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Supplementary Figure 1 Challenges in single progenitor model parameter inference. (A-B) 
Uncertainty over the progenitor-cell division rate l can affect the accuracy of inferring the value of 
the other model parameters (r, r) (see Figure 6). (A) Scheme illustrating the possible fate of different 
simulated clones (#1, #2, #m) under various parameter scenarios. For low ratios of r/r most divisions 
are predicted to be asymmetric, but a high value of l results in a broadens the clone size distributions 
at a given time point tend (grey bars). Similar effects could be expected if l remained unchanged but 
r/r ratio increased, since this results in a higher probability of symmetric division events. Thus, 
different parameter values could provide adequate fits to an experimental clone size distribution 
(depicted as orange lines). (B) MLE inference of the SP model parameters from experimental basal 
clone sizes. Data from lineage tracing in Lrig1-eGFPcreERT/wt R26flConfetti/wt mice esophagus are taken for 
illustration. 3D parameter solutions are color-coded according to likelihood value (fittings worsen as 
the log-likelihood ratio statistic gets more negative; values < -200 are not displayed). Without prior 
knowledge on cell proliferation rates, it is hard to resolve the dynamics, with semi-optimal solutions 
(yellow regions) spread across multiple values of l. (C-D) Sample size and timing influence parameter 
estimates. (C) 2D heat maps showing most likely parameter values obtained when analyzing, under 
the SP paradigm – with prior knowledge on l – and for each time point separately, experimental Lrig1- 
and Ah-CreERT 1 derived clonal data from esophagus and, in parallel, synthetic clonal data simulated 
under specific parameter conditions (shown in asterisks) and subjected to reanalysis. In all cases, 100 
randomly-chosen clones were analyzed per data set per time to correct for possible biases due to 
differences in sample size. Results are averages from bootstrapping. (D) SP model parameter 
discrimination improves as increasing the sample size.  The same synthetic data sets described above 
were used, and inference analyses repeated by randomly sampling 100, 1,000 and 10,000 clones per 
time point at four time points (1, 2, 4, and 6 weeks), i.e. a total of N = 400, 4,000 and 40,000 clones. 
Results are shown as bootstrapping averages. 
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Supplementary Figure 2 The cell-cycle time distribution impacts parameter inference from clone size 
distributions. (A) Schematic illustration of clonal dynamics inferred for the SP model under two 
different cell cycle time (tcc) distributions of the individual cell-cycle time: exponential (EXP) and a 
delayed gamma distribution (GAM), where cells can only divide after a minimum refractory period tR 
(with shape controlled by parameter k). Despite the distributions sharing the same average cell-cycle 
time (blue vertical line), the broad EXP distribution predicts that individual clones (#1, #2, #3, #m) will 
have a wider distribution of sizes (grey bars) after a short time chase (t1) than the GAM distribution. 
This difference is less apparent after multiple rounds of division (t2). Thus, the form of the cycle time 
distribution can impact parameter inference experimental clone sizes (orange lines) at early time 
points after cell labelling. (B) Time evolution of the Kullback-Leibler (KL) divergence between basal 
clone-size frequencies obtained from a limited set of simulated clones (300 clones per time point) 
following an exponential (grey) or gamma (red; tR=0.5 days, k=8) tcc, and the theoretical clone-size 
distribution predicted for an idealized infinite population under the exponential tcc paradigm (lower 
values indicate a closer match). Solid lines and shaded regions stand for the average and 95% 
confidence intervals respectively on KL values from 100 independent sets. The average critical time Tc 
(dashed line) after which clone-size distributions from gamma and exponential tcc assumptions 
converge is reported as a heat map for various shapes of the cell-cycle distribution (all simulations 
carried out with l=2.9/week, r=0.65, r=0.1). (C) Detail of differences in simulated basal clone-size 
distributions obtained at early time points under an exponential- (grey) vs. gamma- (red) distributed 
tcc (parameter values as above). Data shown as average	± 95% CI on frequencies, n = 100 independent 
simulations. (D) Parameter inference obtained at different time points from simulated clone-size 
datasets (1,000 clones per time point) run under the paradigm of a gamma-distributed tcc (tR=0.5 days, 
k=8). In red scale: accepted parameter values when considering the actual tcc distribution as a given 
prior. In grey scale are results assuming a default exponential tcc distribution. Results are averages 
from bootstrapping. Neglecting the details of the cell-cycle period distribution can lead to deviations 
from the true parameter values (in asterisks). Similarly, parameter estimates obtained from Lrig1- and 
Ah-CreERT 1 derived experimental data sets in esophagus (100 clones per time point) do vary depending 
on the tcc assumptions used in the inference analysis (E). 
  

4



 
 
 
 

