prior for the individual parameters is given by

pΘ(θ) = LN (θ|log(θTV),Ω)

=
1

(2π)d/2|Ω|1/2 ·
1∏
k θk
· e− 1

2 (log(θ)−log(θTV))TΩ−1(log(θ)−log(θTV)) .

3 Maximum a-posteriori (MAP) estimation

In MAP estimation, one seeks the parameter values that maximise the posterior probability

θ̂MAP
n = arg max

θ
p(θ|y1:n) .

It is, however, more convenient and numerically more stable to minimise the negative log-posterior
instead

θ̂MAP
n = arg min

θ
− log p(θ|y1:n)

= arg min
θ

− log p(y1:n|θ)− log p(θ) .

Choosing an additive normal residual error model (Yj = hj + εj with εj ∼iid N (0, σ2)) and a
lognormal IIV model for the parameters (θk = θTVk · eηk with ηk ∼iid N (0, w2

k)) yields

θ̂MAP
n = arg min

θ

n

2
log(2π) +

n

2
log σ2 +

1

2

n∑

j=1

(yj − hj(θ))2

σ2

+
d

2
log(2π) +

1

2

d∑

k=1

logω2
k +

d∑

k=1

log θk +
1

2

d∑

k=1

(log(θk)− log(θTV
k ))2

ω2
k

with data y1:n = (y1, . . . , yn)T observed up to time point tn. MAP estimation was performed in
Matlab R2017b using the interior-point algorithm in fmincon. The Matlab toolbox AMICI [1] was
used for simulation of the system of ordinary differential equations (ODEs) and for computations
of sensitivities used in gradient calculations (described below).

Gradient descent algorithms can often be improved by providing the gradient and the hessian of
the objective function J(θ) = − log p(θ|y1:n). The gradient for this specific problem is given by

∂J(θ)

∂θl
=−

n∑

j=1

(yj − hj(θ))
σ2

· ∂hj(θ)
∂θl

+
1

θl
+

(log(θl)− log(θTV
l ))

ω2
l

· 1

θl
,
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and the hessian for l 6= m

∂2J(θ)

∂θl∂θm
=−

( n∑

j=1

(yj − hj(θ))
σ2

· ∂
2hj(θ)

∂θl∂θm
− 1

σ2

∂hj(θ)

∂θl

∂hj(θ)

∂θm

)

and

∂2J(θ)

∂θ2
l

=−
( n∑

j=1

(yj − hj(θ))
σ2

· ∂
2hj(θ)

∂θ2
l

− 1

σ2

∂hj(θ)

∂θl

∂hj(θ)

∂θl

)

+
1

θ2
l

·
[ 1

w2
l

(
1− log(θl) + log(θTV

l )
)
− 1
]
.

Note that ∂hi(θ)
∂θl

= shl are the output sensitivities, which are given by

shl =
∂h(x, θ)

∂x
sxl +

∂h(x, θ)

∂θl
,

using the sensitivities of the states

∂sxl
∂t

=
∂f(x, θ)

∂x
sxl +

∂f(x, θ)

∂θl
, sxl (0) =

∂x0(θ)

∂θl
.

For the computation of the state sensitivities the extended system of ODEs needs to be solved

ẋ = f(x, θ), x(0) = x0(θ)

ṡxl =
∂f(x, θ)

∂x
sxl +

∂f(x, θ)

∂θl
, sxl (0) =

∂x0(θ)

∂θl
.

Alternatively, the gradient could be computed via adjoint sensitivity analysis which is more efficient
for models with large number of states and parameters.

Since the hessian matrix requires the computation of the second-order sensitivities ∂2hi(θ)
∂θl∂θm

, which

is computationally expensive, often the (expected) Fisher information matrix FIM is used as ap-
proximation

Ilm(θ) = −
n∑

i=1

1

σ2
· ∂hi(θ)

∂θl
· ∂hi(θ)
∂θm

,

and

Ill(θ) = −
(

n∑

i=1

1

σ2
· ∂hi(θ)

∂θl
· ∂hi(θ)

∂θl
+

1

ω2
l θ

2
l

·
(

log(θTV
l )− log(θl) + 1

))
.

