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Supplementary Note 1 – Analysis of the strong interaction limit U � J: Su-Schrieffer-Heeger

model for doublons

To provide a simple proof of the topological origin of our model, we analyze the strong interaction limit,

when U � J . In such a situation, doublon bands are well-separated from the continuum of two-photon

scattering states so that the mixing between doublons and scattering states is negligible. As such, we intro-

duce an effective doublon Hamiltonian which captures the dynamics of doublons excluding other redundant

degrees of freedom.

To derive the effective doublon Hamiltonian, we start from the eigenvalue equations provided in the

article main text (Methods section):

(ε− 2U)β2m,2m = −2J [β2m+1,2m + β2m,2m−1] + Pβ2m−1,2m−1 , (1)

(ε− 2U)β2m+1,2m+1 = −2J [β2m+2,2m+1 + β2m+1,2m] + Pβ2m+2,2m+2 , (2)

εβm,n = −J [βm+1,n + βm−1,n + βm,n+1 + βm,n−1] , (m 6= n) (3)

In the limiting case U � J , βmm are the dominant coefficients of the doublon wave function with the rest

of coefficients βm+s,m decaying with the index s. Therefore, we neglect all terms proportional to βm+2,m,

βm+3,m, etc. in Supplementary Equations (1)-(3), treating terms proportional to βm+1,m as a perturbation.

Using the approximation βm+1,m ≈ − (βmm + βm+1,m+1) /(2U), we derive the following approxi-

mate eigenvalue equation for doublon bands:

(ε− 2U − 2j)β2m,2m = (j + P )β2m−1,2m−1 + j β2m+1,2m+1 , (4)

(ε− 2U − 2j)β2m+1,2m+1 = j β2m,2m + (j + P )β2m+2,2m+2 . (5)

The equations for β11 and βNN corresponding to the physical edges of the array are modified if compared
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to the bulk sites:

(ε− 2U − j)β11 = (j + P )β22 , (6)

(ε− 2U − j)βNN = j βN−1,N−1 , (7)

where j = J2/U is the effective doublon hopping rate associated with two consecutive single-particle

tunnelings to the neighboring cavity. Here, the array length N is assumed to be odd.

The set of Supplementary Equations (4)-(5) corresponds to the Su-Schrieffer-Heeger (SSH) model 1

with two alternating tunneling amplitudes j and j + P , which is known to be the simplest one-dimensional

topological model. The only difference from the canonical SSH model is the interaction-induced detuning

of the edge sites by j captured by Supplementary Equations (6), (7).

Solving the system of Supplementary Equations (4)-(5) together with boundary conditions Supple-

mentary Equations (6)-(7), we find two states with the localization ratio z = βmm/βm−2,m−2 given by

z1,2 =
j + P

2 j3

[
2j P + P 2 ±

√
(2jP + P 2)2 + 4 j4

]
. (8)

Edge-localized states correspond to |z| < 1. The energies of these states read:

ε1,2 = 2U + j − 1

2j

[
2jP + P 2 ±

√
(2jP + P 2)2 + 4j4

]
. (9)

Supplementary Equation (8) shows that the higher-energy edge state ε2 is localized for any P 6= 0, while

the lower-energy state ε1 disappears when

P > 0 or P < −2J2/U . (10)

In our case with U/J = 7.09 and P/J = −4.18 the latter condition is fulfilled, which means that only the

higher-energy state ε2 persists. Note also that the condition Supplementary Equation (10) is equivalent to

|j + P | > j which ensures that the site (N,N) is the weak link edge and the respective edge state can be

interpreted as the topological state inherent to SSH model.
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Supplementary Note 2 – Eigenmode tomography

In an experimental situation, we can examine the excitation of the system applying voltage to various sites.

However, we have no direct access to the system eigenmodes and associated probability distributions, which

eventually limits our possibilities to observe topological physics in the designed setup.

To overcome this limitation, we elaborate on the procedure of eigenmode reconstruction (tomography)

following the proposals of our recent work 2. The key idea of this method is to collect the information on

system excitation when the voltage is applied to various pairs of sites (m,n) symmetrically with respect

to the diagonal. The eigenmode profile is then recovered as a sum of squares of voltages in all nodes of

the circuit plotted as a function of the feeding point (m,n). In this section, we provide a summary of the

proposed technique highlighting further applications of the developed method and its applicability to a wide

class of systems described by tight-binding equations.