DA
PI

  L
rig

1 

DA
PI

  L
rig

1-
G

FP

Lrig1 eGFP creERT

R26 stop confetti

x
+ Tamoxifen

R26 confetti

Cre

C

A B

D

Supplementary Figure 3

*

*

*
*

* *
*

*

* *
*

*

*

*

*
*

* *
*

*

* *
*

*

5



Supplementary Figure 3 Experimental model used for lineage tracing in esophageal epithelium. (A) 
xyz plane views of confocal images showing Lrig1 expression in wild type mice confined to the basal 
layer of the esophageal epithelium, where it is widespread. Red: LRIG1 immunostaining; blue: DAPI. 
Scale bar, 40 µm. Images are representative of 9 fields of view in 3 individual biologically independent 
mice (B) Rendered confocal z stacks of the basal layer in Lrig1-eGFP-creERT mice showing Lrig1-driven 
GFP expression (green); blue: DAPI. Lrig1-GFP negative cells correspond with bright, condensed, 
mitotic nuclei (asterisks). Scale bar, 40 µm. (C) Description of the transgenic mouse model used for 
lineage tracing. An eGFP-IRES creERT2 construct was inserted in the exon 1 of the endogenous Lrig1 
locus, and a conditional confetti expression construct containing a “stop” cassette flanked by LoxP 
sites was targeted to the ubiquitous Rosa26 promoter. Upon induction with tamoxifen, CreERT protein 
can migrate to the nuclei and excise the stop codon, resulting in the expression of one of the four 
different fluorescent proteins coded by confetti: GFP, YFP, RFP or CFP. Labelled, recombinant cells and 
their progeny (i.e. clones) can then be analyzed at different times. (D) 3D reconstruction of a confocal 
z stacks showing the side-view of an esophageal wholemount 30 days after induction in Lrig1-
eGFPcreERT/wt R26flConfetti/wt animals. Scale bar, 10 µm.  
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Supplementary Figure 4 Labelled clone dynamics in Lrig1-creERT/R26Confetti mouse esophagus and 
comparison to other lineage-tracing data sets. (A) Rendered confocal z stacks of the esophageal basal 
layer showing typical Confetti clones at 84 days  post-induction. Red is RFP, light blue is CFP, yellow is 
YFP, blue is DAPI. Scale bars, 10 µm. (B) Quantitative characteristics of RFP-, CFP-, and YFP- labelled 
clone populations over time: mean basal cells per clone (top panels), average density of labelled clones 
in the basal layer (middle panels), average fraction of labelled basal cells (bottom panels) at the 
indicated time points. Observed values (dots) and error bars (mean ± s.e.m.) from n ≥ 3 animals. 
Straight colored lines and shading in bottom panels indicate mean and s.e.m. across all time points, 
consistent with homeostatic behavior (note at latest time point CFP clones were not detected in the 
cohort of mice used for clone density and % labelled basal cell quantifications, probably due to low 
initial labelling efficiency and limited sampling). (C) Beeswarm plot showing Lrig1 basal-layer clone 
sizes (number of basal cells/clone) over time in the esophageal epithelium. Red marks show average 
size at each time. Only surviving clones, containing at least 1 basal cell, were considered. (D) Histogram 
of cumulative clone size frequencies normalized to the average basal clone size at each time (dots 
with error bars: mean ± s.e.m. from n=3 mice). At long term, distributions converge into a scaling 
behavior, where the probability of seeing clones of sizes larger than x times the average becomes 
constant and follows an exponential F(x) = e-x. (E) Time evolution of the average basal-layer size of 
surviving clones in induced Ah-creERT R26EYFP mice 1 as compared to Lrig1-eGFP-creERT R26flConfetti. 
Experimental data shown as dots with error bars (mean ± s.e.m. from n ³ 3 animals). SP model fits 
shown in green and orange, respectively (solid lines stand for the MLE; light areas: 95% CI). (F) The 
inferred keratinocyte cell behavior from the Lrig1-eGFP-creERT R26flConfetti mice fits independent 
experimental lineage-tracing data from Krt15-crePR1 R26mT/mG mouse esophagus 2, reproducing the 
decay in the basal clone density over time (left panel, dots indicate mean and error bars s.d) and the 
change in the proportion of labelled cells located in basal and suprabasal compartments (right panel). 
Experimental sets are from Fig. S3 and Fig. 2 in 2, respectively. Model fits shown in orange (solid lines: 
MLE; light areas: 95% CI; dashed line corresponds with the estimated fraction of basal cells in 
homeostasis). See Supplementary Data 4 for goodness of fit statistics. 
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Supplementary Figure 5  The single-progenitor model fits independent transgenic-mouse data sets 
on keratinocyte behavior in dorsal skin. (A) Transgenic mouse model used by 3 to study epidermal 
cell proliferation in dorsal skin. Unlike R26M2rtTA/TetO-H2BGFP mice (Tet-On), Krt5tTA/pTRE-H2BGFP 
mice show constitutive H2BGFP expression, and treatment with Dox is required for repression of 
H2BGFP production during the duration of the dilution experiment (Tet-Off; see Supplementary Figure 
1). (B) Reanalysis of H2BGFP dilution data in 3. Distributions of cell division number after different 
chase periods, as deconvoluted from H2BGFP fluorescence histograms of FACS sorted basal and 
suprabasal (spinous-layer) cells (green bars; dots: individual-mice data). Data extracted from Figure 3 
in 3. Our computational-simulation fits using a SP model with gamma-distributed cell-cycle times (solid 
orange lines) mimic the best fits provided by 3 using a 2xSC model (solid blue lines), while the latter 
results in deviated fits with the parameters claimed in their text (dashed blue lines). Poor SP-model 
fits from 3 (dashed orange lines) were due to oversimplified exponential cell-cycle assumptions. (C) 
The inferred keratinocyte cell behavior from AhYFP mouse back skin epidermis fits independent 
experimental lineage-tracing data from Lgr6-eGFPcreERT R26flConfetti mice 4.  Left panel: Empirical long-
term, basal-layer clone size distributions are displayed as mean frequency ± standard error of 
proportion (dots with error bars) for each clone size or basal cell number (in different colors). Lines 
and shaded areas correspond to the SP-model MLE predictions and ranges within ± s.d. from 
bootstrapping (random sampling of experimental clone sizes at P8w were considered as starting 
condition for simulations on the Lgr6-based system, to account for the fact that induction occurred 
early in development, before mouse epithelia become homeostatic). Right panel: Time evolution of 
the average basal-layer size of surviving clones in Lgr6-eGFPcreERT R26flConfetti mice (from 4) as compared 
to Ah-creERT R26EYFP mice 5.  Experimental data shown as dots with error bars (mean ± s.e.m. from n ³ 
3 animals). SP model fits shown in orange (solid lines stand for the MLE; light areas: 95% CI), matching 
both average trends from single-labelled progenitors in the Ah-based data set and preformed clones 
in the Lgr6-based system. See Supplementary Data 4 for goodness of fit statistics. 
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Supplementary Figure 6 The single-progenitor model fits different transgenic-mouse data sets of 
keratinocyte behavior in tail skin. (A) Reanalysis of H2BGFP dilution data from Krt5tTA/pTRE-H2BGFP 
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(Tet-Off; see Figure 2) mouse tail skin 6. Distributions of cell division number after different chase 
periods, as deconvoluted from H2BGFP fluorescence histograms of FACS sorted basal cells (green bars 
with error bars: mean ± s.e.m. from n = 3 individual animals). Data extracted from Fig. 3 in 6. Our 
computational simulations using a SP model with gamma-distributed cell-cycle times (solid orange 
lines) show as good a fit to the data as the more complex SC-CP model used by 6 (solid blue lines). 
Unrealistic, exponential cell-cycle time distributions were considered in the original publication. (B) 
Basal clone size distributions in scale and interscale regions of tail following lineage tracing in Krt14-
creERT R26YFP mice 7.  Frequencies for each clone size are in different colors (dots with error bars: 
empirical values reported, along with standard error of the proportion). Solid lines: SP-model MLE fits 
obtained using as a prior the value for the average division rate measured by 6 and a reasonable 
gamma-shaped cell-cycle time distribution. Dim dashed lines: fits obtained using the parameterized 
models described in 7, where a SC-CP scenario is considered in interscale. (C, D, F, G) Time course of 
the average basal-layer size and density of clones labelled with CreERT expressed from Krt14 or Ivl 
promoters in interscale (purple and blue datasets, respectively; dots indicate mean and error bars 
s.e.m for time points n > 2 mice) 7. Numbers of biologically independent mice are (C,D n= 4, 3, 5, 5, 2, 
4 mice and F,G  n= 2, 3, 2, 3, 5, 2 mice at 1,2, 4, 8,12, and 24 weeks respectively. Orange lines: fits 
obtained with the SP model with same parameter values determined from (B). Green lines: fits on 
Krt14-derived data obtained from the parameterized SC-CP model used by 7. (E, H) Changes in the 
labelled cell fraction derived for both Krt14-creERT R26YFP (E) and Ivl-creERT R26YFP (H) experimental 
model data sets (error bars: mean ±	s.d.) (inferred by multiplying average labelled clone densities by 
average clone sizes at each time, accounting for error propagation). Possible experimental trends fall 
within the domain of uncertainty given by the SP model in homeostasis considering the large errors 
due to the actual limited sample size (dark orange area: 95% CI on the mean; light orange area: 
margins given with ±	 s.d.) (see Supplementary Theory for details). See Supplementary Data 4 for 
goodness of fit statistics.   
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Supplementary Methods (Supplementary references at the end of this file) 
 
This report is intended to provide a detailed description of the methodology used in the Main 
Text and the quantitative arguments supporting the paradigm of a single population of 
progenitor cells in squamous epithelia. In section 1 we describe some control measures to 
test the adequacy of our experimental system for lineage tracing in esophagus. In section 2 
we formulate the different stochastic models of cell behavior and discuss the limitations that 
clonal dynamics features present for model discrimination. In section 3 we describe the 
methods used to infer a single mode of keratinocyte cell proliferation. Section 4 follows with 
the combined approach used for model inference on clonal lineage-tracing data sets 
constrained by cell-cycle properties. Finally, in section 5 we revisit the quantitative 
methodology and arguments from previous publications. 
 
1. Lineage-tracing controls and labelling representativeness 
 
In the main text, we describe a lineage tracing experiment in esophageal epithelium using 
inducible Lrig1-eGFPcreERT R26flConfetti mice. Before introducing the quantitative methods and 
theory involved in clonal fate analysis, in this section we address some controls regarding the 
labelling representativeness of self-renewal in this tissue. 
 
Lrig1 was ubiquitously expressed throughout the basal layer of the esophageal epithelium, 
where proliferation is confined (see immunostaining; Supplementary Figure 3A), and Lrig1-
driven GFP expression reporting Lrig1 transcription was detectable in more than 94% of the 
basal cells (Supplementary Figure 3B). This argues that Lrig1-derived labelled clones widely 
represent basal keratinocyte dynamics in the esophageal epithelium. 
 
An inducible Cre/Confetti reporter was used to track the fate of Lrig1-expressing basal cells 
(Supplementary Figure 3C). To exclude the possibility of spontaneous florescence reporter 
expression, esophageal epithelia were collected from uninduced, 12-16 week old mice (n=3), 
confirming the absence of any labelled clone and hence of any leakage (Supplementary Data 
5). Following low-dose tamoxifen administration, CFP-, RFP- and YFP-labelled cell patches 
were analyzed for clonal behavior at different times post-induction. The low total labelling 
efficiency (1 in 301 ± 106 (mean ± SEM) basal cells by 10 days post induction; Supplementary 
Data 5) and distinction of different fluorescent colors minimizes the risk of clonal merging 8, 
so that single-color patches were considered clonal. Induced GFP-labelled cells were excluded 
from the analysis given the expression of GFP from the Lrig1 locus. 
 
The number of basal cells per clone, n (basal clone size), was counted, and the frequency of 
clones of a certain size xn reported for each individual label reporter and time (Supplementary 
Figure 4A-B; Supplementary Data 5). No statistical differences in the distributions of clone 
size frequencies were seen between CFP, RFP and YFP labelled cell populations at any given 
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time (Kruskal-Wallis test, p = 0.17, 0.27, 0.99, 0.22 at time 10d, 30d, 84d, 180d, respectively; 
non-significant too by pairwise comparisons using Kolmogorov-Smirnov test), justifying 
pooling the data from the different label reporters (Figure 7). In the case where the time 
courses in the number of clones per unit area and the proportion of labelled basal cells were 
shown, only RFP clones were considered, given the low, variable induction of the other 
florescent reporters (including these numbers did not alter the conclusions).   
 
Importantly, overall, the fraction of Confetti labelled basal cells remained approximately 
constant over time (Figure 7C). This agrees with homeostatic behavior and strongly supports 
the hypothesis that the labelled cell population is representative of the epithelial self-
renewal. 
 
2. The possible models of epithelial cell dynamics 
 
 
Homeostasis is a fundamental feature of adult tissues. Whilst the specific mechanisms for 
homeostasis may vary depending on the organization of the niche itself, within squamous 
epithelia several models have been proposed that are sufficient to explain tissue 
maintenance. These can be broadly separated based on two key features: the presence of a 
single or multiple dividing population, and whether the progeny fates are balanced by a 
deterministic or stochastic process. Deterministic processes (invariant asymmetric self-
renewal) lead to the growth of stable, similar sized clones over long periods of time following 
labelling of stem cells, regardless of the presence or absence of transient amplifying cells (cells 
that have a limited division capacity) 9. In contrast, stochastic models (population asymmetric 
self-renewal) achieve balance by allowing individual cells to divide either asymmetrically or 
symmetrically, with an equal probability of symmetric stem or differentiation fates (Figure 
1D). A consequence of these branching processes is that clones exist in neutral competition, 
and develop heterogeneous sizes over time as some grow, whilst others diminish or even 
become extinct. Here we briefly review this latter class of models and the evidence that 
supports them. 
 
Several features of the clone size distributions arise from population asymmetric self-renewal 
8, 10: 

§ The number of surviving labelled clones, containing at least one basal cell, 
continuously decays over time, following a hyperbolic function, 𝑃"#$%(𝑡)	~	1/𝑡. This 
reflects the non-null probability of clone extinction. 

§ The average number of basal cells in the surviving clones grows linearly with time, 
〈𝑛〉"#$%(𝑡)	~	𝑡, to compensate the decline in clone density, so that the overall cell 
population remains constant. 