It was found that the MAP estimate does not correctly transform under a nonlinear mapping
to the most probable observation/quantity of interest. As pharmacometric PK/PD models are
often nonlinear, this is a major drawback for decision support in MIPD. Figure S 1 (A) shows
the posterior of the drug effect parameter ‘Slope’ on the x-axis and the a-posteriori probability of
the nadir concentration on the y-axis. The blue line shows the MAP estimate for the parameter
‘Slope’ and links to the MAP-predicted nadir concentration, which clearly does not correspond
to the mode of the a-posteriori probability distribution of the nadir concentration. In addition
it is shown how some randomly chosen samples transform to the nadir concentration. Note,
however that the nadir concentration does of course not only depend on the ‘Slope’ but also on
the other parameters. Figure S 1 (B) demonstrates the same observation for a different quantity
of interest, the time of recovery to grade 2, which shows a bimodal posterior distribution. Further
we considered as a statistical measure of accuracy the root mean squared error (RMSE) between
the model-predicted outcome Ti(Sn) given data y1:n for individual i and the reference outcome
T ref (for which the data was simulated)

RMSE(T )n =

√√√√ 1

N

N∑

i=1

(Ti(Sn)− T ref
i )2 .
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1Figure S 1: Illustration of the unfavourable propoerties of MAP estimation with regard
to reliable decision support. A The MAP estimate (blue line) does not correctly transform
under a nonlinear mapping to the most probable nadir concentration (based on [2, Figure 5.2]).
The posterior of the parameter ’Slope’ is depicted for an exemplary patient after four data points
y1:4 were observed on the x-axis and the corresponding a-posteriori probability of the nadir con-
centration on the y-axis (same scenario as in Figure 3). B The mode is not preserved under
transformation. The same scenario was considered as for part A. C Root mean squared error
(RMSE) of selected statistics. Comparison of the accuracy of the computed statistics cnadir, tnadir

and trec00 based on MAP estimation and full Bayesian inference (SIR using S = 103 samples).
The RMSE was computed across the whole considered virtual population N = 100.

Figure S 1 (C) shows the prediction accuracy of the point-estimates of MAP-estimation and of
the Full Bayesian approach over time. As more data points are taken into account the RMSE
decreases for both estimators. In the beginning of the cycle the Full Bayesian approach shows
increased accuracy across all considered quantities of interest.

4 Normal Approximation (NAP)

To quantify the uncertainty associated to a MAP estimate one may consider a quadratic approxi-
mation to the log posterior at its mode (following [3]). A Taylor expansion about the MAP estimate
results in

log p(θ|y1:n) ≈ log p(θ̂MAP|y1:n)︸ ︷︷ ︸
=const.

+(θ − θ̂MAP)T
[d log p(θ|y1:n)

dθ

]
θ=θ̂MAP︸ ︷︷ ︸

=0

+
1

2
(θ − θ̂MAP)T

[d2 log p(θ|y1:n)

dθ2

]
θ=θ̂MAP

(θ − θ̂MAP) .

If we take the exponential on both sides and normalise, we get as normal approximation to the
posterior at the MAP estimate

p(θ|y1:n) ≈ N
(
θ̂MAP,

[
− d2 log p(θ|y1:n)

dθ2

]−1

θ=θ̂MAP

)
.
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The inverse of the variance can be decomposed using Bayes’ formula

− d2

dθ2
log p(θ|y1:n) = − d2

dθ2
log p(y1:n|θ)−

d2

dθ2
log p(θ) , (S 2)

where we retrieve the total observed Fisher information matrix (FIM)

I likelihood(θ) = − d2

dθ2
log p(y1:n|θ) .

If the definition for the observed FIM of the likelihood is transferred to prior and posterior, the
previous decomposition Eq. S 2 can be written as

Ipost(θ) = I likelihood(θ) + Iprior(θ) ,

which allows to rewrite the normal approximation of the posterior as

p(θ|y1:n) ≈ N (θ̂MAP, [Ipost(θ̂MAP)]−1) . (S 3)

Note, that we defined I
(
θ
)

:= Ipost
(
θ
)

in the main article. Since the MAP estimator is asymp-
totically normally distributed in the limit of large sample sizes (n → ∞) (see [3, appendix B] for
a proof), this approximation can be very precise in the case of highly informative data sets.

