Supplementary Material

Dispersion from C^α or N^H: 4D experiments for backbone resonance assignment of intrinsically disordered proteins

Helena Tossavainen¹, Santeri Salovaara¹, Maarit Hellman¹, Riikka Ihalin², Perttu Permi^{1,3*}

¹Department of Chemistry, Nanoscience Center, University of Jyväskylä, FI-40014 Jyväskylä, Finland.
²Department of Biochemistry, University of Turku, FI-20014 Turku, Finland.
³Department of Biological and Environmental Science, University of Jyväskylä, FI-40014 Jyväskylä, Finland

*Corresponding author: Perttu Permi, <u>perttu.permi@jyu.fi</u>

ORCID of the authors: Helena Tossavainen, 0000-0002-1609-1651 Riikka Ihalin, 0000-0003-4118-0370 Perttu Permi, 0000-0002-6281-1138

Suppl. Fig. S1 The C^{α}/H^{α} region of the ¹H, ¹³C CT HSQC of BilRI measured at 800 MHz ¹H frequency, 25 °C, 1 mM, pH 6.5. The resolved signals are labeled with sequence number and amino acid code.

Suppl. Fig. S2. Assignment coverages and percentages from spectra used in the BilRI assignment. *The N-terminal cloning artefact GSHM is excluded.

Suppl. Fig. S3 Similar to Fig. 1 of the main text, the resolving power of the i+1 amide nitrogen in the fourth dimension is presented. Compared are 3D i(HACA)CO(CA)NH and 4D (HACA)CON(CA)NH planes from the ¹H, ¹⁵N-HSQC region at upper left corner. From 2D H^N-C' planes of the 3D i(HACA)CO(CA)NH at ¹⁵N frequencies marked with lines of different colors it is difficult to determine the number and chemical shifts of peaks present in the overlapping peak area in the ¹H, ¹⁵N-HSQC. Tentative shifts are marked for five peaks. In contrast, in the 4D (HACA)CON(CA)NH spectrum four nicely resolved peaks are found.

Suppl. Fig. S4 Representative planes from 4D (HACA)N(CA)CONH and (HACA)CON(CA)NH spectra, which demonstrate the resolving power of sequential N^H in resolving ambiguities present in 3D H^{α}-detected experiments. Shown is the assignment of ¹⁰²Lys-¹⁰³Asp/¹⁴²Lys-¹⁴³Asp in the KDA**KD**AAADKM stretches (residues 99-106 and 139-146). The intraresidual and sequential H^{α}, N^H, C' correlations of ¹⁰³Asp and ¹⁴³Asp appear as one peak in the three H^{α}-detected experiments, and their assignments remain ambiguous. Although the ¹⁴³AspH,N-¹⁴²Lys N,C/¹⁰³AspH,N-¹⁰²LysN,C' correlations are not resolved in the 4D (HACA)N(CA)CONH, thanks to distinct H^N shifts, the preceding residues display well separated peaks in the 4D (HACA)CON(CA)NH, which allows to proceed with the sequential walk. The sequential walk is presented in the ¹H, ¹⁵N HSQC spectrum at the lower right corner. Grey labels mark correlations with peak maximum in adjacent ¹⁵N/¹⁵N, ¹³C planes.

Suppl. Fig. S5 Assignment of proline-containing amino acid sequences using 4D (HACAN(CA)CONH and (HACA)CON(CA)NH. Shown is the assignment of ²⁸Gln-²⁷Pro-²⁶Ser triplet in BilRI. The (HACA)N(CA)CONH shows a correlation between ²⁸Gln H^N, N^H and N^H, C' of the preceding proline. At this proline N^H chemical shift in the (HACA)CON(CA)NH the H^N, N^H, C' of the preceding ²⁶Ser. The corresponding peaks and the pathway between them are shown in the 2D CON spectrum.

Suppl. Fig. S5 Assignment of identical stretches ¹²⁸Asn-¹²⁹Glu-¹³⁰Met-¹³¹Lys and ¹⁶⁸Asn-¹⁶⁹Glu-¹⁷⁰Met-¹⁷¹Lys using the described three 4D experiments iHACANCO, (HACA)CONCAHA and HACACON.