§ The surviving clones display increasingly heterogeneous sizes. The distribution of basal 
clone sizes adopts a scaling behavior at long term , so that the chance of finding a 
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clone larger than some multiple of the average (a cumulative probability 𝑃01〈0〉2345(6)
7#8 ) 

becomes constant, i.e. 𝑃07#8(𝑡) = 𝑓	[𝑛/〈𝑛(𝑡)〉"#$%], where, typically, 𝑓(𝑥) = 𝑒?@. 
We found that these hallmarks are all fulfilled by the Lrig1-eGFPcreERT R26flConfetti clonal data 
(Figure 7; Supplementary Figure 4 C,D), and also shared by lineage-tracing datasets across 
different skin territories (Figure 8), confirming self-renewal dynamics in mouse squamous 
epithelia is dominated by stochastic cell fates comprising both symmetric and asymmetric 
division outcomes. 
 
However, it remains contested whether this stochastic clone dynamics is underpinned by a 
single population of dividing cells 10 or multiple populations. In different studies these 
multiple populations have been proposed either to coexist independently within a tissue 3 or 
with a hierarchical relationship between them 6 (Figure 1D). In the following subsections we 
formally describe the different models and explain their specific characteristics. 
 
The single-progenitor model 
 
In the single-progenitor model, there is a single population of progenitor cells (P cells), which 
divide regularly, with an average rate l, to give rise, with a certain probability, to either two 
daughter progenitors (P + P), two differentiating cells (D + D) or one of each (P + D) 10 (Figure 
1D). Differentiating cells (D) are post-mitotic and leave the basal layer with stratification rate 
G, constituting suprabasal-layer cells that are ultimately shed. We have omitted the dynamics 
in the suprabasal compartment as these cells do not contribute to tissue maintenance. 
 

 𝑃
A
→ C

𝑃 + 𝑃 Prob. 𝑟
𝑃 + 𝐷           Prob. 1 − 2𝑟
𝐷 + 𝐷 Prob.	𝑟

 (1) 

 𝐷
I
→ ∅ 

 
In order to ensure tissue homeostasis, the probabilities of symmetric divisions that lead to 
two proliferating cells or two differentiated cells are balanced, i.e. both are defined by a fixed 
parameter 𝑟 ∈ [0,0.5]. This sets a total of three unknown parameters θ = {l, r, G}. 
Furthermore, under these homeostatic conditions, one can assume that the proportion of 
progenitor cells in the basal layer, denoted as ρ, remains constant, and overall, the net rate 
at which post-mitotic cells are generated in the basal layer gets compensated by cell 
stratification (and shedding), so that ρ = Γ / (Γ + λ). It follows that unless the stratification rate 
is huge (Γ >> λ), the basal compartment would still show a substantial level of heterogeneity 
(with a mixture of both P and D cell pools). 
 
The two independent stem-cell 2XSC model 
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In this alternative model, derived from Sada et al 3 (see original formulation in section 5), two 
independent stochastic proliferating populations of stem cells are considered (2xSC model). 
These S1 and S2 populations divide at two different rates, lS1 << lS2, and each follows a pattern 
of stochastic fate choices similar as in Eq. (1) with a given probability of symmetric division 
outcome, rS1 and rS2, allowing duplication or differentiation. We make the simplifying 
assumption that rS1 = rS2 = r. 
 

 𝑆Q
ARSTU C

𝑆Q + 𝑆Q Prob. 𝑟
𝑆Q + 𝐷           Prob. 1 − 2𝑟
𝐷 + 𝐷 Prob.	𝑟

 

 

 𝑆V
ARWTU C

𝑆V + 𝑆V Prob. 𝑟
𝑆V + 𝐷           Prob. 1 − 2𝑟
𝐷 + 𝐷 Prob.	𝑟

 (2) 

 𝐷
I
→ ∅ 

 
This model yields five adjustable parameters θ = {lS1, lS2, r, G, ρS1}, where ρS1 is the fraction 
of slow-dividing stem cells in the basal layer. One can retrieve the proportion of fast-cycling 
stem cells ρS2, or the proportion of differentiating cells ρD = 1 - ρS1 - ρS2, from the parameter 
ratios given by the condition of homeostasis. In this way, ρS2 = (Γ - ρS1(Γ + λS1)) / (Γ + λS2). 
Alternatively, we can express the relative fraction of proliferating cells that are slow-cycling 
stem cells in homeostasis, 𝜒YQZ[% : 
 

 𝜒YQZ[% =
\RS(ARW]I)

\RS(ARW?ARS)]I
 (3) 

 
The hierarchical stem cell/committed progenitor model 
 
In this model, introduced by 6 and revisited in 7, a slow-cycling population of stem cells is 
considered to underpin the self-renewing dynamics of a second, quickly-dividing population 
of progenitor cells6. Stem (S) cells divide at a slow rate lS and undergo stochastic fates, so 
that they generate, with a certain probability, either two daughter stem cells (S + S), two 
progenitor cells (P + P) or one of each (S + P). Progenitor cells in turn divide at a faster rate, 
lP >> lS, and commit to stochastic fates too upon division, giving rise to progenitors or 
differentiating cells as previously indicated. Mascré et al 6 made the assumption that rS = rP = 
r (depicted below). In contrast, Sánchez-Danés et al 7 assumed these probabilities varied 
independently. 
 

 𝑆
AR→ C

𝑆 + 𝑆 Prob. 𝑟
𝑆 + 𝑃           Prob. 1 − 2𝑟
𝑃 + 𝑃 Prob.	𝑟
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 𝑃
A^TU C

𝑃 + 𝑃          Prob. 𝑟(1 − Δ)
𝑃 + 𝐷      Prob. 1 − 2𝑟
𝐷 + 𝐷          Prob.	𝑟(1 + Δ)

 (4) 

 𝐷
I
→ ∅ 

 
The hierarchical proliferative structure makes necessary to introduce a probabilistic bias (∆	∈
[0, 1]) in the progenitor daughter fates, so that on average progenitor cells differentiate more 
often than what they duplicate to compensate for their net production from the stem cell 
pool and thus guarantee tissue homeostasis. As a result, there are five unknown parameters 
θ = {lS, lP, r, G, D}. The following relationships between parameters can be established at 
homeostasis: 
 
 𝜆Y𝑆"" = 2𝜆bΔ𝑟c𝑃"" (5) 
 𝜆c𝑃""(1 + 2Δ𝑟c) = Γ𝐷"" 
 
where Sss, Pss, and Dss represent the bulk populations of stem cells, progenitors and 
differentiating cells in the basal layer at homeostasis, satisfying the stationary-state 
conditions dS/dt = 0, dP/dt = 0, and dD/dt = 0, respectively. Rearranging Eq. 5, we get: 
 

 𝜌Y =
f/AR

f/AR]Q]A^/I]f/I
 

 

 𝜌c =
Q

f/AR]Q]A^/I]f/I
 (6) 

 

 𝜌g =
A^/I]f/I

f/AR]Q]A^/I]f/I
 

 
where ρx represent the proportion of each x-cell type in the basal layer, and 𝜔 = 2𝜆bΔ𝑟c. 
From here one could deduce the relative fraction of proliferating cells that would represent 
slow-cycling stem cells in homeostasis, i.e. 𝜒YZ[% : 
 

 𝜒YZ[% =
Y22

Y22]c22
= 𝜌Y/(𝜌Y + 𝜌c) =

f
f]AR

 (7) 

 
Simulating stochastic clone dynamics under the different hypotheses 
 
In order to explore the range of possible clone dynamics that these different models can offer, 
we formulated each in terms of its corresponding stochastic Master equation. For instance, 
for the SP model we have: 
  (8) 
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𝜕𝑃0^,0j
𝜕𝑡 = 𝜆k𝑟(𝑛c − 1)𝑃0^?Q,0j + 𝑟(𝑛c + 1)𝑃0^]Q,0j?V + (1 − 2𝑟)𝑛c𝑃0^,0j?Ql

+ Γ(𝑛g + 1)𝑃0^,0j]Q − 𝜆𝑛c𝑃0^,0j − Γ𝑛g𝑃0^,0j  
 
where 𝜕𝑃0^,0j/𝜕𝑡 describes the time evolution of the probability of finding clones containing 
nP progenitor cells and nD differentiated cells. Due to the difficulty in computing the analytical 
solutions for these equations 11, in our analyses 𝑃0(𝑡), the probability of each given basal 
clone size n, was estimated for each model from multiple simulations (N = 100,000) of the 
Master equation, following Gillespie’s algorithm by default 12, 13 (for more elaborated 
methods, see sections 3,4). 
 
As initial condition, we generally set (except when stated otherwise) to start from a random, 
single labelled proliferative cell, since we can assume that any initially induced differentiating 
cell will be rapidly swept into the suprabasal compartment and therefore make a negligible 
contribution to the basal clone dynamics at medium-long term (t > 1/G). In this way, for the 
SP model: 𝑃0(0) = 𝛿0^,Q𝛿0j,n, where 𝛿0,8 represents the Kronecker delta. For the 2xSC 
model: 𝑃0(0) = 𝛿0RS,o(Q,pRSqr5)𝛿0RW,o(Q,Q?pRSqr5)𝛿0j,n; and for the SC-CP model: 𝑃0(0) =

𝛿0R,o(Q,pRqr5)𝛿0^,o(Q,Q?pRqr5)𝛿0j,n. Note that 𝐵(𝑚, 𝑝) represents a random binomial probability 

term in the two-dividing population models, so that on average, a fraction 𝜒YQZ[%  of simulations 
initiate with a labelled cell targeting the slow-cycling population, and 1-𝜒YQZ[%  with a quickly-
dividing cell, in proportions consistent with the actual ratio of these cell types in homeostasis 
(Eq. 3 and 7). 
 