4.1 Simulation-based approach

To propagate the uncertainties from the parameters to the model predictions, we used a simulation-
based approach. To this end, we sampled from the normal distribution Eq. S 3 and subsequently
propagated each sample.

Step-by-step description of the algorithm

1. Generate posterior samples θ(s) from N (θ̂MAP, [Ipost(θ̂MAP)]−1) .

2. Compute for each sample h(tj , θ
(s)) for time points of interest j = 1, . . . ,m

3. Compute quantiles (hα/2, h1−α/2) for each time point tj

Similarly, we can compute samples of the quantities of interest T (s) = T (θ(s)).

4.2 Delta Method

As an alternative to the simulation-based approach, we may use the delta method to determine the
limiting distribution of a differentiable function of the parameters g(θ) [4, section 5.5]. In our case
g(θ) = h(x(t), θ). Using the Delta method, the uncertainties are propagated from the parameters

to the observable via the output sensitivities Sh(θ̂MAP) = ∇θht(θ)
∣∣
θ̂MAP [4, section 5.5]:

p(ht(θ̂
MAP)|y1:n) ≈ N

(
h(x(t), θ̂MAP), Sh(θ̂MAP)TΣMAPSh(θ̂MAP)

)

with ΣMAP = [I(θ̂MAP)]−1. The credible interval (CI) for the prediction is then given by

CIα = h(x(t), θ̂MAP)± z1−α/2

√
σ2

CI(t) ,

where z1−α/2 is the quantile of the standard normal distribution and σ2
CI is computed using the

output sensitivities
σ2

CI(t) ≈ Sh(t, θ̂MAP)TΣMAPSh(t, θ̂MAP) .

Alternatively, the quantiles of the Student’s t distribution could be used as a more conservative
choice, see [5]. For the determination of the prediction interval (PI), the residual variability is
additionally taken into account

σ2
PI(t) ≈ Sh(t, θ̂MAP)TΣMAPSh(t, θ̂MAP) + σ2

RUV .
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Figure S 2: Propagating uncertainties using the delta method instead of the simulation based
approach.

Note that, in the main manuscript σ2
RUV = σ2. Consequently, the prediction interval is given by

PIα = h(t, θ̂MAP)± z1−α/2

√
σ2

PI(t) ,

Since the delta method involves differentiation of g, it is not straightforward to apply the method
to any desired quantity of interest, e.g. g(θ) = T (θ) = Cnadir(θ).

The Delta method leads to a similar underestimation of the uncertainty as the simulation-based
approach (NAP sim), see Figure S 2. In addition it is not straightforward to propagate the
uncertainty to quantities of interest (therefore not displayed).

One option to overcome the underestimation of the uncertainty is the use of quantiles of the
Student’s t distribution instead of normal quantiles [5]. We have used quantiles of the Student’s
t distribution with ν = 4 degrees of freedom (NAP δ t). The credible intervals show an increased
width, but now overestimate the uncertainties regarding subtherapeutic areas (grade 0), see Figure
S 3. This is also not acceptable as underdosing is in oncology highly undesireable.

5 Sampling Importance Resampling (SIR)

Our goal is to generate samples from the posterior distribution at time point tn having observed
patient-specific data y1:n. For this importance sampling is used in the SIR algorithm. Let p̃(θ|y)
be the unnormalised posterior

p̃(θ|y1:n) = p(y1:n|θ) · p(θ).
We use the prior p(θ) = p(θ|θTV(cov),Ω) as importance function. This gives for a proposal sample

θ̃
(s)
n the unnormalised weights

w̃(s)
n =

p̃(θ̃
(s)
n |y1:n)

p(θ̃
(s)
n )

= p(y1:n|θ̃(s)
n ) ,
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Figure S 3: Propagating uncertainties with the delta method using Student t quantiles.

which need to be normalised for an approximation of the normalised posterior distribution

w(s)
n =

p(y1:n|θ̃(s)
n )

∑
s′ p(y1:n|θ̃(s′)

n )
.

Step-by-step description of the algorithm

1. Sample proposals θ
(s)
n from prior p(θ|θTV,Ω)

2. Compute unnormalised importance weights w̃
(s)
n

3. Compute normalised importance weights w
(s)
n

4. Resample according to normalised importance weights w
(s)
n

Generally this algorithm needs a large number of samples, especially if there is a large disagreement
between prior and posterior. This is computationally very expensive, but can be run in parallel
up to the normalisation of the weights. The SIR algorithm is also used in the population analysis
context to improve the estimation of the parameter uncertainty distributions [6]. Thus, the SIR
approach might be an option to also take into account uncertainty in the population parameters
(hyper parameters).