All three models show highly similar scaling behaviour. Regardless of the parameter values 
chosen, clonal dynamics under the SP model adopts the general scaling properties described 
earlier. In particular, at t > 1/rl the system enters an asymptotic regime 10 where: 
 

 𝑃"#$%(𝑡) =
Q

Q]$A6
 

 〈𝑛〉"#$%(𝑡) =
Q
\
+ $A

\
𝑡 (9) 

 𝑃07#8(𝑡) = exp	[−𝑛/〈𝑛〉"#$%(𝑡)] 
 
The exponential scaling of the cumulative clone size frequencies 𝑃07#8 yields a linear trend 
when representing log 𝑃07#8(𝑡) vs. 𝑛/〈𝑛〉"#$%(𝑡), as observed in oesophageal epithelium 
(Supplementary Figure 4D).  
 
In the 2xSC and SC-CP models, the distribution of basal clone sizes converges to a shape where 
log𝑃07#8(𝑡) does not change fully linearly with the normalized basal clone sizes 𝑛/〈𝑛〉"#$%(𝑡) 
but displays a biphasic pattern with a U-shaped curve for small clone frequencies due to the 
mixture of the two different proliferating populations with distinct potential to yield larger 
clone sizes. However, any deviation from the exponential scaling becomes negligible under 
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most parameter conditions. Similarly, the average clone size and the fraction of surviving 
clones of these models adopt curved shapes that show only slight divergence from the single 
progenitor model for many parameter sets. 
 
Finally, it is worth commenting on the predictions for the evolution of the labelled cell 
fraction. If the labelled cell fraction faithfully represents the proportions of proliferative cell-
types in the homeostatic tissue and an adequate number of clone simulations were initiated 
from each subpopulation (starting with a single cell, in the way previously stated), the overall 
population of tracked (labelled) dividing cells across the 100,000 simulations 𝜋Z[% remained 
approximately constant over time, regardless of the model considered. However, these 
dynamics could become sub-linear or supra-linear under the SC-CP hypothesis insofar as 
different initial ratios of S and P cells, 𝜒Y,}~��}Z[%  and 1 − 𝜒Y,}~��}Z[% , were tracked than those 
expressed in Eq. 7. This would reflect a scenario where labelling preferentially targets P cells 
or S cells, respectively. The time evolution of the labelled cell fraction (omitting the 
contribution of D cells) would be described by: 𝑑𝜋Z[%/𝑁𝑑𝑡 = 𝑑𝑆/𝑑𝑡 + 𝑑𝑃/𝑑𝑡. Integrating, 
we get: 
 

 𝜋Z[%(𝑡) = 𝜒Y,}~��}Z[% �1 + AR
f
(1 − 𝑒?f6)� + �1 − 𝜒Y,}~��}Z[% �𝑒?f6  (10) 

 
This has motivated claims arguing that any deviation from a constant value over time can be 
attributed to imbalanced fate choices (SC-CP model dynamics, where one could primarily 
target one or the other dividing subpopulation) 7. Nevertheless, we note that if we considered 
a non-negligible fraction of differentiating cells in the basal layer and the possibility of 
labelling these at a more or less extent, sub-linear or supra-linear trends in the labelled cell 
fraction could be expected too under the SP model paradigm, if 𝜌c,}~��}  and thus 𝜌g,}~��} ≡
1 − 𝜌c,}~��}  were different than the proportions given by 𝜌 in homeostasis. In this case, 
𝑑𝜋/𝑁𝑑𝑡 = 𝑑𝑃/𝑑𝑡 + 𝑑𝐷/𝑑𝑡. Integrating: 
 

 𝜋(𝑡) = 𝜌c,}~��} �1 +
AR
I
(1 − 𝑒?I6)� + �1 − 𝜌c,}~��}�𝑒?I6  (11) 

 
Notice the similarity of this expression with that in Eq. 10, which relegates the point to a 
matter of differences in the time scales of the pre-asymptotic behaviour before settling to a 
constant value. 
 
Altogether, these theoretical modelling results suggest that lineage tracing alone would 
provide little evidence to support one or another stochastic cell fate model. 
 
H2BGFP dilution analysis and inference of homogeneous keratinocyte cell behavior 
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Since the 2xSC and SC-CP models involve the existence of subpopulations of proliferating cells 
dividing at different rates, we speculated that we could discriminate between these scenarios 
and that of the SP model by analyzing the heterogeneity in the pattern of H2BGFP expression 
of individual keratinocytes during the time course of H2BGFP dilution experiments in 
transgenic R26M2rtTA/TetO-H2BGFP mice. In this section we describe the experimental details 
and quantitative modelling involved in this analysis. 
 
Cohorts of at least 2-3 R26M2rtTA/TetO-H2BGFP mice were culled at 0, 7, 12 and 18 days post-
doxycycline administration, and the epithelial basal-layer plane imaged from wholemounts of 
esophagus and hindpaw, ear and tail skin (Figure 3A-B). Basal cells were identified as the 
deepest layer in confocal Z-stacks of epithelial or epidermal tissues (Supplementary Movies 
1-4). At least 5-8 random fields of view were analyzed per tissue per animal, acquired from 
distant regions of epithelium. This was to guarantee as much as possible the tissue 
representativeness and control for possible region-specific differences in the cellular 
turnover. Samples from back skin epidermis were acquired independently at 0, 5, 11, 14 and 
21 days post-doxycycline treatment, corresponding to controls used in another study 5. All 
images were processed with ImageJ to segment nuclear areas (based on DAPI staining) and 
quantify H2BGFP intensity levels in individual basal keratinocyte nuclei (intensity values were 
averaged over each nuclear area) (Supplementary Data 2). Mitotic cells and CD45+ (immune) 
cells were scored but excluded from the quantitative analysis. Also, immunostaining for Krt14 
(a basal keratinocyte marker) helped to exclude suprabasal cells or other cell types from 
further analysis in tail skin epidermis, which is particularly wavy (Figure 5A; Supplementary 
Movie 3). 
 
Patterns of keratinocyte H2BGFP intensity distributions 
 
If all proliferating keratinocytes behaved as an equivalent population of progenitors dividing 
at a similar constant rate l, we would expect a monotonous H2BGFP dilution pattern over 
time, where all individual-cell fluorescence intensities I(t) would approximately accommodate 
to a simple exponential decay (recall that the H2BGFP content dilutes two-fold with every cell 
division): 
 
 𝐼(𝑡) = 𝐼(0) × 2?A6  (12) 
 
where I(0) represents the initial cellular H2BGFP intensities. By contrast, if there were 
subpopulations of keratinocytes dividing at different rates (e.g. lS << lP), these would 
progressively segregate into different modes in the distribution of H2BGFP intensities at 
relatively long term, as 𝑡 ≫ 1/(𝜆c − 𝜆Y). A first visual inspection at the experimental data 
revealed individual-keratinocyte H2BGFP intensities remained overall tightly distributed and 
scarcely dispersed even at latest 14d-18d time points across the different tissues (Figure 3C 
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and Figure 4B,D,F). To formalize and automate the analysis, additional quantitative methods 
were adopted. 
 
Simulating H2BGFP dilution kinetics under different scenarios of cell proliferation 
 
An initial aim was to explore the quantitative H2BGFP dilution predictions and inference limits 
set by the different models of cell renewal under reasonable parameter assumptions (Figure 
1D). For this, we implemented stochastic simulations of the basal cell proliferation dynamics 
under each of these theoretical scenarios, in a similar manner as in section 2, with the 
peculiarity that simulations were embodied with real distributions of H2BGFP intensities I(0) 
in the initial cell populations and as individual cell division events occurred, these were linked 
with two-fold H2BGFP partitioning (Figure 3E). An additional noise term was included so that 
on average H2BGFP content in daughter cells differed by ~10%, in agreement with variability 
observed in vitro. Preliminary results using standard Markov-chain Monte-Carlo simulation 
methods (Gillespie’s algorithm) indicated that for common average division rates lP ~ 1.5–
3/week, a two-to-three weeks chase would be enough to reliably distinguish a 10% 
subpopulation of basal stem cells dividing at a ³4-fold slower rate lS as a separate, retarded 
peak in the distribution of H2BGFP intensities.  
 
A major issue of the Markov-chain Monte-Carlo implementations is that they assume kinetic 
processes are memoryless, and therefore, ignore the waiting times between consecutive cell 
divisions 14. In other words, they consider that the probability that a cell divides in a time 
interval is independent of its current state and previous time spent in progressing through 
the cell cycle and only depends on the particular value of l, so that, for a certain population, 
the time for completion of the cell cycle tcc satisfies an underlying exponential distribution: 
 
 𝑃(𝑡77)	~	𝜆𝑒?A6  (13) 
 
While this assumption may be acceptable to reproduce long-term dynamics, we found it had 
major limitations for a realistic description of cellular turnover at short-time scales, as for a 
given subpopulation with an average cell-cycle period 〈𝑡77〉 = 1/𝜆, at random, some 
simulated cells would divide almost immediately after being born while some others would 
exhibit cell-cycle periods much longer than the average. For this reason, we extended the 
Monte Carlo algorithm to allow Non-Markovian simulations that permitted to explore 
alternative, more realistic cell-cycle time distributions (Figure 3E; Supplementary Figure 2A). 
In particular, for each subpopulation cycling at a different average rate l one can implement 
a delayed exponential distribution 15: 
 
 𝑃(𝑡77)	~	𝜏� + 𝐸𝑥𝑝(𝜑) (14) 
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where there would be a refractory period tR between consecutive cell divisions (i.e. a 
minimum cell-cycle time before keratinocytes can commit to divide again). In this case, 
〈𝑡77〉 = 1/𝜆 = 𝜏� + 1/𝜑. However, more generally, we considered a whole family of 
hypothetical delayed Gamma distributions for the cell-cycle periods: 
 
 𝑃(𝑡77)	~	𝜏� + 𝐺𝑎𝑚(𝜅, 𝜃) (15) 
 
where k and q represent the shape and scale parameters of a Gamma distribution. Notice 
that for k = 1, this distribution is a delayed exponential (i.e. Eq. 15 becomes equivalent to Eq. 
14) and as k gets larger, the cell-cycle period distribution would be assumed narrower. In this 
scenario, 〈𝑡77〉 = 1/𝜆 = 𝜏� + 𝜅𝜃. 
 
The implementation of Gamma-shaped cell-cycle period distributions required modifying the 
time update process but also the initialization condition in the simulation code to allow for 
random, asynchronous cell cycle states at the starting time t0. This is to guarantee unbiased 
predictions on dynamics, since division processes would keep memory of past events (as 
opposed to Markovian implementations). In particular, the probability of capturing a cell at a 
particular time post-division t would not be uniform but proportional to the probability that 
longer cell-cycle periods tcc > t exist, and follows this equation: 
 

 ℘(𝜏) = 𝐶 × �
1 𝜏 < 𝜏�

1 − 𝐺𝑎𝑚𝐶𝐷𝐹(𝜏 − 𝜏�, 𝜅, 𝜃) 𝜏 ≥ 𝜏�
 (16) 

 
where C is a normalization factor and GamCDF is the particularized Gamma cumulative 
distribution function.  
 
 
 
 
By integrating Eq. 16, one can deduce that: 
 
 ℘(0 ≤ 𝜏 < 𝜏�) = 𝐶 × 𝜏� 
 ℘(𝜏� ≤ 𝜏 < ∞) = 𝐶 × ∫ (1 − 𝐺𝑎𝑚𝐶𝐷𝐹(𝜏 − 𝜏�))𝑑𝜏

�
��

 (17) 

 
Accordingly, in the simulations, initial cells were assigned random cell-cycle states t drawn 
from the corresponding underlying distributions (Eq. 16 and Eq. 17), so that a certain fraction 
were realistically ascribed to early stages of the cell-cycle (t < tR) and thus required longer to 
undergo the first round of division (and therefore start the H2BGFP content dilution). 
 
Following this refined methodology, we explored the H2BGFP dilution pattern predictions I(t) 
in different theoretical scenarios, including the SC-CP and 2xSC models under the 
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corresponding parameter conditions set by 6, and 3. Taking assumptions on the underlying 
cell-cycle time distributions in agreement with common estimates provided below (for 
quickly-dividing cells: tR = 0.5d, k = 8; for slow-cycling cells: tR = 0.1x <tcc>, k = 8), we found 
all these previous cases involving heterogeneous populations of slow- and quickly- dividing 
cells would lead to separated peaks in H2BGFP histograms by three weeks, in contrast to SP 
model predictions where individual-cell H2BGFP distributions would remain as a single peak 
(Figure 4A). 
 
Unimodality tests and cell-proliferation model inference 
 
In order to formalize the classification of H2BGFP dilution patterns and test the efficiency to 
discriminate between homogeneous and heterogeneous proliferating cell population 
hypotheses, we next applied multiple statistical tests for unimodality. Six different methods 
were considered: Hartigan & Hartigan (1985) dip test (HH) 16,   Silverman (1981) critical 
bandwidth test (SI) 17, Cheng & Hall (1998) excess mass test (CH) 18, Hall & York (2001) critical 
bandwidth test (HY) 19, Fisher & Marron (2001) Cramer-von Mises test (FM) 20 and Ameijeiras–
Alonso et al (2018) excess mass test (ACR) 21. All these tests yielded significant p-values for 
the H2BGFP distributions of the SC-CP and 2xSC scenarios set above, classifying them as 
multimodal (Figure 4A).  
 
Having demonstrated the reliability on synthetic data sets, we applied the unimodality tests 
to the experimental data to estimate the likelihood that the evolving fluorescence intensity 
distributions arose from a single proliferating cell population or cells dividing at multiple rates. 
Empirical distributions remained largely unimodal over time across body sites, both by 
analysing individual mice-derived data (Figure 3D) or individual fields of view separately 
(Supplementary Data 3). ~5 % of all samples were identified as multimodal based on p=0.05 
(without multiple comparison correction). We found that there was no clear relationship 
between collection time and multimodality, and that, when observed, multimodality was 
inconsistent between animals. Furthermore, regardless of collection time, cell 
subpopulations classified as multimodal differed in a single division round, suggesting that 
the time of collection for those animals could occur during progression of synchronised 
divisions. 
 
The analyses performed per field of view more strongly favoured unimodality than the 
individual animal measures, suggesting minor spatial asynchronies in the cell division timing 
(Figure 5C). Altogether, our data are consistent with a single average rate of cell division l at 
any given site, supporting the simplest SP model paradigm throughout the oesophagus and 
different skin niches. 
 
Estimating the distribution of keratinocyte cell-cycle times 
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To further validate the SP model, we fit models of cell-cycle time distributions to the observed 
H2BGFP intensity profiles over time. If a unique mode of cell proliferation prevailed across 
the entire population of keratinocytes, the full shape of the cellular H2BGFP distributions at 
different times would be reproducible by means of a model distribution of cell-cycle periods 
(Eq. 15).  
 
A grid-based Approximate Bayesian Computation (ABC) rejection method 22, was 
implemented to fit the time series of experimental H2BGFP intensity distributions with results 
from SP model simulations varying the values of the unknown cell-cycle parameters tR and k. 
In this methodology for each tissue we fixed the value of the parameter l (l = 2.9, 2.0, 1.5, 
1.2/week for oesophagus, hind-paw, ear and dorsum, respectively; estimated from the linear 
slope in the semi-logarithmic plot showing log(I) vs. time; see Eq. 12). Basal cell H2BGFP 
content dilution was simulated starting from initial values drawn from the corresponding 
empirical I(0) distribution, used as prior, and similar assumptions on label partitioning were 
considered as the ones described above.  
 
A distance metric was computed for every {tR, k} value pair based on the sum of absolute 
quantile differences between the simulated and the empirical I(t) histograms at the different 
time points, using quantiles taken at 0.025, 0.25, 0.5, 0.75, and 0.975. This identified a family 
of acceptable shapes for the cell-cycle period distribution, obtained as posterior estimates 
(Figure 3G; Figure 4 C,E,G). In agreement with the SP paradigm, we obtained adequate fits on 
the whole series of keratinocyte H2BGFP dilution patterns with the following cell-cycle 
attributes: {tR = 0.5, 1.0, 0.5, 0.5 days; k = 8, 4, 8, 16} for oesophagus, hind-paw, ear and 
dorsum, respectively (Figure 3C; Figure 4 B,D,F; Supplementary Data 4). Note using the 
outcome of a Kolmogorov-Smirnov test as an alternative distance metric did not substantially 
alter the cell-cycle solutions. 
 
 Single-progenitor parameter inference from clonal data sets 
 
Nine independent lineage-tracing data sets were exploited to challenge the suitability of the 
SP model to explain clonal dynamics in the esophagus and the different skin territories, and 
ultimately infer the most-likely parameter values of keratinocyte cell behavior. Given the 
diverse methodologies and disparity of inference results described so far in the literature (see 
section 5), we decided to undertake a single, robust, maximum likelihood estimation (MLE) 
approach for model fitting across data sets. In particular, a comprehensive grid search was 
performed on the unknown SP model parameters, and for every set of parameter values θ 
we run multiple simulations (see below) to get a theoretical estimate of the time course in 
the basal clone size distributions, to be contrasted with the experimental one. A log-likelihood 
value 𝑙(𝜃; 𝑥) was calculated as follows: 
 
 𝑙(𝜃; 𝑥) = ∑ ∑ (𝑥0(𝑡) ∗ log𝑝0(𝑡, 𝜃))06  (18) 
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where 𝑥0(𝑡) is the observed frequency of clones of a certain basal size n at time t, and 𝑝0(𝑡, 𝜃) 
is the probability of observing clones of that size at time t given the parameter values θ, a 
quantity obtained from the model simulations. 
 
Note that, given the particular scaling behavior of the clone size distributions and their large 
asymmetry (approximately log-normal-like shapes), clone sizes were conveniently binned in 
ranges increasing in powers of two, as done in previous work 5, i.e. n above stands for clones 
with a number of basal cells in the range (2n-1 + 1) to 2n. Also, only surviving clones with at 
least 2 basal cells were considered for the MLE analysis, to exclude any possible contribution 
due to post-mitotic cells labelled at induction (recall the initialization condition for 
simulations was 𝑃0(𝑡0) = 𝛿0^,Q𝛿0j,n). Additionally, in some experimental data sets a small 
proportion (<1%) of late-time clones were reported with sizes that greatly exceeded the vast 
majority of their coexisting clones (i.e. sizes >> 2.3*SD above the mean clone size, a reference 
for the 99% CI threshold of log-normal distributions). This occurred for 3, 4 and 5 clones in 
the data sets from esophagus 1, dorsum 5 and paw 8, respectively. These outlier clones, which 
could be interpreted as a result of non-neutrality or coincidental fusion between two adjacent 
clones, were pooled together and assigned into the immediate prior category of clone sizes 
to circumvent the computational issues of estimating the probability of extremely rare events 
with sufficient precision. However, excluding these outstandingly large clones from the 
analysis did not substantially alter the parameter estimates provided below. 
 