Reference posterior

Since the true posterior distribution is analytically intractable, we employ as reference solution the
SIR algorithm with a large number of samples (S = 106), as the algorithm is exact for S → ∞.
To validate this reference we have compared it in addition to the posterior derived by the MCMC
algorithm using also S = 106 samples with a burn-in of 100 samples, see Figure S 7.
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Figure S 4: Acceptance rate of the Metropolis Hastings algorithm with fixed proposal variance
(MHΩ) and with adapted proposal (MH adapted). The green lines mark the area of a good
acceptance rate balancing the trade-off between exploring the space and efficiently moving the
chain.

6 Markov chain Monte Carlo (MCMC)

We used in the presented study an adaptive version of the well-known Metropolis-Hastings algo-
rithm. In the TDM setting it was previously suggested to use the prior as fixed proposal (inde-
pendence sampler) [7] . We have, however, found that as the number of data points increases the
rejection rate increases (since the posterior is becoming narrower), leading to inefficient sampling
of the posterior. However, positioning the proposal (LN (·|Ω)) at the just accepted proposal also
showed high rejection rates. To counteract low acceptance rates, the proposal was therefore not
only moved to the just accepted proposal but was also adapted to the previous posterior sampling
distribution, e.g. θ0 = E[p̂(log(θ)|y1:n−1]) and LN (·|θs−1,Cov[p̂(log(θ)|y1:n−1]), see Figure S 4.

Since we employed the Metropolis-Hastings algorithm with a lognormal, thus asymmetric distri-
bution as a proposal, we have to use a correction term in the acceptance probability to account for
the asymmetry of the proposal distribution. Using Eq. S 1, we get the following acceptance ratio
in the case of a lognormal proposal distribution

α =
p(θ∗|y1:n)

p(θs−1|y1:n)
· LN (θs−1|θ∗,Ω)

LN (θ∗|θs−1,Ω)
=

p(θ∗|y1:n)

p(θj−1|y1:n)
·
∏

(θ∗)k∏
(θj−1)k

. (S 4)

The Markov chain was started at the typical value θTV(cov). Generally, a certain number of
samples in the beginning is discarded, a so called burn-in or warm-up. We chose a burn-in of 100
samples in our analysis.

The steps of the Metropolis-Hastings algorithm at time point tn are

1. Start chain at θ0 = θTV

For s = 1, . . . , S

2. Generate proposal θ∗ from the proposal distribution LN (θs−1,Ω)

3. Accept θ∗ with probability α defined in Eq. S 4.

One drawback of MCMC approaches is that standard MCMC methods cannot be used efficiently
in sequential inference context, as for every updated posterior distribution p(θ|y1:k) a new Markov
chain has to be generated [8].

7 Particle filter (PF)

The particle filter belongs to the class of sequential data assimilation methods. In sequential DA
methods, the posterior is iteratively updated via Bayes’ formula by combining computer-generated
Bayesian forecasts with data in real time. The most well-known sequential data assimilation
method is the Kalman filter [9, 10], which relies on the assumptions of linear model dynamics
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and Gaussian uncertainty, which reduced the problem to only track the mean and variance of
the posterior density over time. However, many problems in application do not satisfy these
assumptions. Therefore, particle filters (PF) [11] were developed that allow for non-Gaussian error
models and non-linear structural models, which fits the general pharmacometric setting. In this
section some more algorithmic details of the particle filter are described.

7.1 State augmentation

Filter algorithms were mainly developed for state estimation with fixed parameters. However, the
parameters can be added to an augmented state space z = (x, θ),

∂x

∂t
(t) = f(x(t); θ, u)

∂θ

∂t
(t) = 0 .

Since we are considering static parameters (within one cycle), the rate of change of parameters is
zero. The filter algorithm was then applied to the augmented state z(t) = (x(t), θ(t)).

7.2 Resampling strategies

There exist many different strategies on how to resample efficiently and effectively. The most
widely used are multinomial, residual and systematic resampling, see e.g. [12]. For this article,
we applied residual resampling. Resampling can be performed at every step (bootstrap filter) or,
more efficiently, only if the effective sample size is smaller than a threshold, e.g. Seff < S/2.

7.3 Rejuvenation

Resampling addresses the problem of weight degeneracy in particle filters, however, it introduces the
problem of sample impoverishment. Drawing with replacement among the particles results in many
identical particles. Since the structural model is deterministic with constant parameters, resampled
particles will remain identical over time. Particle rejuvenation can be applied to counteract this
sample impoverishment [13]. After each resampling new parameter particles are sampled from a
normal distribution centered around the previous parameter values with a small relative variance.
Since this only introduces small perturbations in the parameter space, we assumed that x(θ) ≈ x(θ̃)
for a rejuvenation of θ resulting in θ̃.

7.4 Smoothing

For smoothing over the past prediction the previously predicted paths are resampled along with
the states and parameters according to the current particle weights.

7.5 Alternative sequential DA algorithms

There exist many extensions, modifications and add-on techniques for particle filters. Depending
on how the analysis ensemble is generated from the forecast ensemble, different filter algorithms
are distinguished, see e.g. [14, 15]. Among these the class of ensemble transform filters [15] is
very promising as it replaces the stochastic resampling and rejuvenation step of the basic particle
filter by a deterministic transformation which allows to ensure certain properties, e.g. 2nd order
accuracy [14]. However, in the augmented state space the connection between the parameters
and states is lost as larger steps in the parameter steps are undertaken which means that the
assumption x(θ) ≈ x(θ̃) is no longer valid.

9



0. Initialisation of particles {x(s)0 , θ
(s)
0 , w

(s)
0 }Ss=1

for all s = 1, . . . , S

sample θ(s)0 from p(θ; θ̂TV (cov),Ω), xs0 from p(x0|θ) and set w(s)
0 = 1/S

For j = 1, . . . , n

1. Propagation under model equations
producing a forecast ensemble
{x(s)fj , θ

(s)
j−1, w

(s)
j−1}Ss=1

2. Update of importance weights
w

(s)
j ∝ w

(s)
j−1 · p(yj|x(s)fj ,Σ)

and normalisation of weights

0
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e
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If Seff < S/2

3. Resampling and rejuvenation
leads to the analysis ensemble
{x(s)aj , θ

(s)
j }Ss=1

with uniform weights w(s)
j

1
Figure S 5: Step-by-step description of the particle filter. The different steps of the particle
filter are depicted in the context of forecasting the time-course of neutropenia. For illustration
purposes the number of virtual individuals is reduced to S = 10. The different shades represent the
importance weights, the darker the colour the higher the importance weight. From the initial virtual
subpopulation only five are resampled (resulting in duplicate samples). Rejuvenation introduces
new virtual individuals who are similar to the five resampled ones.

8 Simulation study: Single cycle Docetaxel

In the simulation study we use as prior knowledge a population analysis of a clinical study by
Kloft et al. [16]. In this section more details about the employed models and parameter estimates
is provided. We aimed to be comparable to the setting in [17]. A virtual population (N = 100)
was generated based on the patient characteristics provided in [16]. The covariates AGE and AAG
were sampled from a normal distribution with mean given by the median and an estimated variance
from the given observed range. The parameter estimates used for the pharmacokinetic (PK) and
pharmacodynamic (PD) model are given in Table S 2. For the MAP estimation we needed to
provide parameter bounds to the optimiser. The lower bounds were taken from the code provided
by Netterberg [18] and the upper bounds were tested, so that the optimiser did not reach the
bound.

As PK model for Docetaxel a three compartment model with first-order elimination was employed
[21]. AAG (α1-acid glycoprotein), AGE, BSA (body surface area) and ALB (albumin) were found
as covariates on clearance. Patient specific parameter values were determined based on covariates.
The individual clearance is computed via