Maximum likelihood estimates 𝜃£¤¥¦  (maximizing the expression in Eq. 18) were obtained for 
each data set, and presented with 95% confidence intervals computed based on the 
likelihood-ratio test 21. Parameter solutions were plotted as heatmaps in 2D or 3D parameter 
spaces (as applicable), color coded according to the value of the log-likelihood ratio statistic 
(the maximum value of 0 corresponding with the 𝜃£¤¥¦). Parameter sets with values falling 
below -7.81 (the c2 statistic cutoff for an a=0.05, 3 degrees of freedom) were considered non-
optimal and generally not displayed. 
 
Cell cycle time constrained parameter inference 
 
As a first approximation to parameter inference, simulations were performed using Gillespie’s 
Markov-chain Monte-Carlo algorithm (as described in section 2) and all the 3 parameters of 
the SP model were considered unknown (Supplementary Figure 1A). We thus iterated on 
values of 𝑟 ∈ [0, 0.5], 𝜌 ∈ [0, 1] and 𝜆 (within a reasonable range of values: ∈
[0.4, 3.6]/week) (recall ρ = Γ / (Γ + λ) in homeostasis), testing a total of ~230,000 parameter 
conditions in a 3D space (super-computing resources at the Wellcome Sanger Institute were 
used for parallelization). Multiple parameter combinations yielded relatively good fits on 
clone size distributions over time (Supplementary Figure 1A-B). l may be accurately 
measured independently by H2BGFP dilution experiments (section 3), so that, in practice, we 
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used this estimate to constrain our parameter search to 2D (a total of 101 ´ 100 parameter 
combinations were explored). By this means, we increased the discrimination on the values 
of the parameters r and r (or G), yet a certain level of imprecision remained among solutions 
aligning around constant r/r ratios, leaving a characteristic, relatively long trail of coloured 
patterns in the corresponding heatmaps (Supplementary Figure 1C) (see below). 
 
One could potentially speculate if this level of parameter imprecision was due to biological 
variability (e.g. inter-mice differences or age-related differences in cell behaviour across the 
distinct time points). However, we separated the MLE calculation into individual time point 
analyses, observing each was consistent with a similar pattern of degenerated solutions 
(Supplementary Figure 1C, upper panels). We also generated synthetic data sets by strict 
simulation of the SP model under specific parameter values and submitted their clone size 
distributions to a similar MLE inference analysis, obtaining comparable levels of inaccuracy 
for same sample sizes (Supplementary Figure 1C, bottom panels). This suggested that 
parameter uncertainty was not biological, nor due to a flawed, inappropriate SP-model 
definition. We highlight in the different experimental heatmap panels how the direction in 
our MLE parameter uncertainties fell indeed consistent with the r/r ratios obtained from the 
asymptotic linear slope in the average clone size over time (Figure 7D, grey lines) (dashed 
lines correspond with the 95% CI limits in the linear slope). It follows that it is an inherent 
feature of the stochastic nature of clone fates and their quick convergence into a scaling form, 
as extended synthetic data sets revealed: the level of imprecision could in theory be further 
attenuated by larger experimental sample sizes at relatively early time points 
(Supplementary Figure 1D).  
 
A second issue arises from the possible impact the assumptions on the cell-cycle time 
distribution may have on clone-size estimates and hence on parameter inference. For that 
reason, Non-Markovian simulations of the SP model were tested, with different hypothetical 
underlying cell-cycle time distributions, as we did in section 3 for cell-proliferation studies 
(Supplementary Figure 2A). Theoretical simulation results confirmed clone size frequencies 
predicted at relatively early time points differed substantially between implementations 
carried out with Gamma-distributed cell-cycle periods and those with default exponential 
assumptions, differences getting smaller over time, as shown by Kullback–Leibler divergence 
(Supplementary Figure 2B-C). On average, it was not until a critical time Tc of 3 (2; 10) × 〈𝑡77〉 
that details of the shape of cell-cycle time distribution became unimportant on clonal 
predictions. This meant the shortest experimental time points, when clonal data have not yet 
fully converged to the long-term scaling behavior and can potentially improve the precision 
of estimated cell parameters, were also more prone to contribute to a biased inference given 
unrealistic assumptions on the cell-cycle time distribution (Supplementary Figure 2D-E). 
Therefore, our SP model simulations used for MLE parameter inference were constrained for 
each body site by the actual cell-cycle time distribution estimated from the corresponding 
H2BGFP dilution analysis (section 3) (Figure 6). 
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Following this more realistic methodology, the SP parameter estimates 𝜃£¤¥¦  generally shifted 
towards lower values of r (and a slower stratification rate G) than those predicted with 
default Markovian simulations (i.e. exponential tcc distributions), discarding hypothetical 
scenarios where differentiating cells would be largely absent in the basal compartment and 
would stratify almost immediately after being born (Figure 4D). Excellent fits were obtained 
on the time courses of the experimental clone size distributions -including early and long-
term clonal behavior- across data sets, resulting in a statistically significant improvement over 
the model predictions made by the original publications (Figure 7E; Figure 8A-C; 
Supplementary Data 4). Compared to our 𝜃£¤¥¦ , the value of the log-likelihood ratio statistic 
of previous estimates was: -9.4 (for Doupé et al’s 1 fits in esophagus ), -364.2 (for Lim et al’s 1 
fits in hind-paw epidermis), -29.3 (for Doupé et al’s fits in ear epidermis 23) and -13.0 (for 
Murai et al’s fits in dorsal epidermis 5). Altogether, our fits confirm the suitability of the SP 
model and provide more accurate descriptions of the parameters defining keratinocyte cell 
behavior in the different territories (Table 1). 
 
2. Revisiting alternative datasets and interpretations 
 
Here we revisit published work from the literature in order to test the ability of a cell-cycle 
time-sensitive SP model to explain these different datasets, and we reexamine the specific 
arguments and claims previously given in support of alternative models. 
 
Doupé et al (2012), esophageal epithelium1 
 
In Doupé et al. we first studied the validity of the SP model in the mouse esophageal 
epithelium, by lineage tracing using Ah-CreER R26EYFP mice. An analytical approximation was 
then followed to solve the theoretical clone size likelihoods and Bayesian inference used for 
SP model parameter estimation. The estimate for l = 2/week at that time was congruent with 
an independent H2BGFP dilution experiment, even though we now consider that the poor 
late-time H2BGFP signal-to-noise ratio on that occasion could lead us to underestimate the 
true division rate. In the present study we got a higher average division rate l = 3/week with 
new technology and more animals and time points (Figure 3). This fact as well as the 
consideration of Gamma-distributed cell-cycle periods made our new parameter estimates to 
slightly deviate from those reported in Doupé et al (Figure 7D,E; section 4).  
 
Giroux et al (2017), esophageal epithelium2 
 
Giroux et al performed lineage tracing in mouse esophageal epithelium using a Krt15 
promoter, and postulated the existence of a long-lived subpopulation of stem cells, 
characterized by high expression of KRT15. The authors concluded on the heterogeneous 
proliferation potential of the esophageal basal cells –a scenario compatible with a hierarchical 
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stem-cell transit-amplifying cell model – based on the molecular properties of the Krt15+ basal 
cells and the long-term persistence of a subset of Krt15-labelled clones well beyond the 
homeostatic renewal time of the epithelium, giving rise to all differentiated lineages. This 
observation is however consistent with the SP model, since, as noted above, a small number 
of clones dominate the tissue after extended periods. Giroux et al  did not report clone sizes, 
but data on clonal densities could be recovered from presented figures. Using these 
experimental lineage-tracing results in Krt15-CrePR1 R26mT/mG mice as an independent dataset, 
we found that the single progenitor model proposed for the esophagus was indeed capable 
of reproducing observed data. The best parameter estimates obtained from the analysis of 
Lrig1-eGFPcreERT R26flConfetti clones produced excellent fits on the time course in the Krt15-
labelled clone density from2(Supplementary Figure 4F, left panel; Supplementary Data 4). 
Finally, we extended our analysis to consider the label distribution across differentiated cell 
layers (Fig. 2E in 2). Again, we observed the SP predictions were consistent with experimental 
observations (Supplementary Figure 4F, right panel; Supplementary Data 4), indicating that 
a hierarchy is not required to explain esophageal epithelium dynamics. 
 
Mascré et al (2012) and the SC-CP model 
 
Mascré et al propose a proliferative hierarchy of slow-cycling stem cells underpinning 
committed progenitor cells (SC-CP model) from the quantitative analysis of clonal fates in the 
tail interfollicular epidermis. The authors argue that cells labelled with two different inducible 
genetic constructs targeting the promoters Ivl and Krt14 have distinct dynamics. They 
conclude that Ivl and Krt14 are markers of P cells and both P and S cell populations, 
respectively. However, in this paper the authors did not test the ability of alternative models 
to describe the observed data. The SC-CP model was explicitly claimed to explain the diverging 
trends in the surviving clone fraction and the labelled cell fates at the earliest time points.  
 
Unfortunately, the clonal data was not available. Alternatively, cell proliferation-related data 
could be extracted from plots of an independent H2BGFP dilution experiment performed to 
validate their predictions. We reanalyzed the displayed distributions of the number of cell 
divisions (see Fig. 3k in 5) and found that a SP model (l = 1.3/week; cell-cycle distribution with 
tR = 0.6 days, k = 1.5) (Supplementary Data S4) could provide a similar, suitable fit on the 
experimental data along the different chase times (Supplementary Figure 6A). Furthermore, 
no bimodality was observed in the distribution of histone intensities, as one might expect by 
the 3 week timepoint if there was a significant subpopulation of slow-cycling stem cells 
dividing at lS ≈ 0.1/week (Figure 4A; section 3). 
 
A limitation for this study is that the structural heterogeneity of murine tail was not 
considered, when distinct spatial territories (scale and interscale regions; Figure 5A) are 
believed to show different developmental processes, cell proliferation rates, and 
differentiation programs24. As in 3, this spatial information was not considered in 5, where 
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H2BGFP fluorescence was analyzed from FACS on pools of basal (a6-integrin+ CD34–) cells. 
Another potential issue was that no labelling and exclusion of immune, CD45+ cells was 
performed in the study of label retaining cells, which could introduce a source of error.  
 
Sánchez-Danés et al (2016), tail skin 
 
As a continuation to the work in Mascré et al 5 6 revisited clonal dynamics in tail skin by 
inducible genetic labeling using same targeted promoters, Ivl and Krt14, but analyzing labelled 
clones independently in scale and interscale regions. While they conclude that a SP model 
explains clonal dynamics in scale, they argue the SC-CP model prevails in interscale on the 
basis of the different clonal dynamics observed using the Ivl-CreER and Krt14-CreER constructs. 
The evidence used to make this argument is an apparent decrease in the labelled cell fraction 
over time for the Ivl-CreER-targeted population (argued to only label committed progenitors), 
and an increase in the labelled cell fraction of the Krt14-CreER-targeted clones (considered to 
comprise driving stem cells) (see Fig. 2e in 6) (Eq. 10). Here, the labelled cell fraction was 
estimated as a product of the average basal clone size and the overall clone density, which is 
discussed later.  
 
For the purpose of model fitting and validation they assumed division rates for the P cells 
similar to those reported in 5 in both scale or interscale regions (lP ≈ 1.2/week). A least-
squares minimization procedure was then used to fit the evolution of the mean clone sizes 
for each construct in each compartment, using the corresponding ascribed model, either the 
SP or the SC-CP model. They found the best fit for the labelled Krt14-CreER clones in interscale 
was attained with a SC-CP model where lS = 0.45/week, rS = 0.03, lP = 1.7/week, rP = 0.19, D 
= 0.02 and 𝜒Y,}~��}Z[%  = 0.65 (see Fig. 2d in 6). The confidence intervals in the value of D span the 
D = 0 condition, suggesting that a fit on clonal dynamics would be possible without P cells 
showing a necessary imbalance towards terminal differentiation, raising the question of 
whether a SP model could recapitulate the data. 
 
We therefore fitted the experimental basal clone size distributions 6 with a SP model, taking 
lP = 1.2/week, as in 5. The best-fit parameter sets showed improved fits on both the scale- 
and interscale- Krt14-CreER clone data (Supplementary Figure 6B; Supplementary Data 4). 
Our results for interscale demonstrate that a SP model (lP = 1.2/week, r = 0.09, G = 2.2/week) 
showed satisfactory fittings on the clone size frequencies, average clone size and clonal 
survival over time (Supplementary Figure 6B-D). 
 
Given that time courses in clone size and clonal survival are both consistent with the SP 
model, it is sensible to consider whether the apparent trends in the labelled cell fraction can 
also be explained within this paradigm. While the labelling of a large, representative set of 
dividing cells in homeostasis would in principle remain overall constant over time, there are 
two possible sources of variation that could contribute to the observed deviations with the 
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SP model: stochastic growth or decline in a finite labelled population, and inter-animal 
variation in initial label induction. To address the question of whether these sources of 
random variation could be sufficient to explain the extent of increase in the Krt14-CreER- 
labelled cell fraction, we reexamined noise by error propagation in both the original data and 
simulated SP model. 
 
To account for inter-animal variation in label efficiency, we measured SD from clonal density 
data by exclusively studying a single, arbitrarily selected sub-region per animal (N = 2-5 mice 
per time point). In the original study, multiple distinct sub-regions were treated as 
independent observations, reducing the apparent error arising from variable labelling. The SD 
in clone density was then integrated together with the SEM in basal clone size to obtain the 
experimental error in the estimated label cell fraction at each time. To estimate variations in 
average clone size due to SP stochasticity, we subsequently run time-course simulations 
tracking the same number of clones counted in the experiments (N = 72, 75, 40, 31, 47, 70 
clones sampled at time 1, 2, 4, 8, 12 and 24w, respectively), and measured the SEM and 
average clone size obtained through multiple runs. This info was combined with independent 
time-course simulations of clone density reproducing the variable clonal induction. From this 
analysis we find that any trend in the experimental Krt14-CreER-labelled cell population from 
6 largely fell within the domain of uncertainty given by the combined sources of variation, 
considering the actual level of sampling error, with just the very last time point being at the 
borderline of the 95% confidence interval (Supplementary Figure 6E). 
 
Finally, given that Krt14-CreER clonal dynamics can be explained by the SP model, it raises the 
question of how distinct the Ivl-CreER interscale clone population behavior is. Indeed, 
excluding the earliest two experimental time points (up to 2 weeks post-induction, where 
dynamics could be potentially influenced by initial priming of labelled cells towards 
differentiation; recall Eq. 11), we find an adequate fit over the time courses in the average 
clone size, clonal survival and labelled cell fraction with just the same parameter values 
obtained from fitting Krt14-CreER populations (Supplementary Figure 16F-H; Supplementary 
Data 4). This suggests that two distinct promoters could target the same, unique proliferative 
cell type.  
 
Sada et al (2016) and the 2xSC model 
 
Sada et al 3 propose a model of epithelial cell renewal where tissue is maintained by two 
independent populations of dividing stem cells cycling at different rates (2xSC model). This 
model was based upon observations made in H2B-GFP dilution experiments in back-skin 
keratinocytes. In these experiments the authors tracked H2B-GFP histograms of FACS-sorted 
epidermal cells from Krt14-creERT R26tdTomato Krt5tTA/pTRE-H2BGFP mice collected after 
different chase times with doxycycline (Supplementary Figure 5A).  
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Based on this experiment, the authors reported resolved distributions of the number of cell 
divisions for the basal, spinous and granular layers separately. They further attempted to fit 
different published models to the data, finding that neither the SP-model nor the SC-CP model 
adequately described the data, whilst the 2xSC model was compatible (see Fig. 3 in 4). Here 
we examine their model implementation (in contrast to the more general mathematical 
description given in section 2). 
 
In their model, the authors considered two subpopulations of basal cells, S1 and S2. Cells in 
the S2 population may either divide or stratify. Division occurs slowly, giving two S2 daughter 
cells, and stratification is conceived as an independent, “division-uncoupled” process. That is 
to say, cell fate is not determined on birth. We note that this subpopulation would in fact 
behave equivalently to a constrained SP-model where r=0.25 (e.g. see 12).The authors’ 
decision to consider S2 basal cells as a single pool undergoing symmetric divisions is perhaps 
arbitrary, since in homeostasis half of these cells should go on to divide and half should stratify 
(i.e. can be called D-cells), hence the reason for r=0.25 using the SP-model formulation (Eq. 
1). Regardless of whether biological differentiation initiates prior to, concomitantly to, or 
after stratification, a class of basal “D” cells (ignored by the authors) arising from the S2 
population can be defined post hoc, as those cells that proceed to stratify (as described above 
in section 2). Thus, the time of fate determination does not alter the model formulation and 
S2 cells can be considered as a stochastic SP population (Eq. 1).  
 
S1 cells in contrast divide quickly and asymmetrically, giving one S1 daughter and one 
stratifying, suprabasal daughter, implying any differentiating D cell stratifies immediately 
upon birth (“division-coupled stratification”). This is a deterministic process of invariant 
asymmetric self-renewal, and as such, would not be supported by clone size distributions 
observed in lineage tracing experiments (see section 2). 
 
To resolve this issue, the authors introduce a variant of the 2xSC model (termed the “hybrid” 
2xSC model, as opposed to the former “semi-coupled” one) where the S1 population 
undergoes a combination of symmetric and asymmetric divisions. It follows that S1 
differentiating cells should stochastically choose between waiting and following an uncoupled 
stratification process (with probability uS1) or stratifying immediately after division (with 
probability 1- uS1). We note that whilst this new complex mechanism could reproduce clone 
size distributions, there exists no direct evidence to support it. 
 