CLi = BSAi ·(CLTV+θCL-AAG ·AAGi+θCL-AGE ·AGEi+θCL-ALB ·ALBTV)·(1−θCL-HEP12 ·HEP12) ,

where we used ALBTV = 41 g/L and set HEP12=0 (i.e. no elevated hepatic enzymes). The
parameter estimates were taken from [21], see Supplement Table 1 and the system of ODEs for
the PK model is given by

dCent

dt
= u(t)− k10Cent + k21Per1− k12Cent + k31Per2− k13Cent , Cent(0) = 0

dPer1

dt
= k12Cent− k21Per1 , Per1(0) = 0

dPer2

dt
= k13Cent− k31Per2 , Per2(0) = 0 .
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StemEdrug = Slope · C
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Circ0
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(
Circ0
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)γ

kcirc(= ktr)MTT

Figure S 6: Structural models for neutropenia. The gold-standard model for neutropenia,
developed by Friberg et al. [19] (black). Extended bone marrow exhaustion model, which describes
cumulative neutropenia over multiple cycles, developed by Henrich et al. [20] (black and blue). The
state variables and parameters of the models are described in the text.

Structural submodel
V 8.31 [L]

CLTV 22.1 [L/h]
k10 CL/V [1/h]
k12 1.07 [1/h]
k21 1.74 [1/h]
k13 1.28 [1/h]
k31 0.0787 [1/h]

Covariate submodel
θCL-AAG -3.55
θCL-AGE -0.095
θCL-ALB 0.225

Table S 1: Pharmacokinetic parameter estimates for Docetaxel [21].

The semi-mechanistic model by Friberg et al. [19] describes chemotherapy-induced neutropenia and
consists of five compartments. The proliferating compartment (Prol) represents rapidly dividing
progenitor cells in the bone marrow, which replicate with rate kprol. Three transit compartments
(Transit 1-3) approximate the maturation chain of progenitor cells in the bone marrow to differen-
tiated neutrophils in the systemic circulation, with transition rate ktr. Circulating neutrophils in
blood (Circ) are the part of the system that can be observed. Thus, the state vector for the model
is given by

x(t) =
(

Prol(t),Transit1(t),Transit2(t),Transit3(t),Circ(t)
)T
,

with observable
h(t) = Circ(t) ,

and initial conditions

Prol(t0) = Transit 1(t0) = Transit 2(t0) = Transit 3(t0) = Circ(t0) = Circ0 .

The cytotoxic effect of anticancer drugs is implemented linearly on the proliferation rate of sus-
ceptible progenitor cells, so the effect is proportional to the drug concentration

Edrug(t) = Slope · Cdrug(t) ,

which is the input to the system
u(t) = Cdrug(t) ,
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Structural submodel
Circ0 5.22 [109cells/L]
MTT 84.2 [h]
Slope 15.6 [L/µmol]
γ 0.145 []

Covariate submodel
θCirc0-AAG≤1.34 0.175
θCirc0-AAG>1.34 0.495
θCirc0-SEX -0.121
θCirc0-PERF 0.131
θCirc0-PC -0.147
θSlope-AAG -0.351

Statistical submodel
σ2 0.180
ω2

Circ0
0.0606

ω2
MTT 0.0194
ω2

Slope 0.122

ω2
γ 0.0223

Table S 2: Parameter estimates for the Friberg-model and Docetaxel taken from [16]

parameter lower bound upper bound
Circ0 [109cells/L] 2 30
MTT [h] 10 250
Slope [L/µmol] 0.01 60

Table S 3: Bounds for MAP estimation. Lower bounds were taken from [18]

where the time-evolution is given by the corresponding PK model for Docetaxel. The effect of the
drug on the proliferation rate of the Prol compartement is described by a feedback, which leads to
an increase in production of white blood cells if the number of circulating neutrophils is decreasing,
and vice versa

Feedback(t) =

(
Circ0

Circ(t)

)γ
.

System parameters include the baseline neutrophil concentration (Circ0) before the start of treat-
ment, the mean transition time (MTT), which represents the average time for a progenitor cell
in the bone marrow to mature to a circulating neutrophil, and the slope parameter (Slope) of
the linear inhibitory model for the drug effect. Furthermore, γ is the exponent parameter for the
feedback model. Thus, the parameter vector for the model is given by

θ = (Circ0,MTT,Slope, γ)T .