The hybrid 2xSC model was directly implemented using the following differential equations 
to account for H2B-GFP dilution kinetics (pg.14-16 in Supplementary Note in 4): 
 
 𝐷6𝜂ZYQ(𝑡) = (1 + 𝑢YQ)𝜆YQ𝜂Z?QYQ (𝑡) − (𝜆YQ + 𝑢YQ𝑘YQ→Y¥)𝜂ZYQ(𝑡) 
 𝐷6𝜂ZYV(𝑡) = 2𝜆YV𝜂Z?QYV (𝑡) − (𝜆YV + 𝑘YV→Y¥)𝜂ZYV(𝑡) (19) 
 𝐷6𝜂ZY¥(𝑡) = 𝑢YQ𝑘YQ→Y¥𝜂ZYQ(𝑡) + (1 − 𝑢YQ)𝜆YQ𝜂Z?QYQ (𝑡) + 𝑘YV→Y¥𝜂ZYV(𝑡) − 𝑘Y¥→­¥𝜂ZY¥(𝑡) 
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subjected to boundary conditions 𝜂Z@(0) = 𝛿Zn𝜌@ , where 𝜂Z@(𝑡) represents the density of cells 
of type x that have divided d times by time t. In the extreme, semi-coupled scenario (uS1 = 0), 
the equations were reported as: 
 

 𝐷6𝜂ZYQ(𝑡) = 𝜆YQ ®𝜂Z?QYQ (𝑡) − 𝜂ZYQ(𝑡)¯ 

 𝐷6𝜂ZYV(𝑡) = 2𝜆YV𝜂Z?QYV (𝑡) − (𝜆YV + 𝑘YV→Y¥)𝜂ZYV(𝑡) (20) 
 𝐷6𝜂ZY¥(𝑡) = 𝜆YQ𝜂Z?QYQ (𝑡) + 𝑘YV→Y¥𝜂ZYV(𝑡) − 𝑘Y¥→­¥𝜂ZY¥(𝑡) 
 
In a later refinement, the authors replaced the S1 and SL processes by two-step Poisson 
processes involving two subpopulations, each having twice the rate of the original process, in 
order to recreate Gamma waiting-time distributions (k=2). This final model was the one used 
to fit to the experimental data, and thus the one we reassessed. Nevertheless, our main points 
below arise from the core implementation, and apply irrespective of waiting-time 
considerations, reason why we present equations as in their simple version for clarity. 
 
Here, we reimplemented Sada et al’s model to test its properties. To do so, we first displayed 
the hybrid 2xSC model mathematically, in terms of its constituent processes and associated 
transition probabilities: 
 

 𝑆Q →

⎩
⎪
⎨

⎪
⎧

	
			
ARSTU 𝑆Q + 𝑆Q Prob. 𝑢YQ/(1 + 𝑢YQ)

			
ARSTU 𝑆Q + 𝑆𝐿            Prob. (1 − 𝑢YQ)/(1 + 𝑢YQ)
µRS→R¶T⎯⎯⎯U 𝑆𝐿 Prob.	𝑢YQ/(1 + 𝑢YQ)

 

 

 𝑆V → C				
ARWTU 𝑆V + 𝑆V              Prob. 0.5
µRW→R¶T⎯⎯⎯U 𝑆𝐿             Prob. 0.5

 (21) 

 𝑆𝐿
µR¶→¸¶T⎯⎯⎯U ∅ 

 
where lS1, kS1->SL, and lS2, kS2->SL denote the division and stratification rates of the S1 and S2 
populations, respectively. SL refers to the population of cells in the first suprabasal (spinous) 
compartment, which would transit with rate kSL->GL to the granular layer and to more external 
layers successively (here not depicted). In homeostasis, kS1->SL = lS1, kS2->SL = lS2, and 𝑘Y¥→­¥ =

®𝜆YQ𝜒YQZ[%/(1 + 𝑢YQ) + 0.5	𝜆YV�1 − 𝜒YQZ[%�¯ /𝑚, where 𝜒YQZ[%  is the fraction of S1 basal cells and 

m is the spinous suprabasal-to-basal cell ratio. The event probability terms in Eq. 21 are those 
required for homeostasis. From Eq. 21 it becomes apparent how Sada et al’s hybrid 2xSC 
model represents a particular case of a two SP model combination where rS2 = 0.25, rS1 = 
uS1/(1+uS1) and Γ → ∞ (i.e. differentiating D-cells stratifying immediately upon birth to yield 
SL cells). That is why in section 2 we adopted the more general form to represent the 2xSC 
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model (Eq. 2) (in that case we referred to the slow-cycling population as S1 for convenient 
comparison with SP and SC-CP schemes). 
 
When we derive the kinetic equations for H2B-GFP dilution analysis from Eq. 21 we obtain: 
 

 𝐷6𝜂ZYQ(𝑡) = 𝜆YQ𝜂Z?QYQ (𝑡) − ® Q
Q]#RS

𝜆YQ +
#RS
Q]#RS

𝑘YQ→Y¥¯ 𝜂ZYQ(𝑡) 

 𝐷6𝜂ZYV(𝑡) = 𝜆YV𝜂Z?QYV (𝑡) − 0.5(𝜆YV + 𝑘YV→Y¥)𝜂ZYV(𝑡) (22) 

 𝐷6𝜂ZY¥(𝑡) =
#RS

Q]#RS
𝑘YQ→Y¥𝜂ZYQ(𝑡) +

Q?#RS
Q]#RS

𝜆YQ𝜂Z?QYQ (𝑡) + 0.5𝑘YV→Y¥𝜂ZYV(𝑡) − 𝑘Y¥→­¥𝜂ZY¥(𝑡) 

 
For uS1 = 0 (semi-coupled case), these simplify to: 
 

 𝐷6𝜂ZYQ(𝑡) = 𝜆YQ ®𝜂Z?QYQ (𝑡) − 𝜂ZYQ(𝑡)¯ 

 𝐷6𝜂ZYV(𝑡) = 𝜆YV𝜂Z?QYV (𝑡) − 0.5(𝜆YV + 𝑘YV→Y¥)𝜂ZYV(𝑡) (23) 
 𝐷6𝜂ZY¥(𝑡) = 𝜆YQ𝜂Z?QYQ (𝑡) + 0.5𝑘YV→Y¥𝜂ZYV(𝑡) − 𝑘Y¥→­¥𝜂ZY¥(𝑡) 
 
Comparing Eq. 22-23 with Eq. 19-20, we observe that Sada et al3 omitted some probability 
terms in their equations; most noticeably the 0.5 factor accompanying the lS2 parameter, 
which could have potentially impacted on the estimates given for S2 the division rate. To shed 
light on this, we simulated H2BGFP dilution kinetics of the 2xSC model, taking the estimated 
parameter values from in the paper 4: lS1 = 0.47/day, lS2 = 0.19/day, uS1 = 0.20, 𝜒YQZ[%  = 0.74. 
We found that we were unable to reproduce the reported fittings on the distributions of cell 
division number. In fact, these conditions resulted in bimodal H2BGFP dilution profiles and 
very poor fits against their experimental data (Supplementary Figure 5B: dashed blue lines) 
(This bimodality becomes even more prominent when considering narrower cell-cycle time 
distributions comparable to those we find in our experiments (Figure 4A)). In contrast, when 
keeping all other constants equal but using lS2 = 0.38/day (a value twice the one reported), 
we found that the model fitted the data well, consistent with the fits originally presented by 
the authors, suggesting that the reported value for lS2 was incorrectly half of the actual rate 
(Supplementary Figure 5B: solid blue lines). To corroborate these findings, our analysis was 
performed both by stochastic simulation of processes in Eq. 21 (following the methods 
described in section 3) and by numerical integration of Eq. 22-23, obtaining the same results. 
 
In light of the apparently similar rates of division for the S1 and S2 populations (lS1 » 3.3/week 
and lS2 » 2.7/week), we reinvestigated whether the SP model could provide an adequate fit 
of the data. Whilst the authors reported poor fits with a SP model (Supplementary Figure 5B: 
dashed orange lines), this model was just tested assuming rates could be adequately 
modelled as Poisson processes, whereas the 2xSC model was implemented using Gamma 
distribution waiting-time processes. As explored in section 3, the choice of distribution for 
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cell-cycle times can substantially alter fits for histone dilution experiments, and we therefore 
took account of this explicitly. 

Using the methods described in section 3, we explored different rates and waiting time values 
for the SP model and obtained fits similarly good as with the 2xSC model with a single 
population with division rate l = 3.1/week with a minimum refractory period tR = 0.4 days, 
and a stratification rate G = kSL->GL = 16x l following a Gamma distribution with shape 
parameter kstrat = 2.8 (Supplementary Figure 5B: solid orange lines; Supplementary Data 4). 
We therefore conclude that the SP model proves suitable to explain the dataset in 3. 

Füllgrabe et al (2015), back skin 4 

Füllgrabe et al performed genetic lineage tracing followed by quantitative analysis of clone 
dynamics from Lgr6-expressing back-skin cells, observing scaling properties indicative of 
stochastic, population asymmetry self-renewal in the interfollicular epidermis of murine 
dorsum. Although the authors did not attempt a detailed model 
verification/parameterization, we considered the lineage tracing outcome from Lgr6-
creERT/R26Confetti mice could constitute an ideal independent dataset to challenge our SP-
model predictions against. Given the fact that labelling of Lgr6+ cells was induced early in 
postnatal development (P3w), at a time when the tissue was likely not yet homeostatic (see 
Fig. 1D in 4), we restricted the analysis to the late time points where mice were at least 8w 
old and the tissue was representative of adulthood. To do so, we randomly sampled the 
observed clone sizes at 40 days post-induction as initial modelling condition and simulated 
clonal dynamics over the period up to the 100-days and 150-days timepoints using a SP model 
with the parameters inferred from the H2B-GFP pulse-chase (Supplementary Figure 4F-G) 
and Ah-creERT/R26EYFP system (Figure 8C; Table 1; Supplementary Data 4). To take account of 
the unknown composition of initial preformed clones, we randomized (according to a 
binomial distribution) the proportion of P-cells in each simulated initial clone according with 
the parameter ρ = 0.61. 

Our fits fell in agreement with the observed growth in the average clone size as well as with 
the experimental time courses in the frequencies of clone sizes (Supplementary Figure 5C). 
These results reaffirm the validity of the SP paradigm in murine back skin with the parameter 
values we calculated previously, using an independent genetic construct. 
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