As in [17] we assume γ to be fixed. The system of ordinary differential equations (ODEs) reads

dProl

dt
= kprolProl · (1− Edrug) ·

(
Circ0

Circ

)γ
− ktrProl , Prol(0) = Circ0

dTransit1

dt
= ktrProl− ktrTransit1 , Transit1(0) = Circ0

dTransit2

dt
= ktrTransit1− ktrTransit2 , Transit2(0) = Circ0

dTransit3

dt
= ktrTransit2− ktrTransit3 , Transit3(0) = Circ0

dCirc

dt
= ktrTransit3− kcircCirc , Circ(0) = Circ0 .
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Figure S 7: Comparison of reference posterior. The reference posterior was derived by the SIR
algorithm and with the MCMC algorithm using S = 106 samples.

9 Simulation study: Multiple cycles Paclitaxel

The multiple cycle simulation study is based on a population analysis [20] of the CEPAC-TDM
study data. For the data simulation it was assumed that every third day the neutrophil counts
were assessed for a patient undergoing chemotherapy. The data was simulated based on a model
prediction including interoccasion variability. Paclitaxel pharmacokinetics were described by a
three compartment model with nonlinear distribution to the first peripheral compartment and
nonlinear elimination [22]. The system of ODEs reads

dCent

dt
= u(t)− VMEL · C1

KMEL + C1
+ k21Per1− VMTR · C1

KMTR + C1
+ k31Per2− k13Cent , Cent(0) = 0

dPer1

dt
=

VMTR · C1

KMTR + C1
− k21Per1 , Per1(0) = 0

dPer2

dt
= k13Cent− k31Per2 , Per2(0) = 0

where C1(t) = Cent(t)/V1. We used the parameter values by [20], see Table S 4. The following
covariate model for VMEL was given as

VMEL,TV,i = VMEL,pop·
( BSAi

1.8m2

)θVMEL-BSA

·
(
θVMEL-SEX

)SEXi

·
( AGEi

56years

)θVMEL-AGE

·
( BILIi

7µmol/L

)θVMEL-BILI

relating patient characteristics, BSA (body surface area), SEX, AGE and BILI (total bilirubin
concentration) to the maximum elimination capacity (VMEL). In addition to inter-individual
variability and residual variability, interoccasion variability was included on the two parameters
V1 and VMEL, where each start of a new cycle is defined as an occasion,

θi,o = θTV,i · eηi+κi,o , κi,o
iid∼ N (0,Π2) .

Neutropenia has been observed to worsen over several treatment cycles, i.e. the lowest neutrophil
concentration (nadir concentration) and the maximum neutrophil concentration decreases over
multiple cycles. Bone marrow exhaustion could be one explanation of this cumulative behaviour,
which means that the long-term recovery of the bone marrow is also affected. The standard model
for neutropenia [19] does not take such a long-term effect into account. Henrich et al. [20] therefore
expanded the model by dividing the proliferating compartment into another stem cell compartment,
describing pluripotent stem cells with reduced proliferation rate. This model extension made it
possible to capture the cumulative long-term effect.

The proliferation rate constants for the proliferating compartement Prol and for the stem cell
compartement Stem are given by

kprol = ftr · ktr

kstem = (1− ftr) · ktr ,
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Structural submodel
V1 10.8 [L]
V3 301 [L]
KMEL 0.667 [µM]
VMEL,pop 35.9 [µmol/h]
KMTR 1.44 [µM]
VMTR 175 [µmol/h]
k21 1.12 [1/h]
Q 16.8 [1/h]

Covariate submodel
θVMEL-BSA 1.14
θVMEL-SEX 1.07
θVMEL-AGE -0.447
θVMEL-BILI -0.0942

Statistical submodel IIV
ω2
V3

0.1639
ω2

VMEL
0.0253

ω2
KMTR

0.3885
ω2

VMTR
0.077

ω2
k21

0.008
ω2
Q 0.1660

Statistical submodel IOV
π2
V1

0.1391
π2

VMEL
0.0231

Statistical submodel RV
σ2 0.0317

Table S 4: Pharmacokinetic parameter estimates for the anticancer drug Paclitaxel [20].

respectively, where ftr is the fraction of input in the Prol compartment via proliferation within the
compartment. As the drug effect is proportional to the proliferation rate constant, the stem cells
are less affected by the treatment than the progenitor cells.

dStem

dt
= kstemStem · (1− Edrug) ·

(Circ0

Circ

)γ
− ktrStemStem , Stem0) = Circ0

dProl

dt
= kprolProl · (1− Edrug) ·

(Circ0

Circ

)γ
+ ktrStemStem− ktrProl , Prol(0) = Circ0

dTransit1

dt
= ktrProl− ktrTransit1 , Transit1(0) = Circ0

dTransit2

dt
= ktrTransit1− ktrTransit2 , Transit2(0) = Circ0

dTransit3

dt
= ktrTransit2− ktrTransit3 , Transit3(0) = Circ0

dCirc

dt
= ktrTransit3− kcircCirc , Circ(0) = Circ0

The baseline parameter Circ0 was inferred from the baseline data point ( baseline method 2 [23])

Circ0,i = yCirc0 · eθRV·ηCirc0,i , ηCirc0,i ∼ N (0, 1) .

In the bone marrow exhaustion model we have in addition to inter-individual variability (IIV)
inter-occasion variability (IOV). The parameter vector, thus, contains parameter values, which are
constant across occasions (cycles) θIIV and parameters that are specific for each cycle c, θIOV

c .

θc = elog(θTV)+η
︸ ︷︷ ︸

=θIIV

· eκc︸︷︷︸
=θIOV

c

. (S 5)
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Structural submodel
Circ0 baseline method [23] [109cells/L]
MTT 145 [h]
Slope 13.1 [L/µmol]
γ 0.257 []
ftr 0.787 []

Statistical submodel
σ2 0.2652
ω2

Slope 0.2007

Table S 5: Parameter estimates for the bone marrow exhaustion model and the anticancer drug
Paclitaxel .

The θIIV parameters need to be learned across all cycles and the cycle specific parameters θIOV
c

based on the data observed in cycle c, y1:nc = (y1, . . . , ync)
T . The size of the parameter vector

that needs to be estimated will, therefore, grow with every occasion if the whole data is processed
in a batch. Assuming independence between the inter-individual and interoccasion variability, the
objective function for the MAP estimation is then given by

θ̂MAP
n = arg min

θIIV,θIOV

1

2

( C∑

c=1

nc∑

j=1

(
yj − hj(θ)

)2

σ2

+ 2

nIIV
θ∑

k=1

log(θIIV
k ) +

nIIV
θ∑

k=1

(
log(θIIV

k )− log(θTV
k (cov))

)2

ω2
k

+ 2

C∑

c=1

nIOV
θ∑

k=1

log(θIOV
k,c ) +

C∑

c=1

nIOV
θ∑

k=1

(
log(θIOV

k,c )− log(θTV
k (cov))

)2

π2
k

)

for the IIV and IOV model θk,c = θTVk · eηk+κk,c , with ηk ∼ N (0, w2
k) and κk,c ∼ N (0, π2

k), for an
additive normal residual error model yj = hj + εj , with εj ∼ N (0, σ2) and for data observed up
to time point tn, i.e. n =

∑
c nc, with nc the number of observations made in cycle c.

The gradient with respect to the IIV parameters is then given by

∂J(θ)

∂θIIV
l

=−
n∑

j=1

(yj − hj(θ))
σ2

· ∂hj(θ)
∂θIIV
l

+
1

θIIV
l

+
(log(θIIV

l )− log(θTV
l ))

ω2
l

· 1

θIIV
l

,

and with respect to the IOV parameters by

∂J(θ)

∂θIOV
l,c

=−
n∑

j=1

(yj − hj(θ))
σ2

· ∂hj(θ)
∂θIOV
l

+
1

θIOV
l,c

+
(log(θIOV

l )− log(θTV
l ))

ω2
l

· 1

θIOV
l,c

,

Figure S 8 shows a comparison of the different methods in forecasting the third cycle. The scenario
corresponds to the situation presented in Figure 4 in the main manuscript. All full Bayesian meth-
ods provide almost overlapping credible intervals as well as point estimates (median). However,
the MAP-based forecasted trajectory deviates significantly from the point estimates (median) of
the full Bayesian methods.

In Figure S 9 the posterior approximations are compared to the reference on the level of the
parameters. In addition, we can observe the deviation of the posterior from the prior for parameters
’Slope’ and ’Circ0’. As we do not consider PK samples the knowledge gain about the PK parameters
is limited. All approximations show good agreement with the reference and the MAP estimate is
located at the mode of the posterior on the level of the parameters.
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