We consider a two-dimensional system depicted in Supplementary Figure 1. We describe the behavior

of the system under external coherent driving with the following semi-empirical coupled mode equations:

ω cmn =
∑
m′,n′

Hmn,m′n′ cm′n′ − iγ cmn − iκEmn . (11)

Here Hmn,m′n′ is the Hamiltonian of a closed system which is assumed Hermitian, γ quantifies the dis-

sipation rate, and Emn stands for the applied electromotive force (or injected current, depending on the

interpretation of cmn coefficients) at frequency ω. In an actual experimental situation, we can apply dif-

ferent drivings Emn at different frequencies and measure the resultant intensity distribution |cmn|2. Our

goal is to elaborate a protocol to reconstruct the profile of the system eigenmode β(k)mn corresponding to the

eigenfrequency ωk which is the solution of the eigenvalue problem

ωk β
(k)
mn =

∑
m′,n′

Hmn,m′n′ β
(k)
m′n′ . (12)
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Supplementary Figure 1 Illustration of a two-dimensional setup used for the procedure of

eigenmode tomography. For this technique, specific type of tight-binding model is not essential.

Since the Hamiltonian of the closed system is Hermitian, the eigenfrequencies ωk are purely real and

the eigenmodes β(k)mn are mutually orthogonal, i.e.

∑
m,n

β(k)mn

[
β(k

′)
mn

]∗
= δkk′ . (13)

Furthermore, the modes β(k)mn form a complete basis and the coefficients cmn can be expanded as

cmn =
∑
k

αk β
(k)
mn . (14)

Putting the expansion Supplementary Equation (14) into Supplementary Equation (11), we obtain:

ω
∑
k

αk β
(k)
mn =

∑
m′,n′,k

Hmn,m′n′ αk β
(k)
m′n′ − iγ

∑
k

αk β
(k)
mn − iκEmn = (15)

(12)
=
∑
k

αk (ωk − iγ)β(k)mn − iκEmn . (16)

Using the orthogonality property Supplementary Equation (13), we recover that

(ω − ωk + i γ) αk = −iκ
∑
m,n

Emn

[
β(k)mn

]∗
. (17)
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Physically, Supplementary Equation (17) expresses an intuitive fact that the larger the overlap of the driving

profile with the eigenmode, the larger is the contribution of the eigenmode into the driven-dissipative system

stationary state. On the other hand, the closer is the driving frequency to the resonance, the larger is the

contribution of a given eigenmode to the driven-dissipative system stationary state. The coefficients cmn are

expressed as follows:

cmn
(14)
=
∑
k

αk β
(k)
mn = −iκ

∑
m′,n′,k

Em′n′

[
β
(k)
m′n′

]∗
β
(k)
mn

ω − ωk + iγ
. (18)

At this point we assume that the driving profile (a) includes only one or two points; (b) is symmetric with

respect to the diagonal m = n. In the other words,

Emn =
E0

2
[δmp δnq + δmq δnp] , (19)

where p and q provide the coordinates of the excitation point(s). This assumption immediately simplifies the

sum. Since the system is symmetric with respect to the diagonal, all non-degenerate eigenmodes are either

even or odd; degenerate modes can also be enforced to satisfy this condition by choosing suitable linear

combinations. Next, all odd modes have zero overlaps with symmetric pumping profile and they drop out of

the sum. The remaining even modes have β(k)pq = β
(k)
qp . Hence,

cmn = −iκE0

∑
k

β
(k)
mn

[
β
(k)
pq

]∗
ω − ωk + iγ

. (20)

Next, we construct the following quantity:

I(p, q) =
∑
m,n

|cmn|2 = κ2 |E0|2
∑

m,n,k,k′

β
(k)
mn

[
β
(k′)
mn

]∗ [
β
(k)
pq

]∗
β
(k′)
pq

(ω − ωk + iγ) (ω − ωk′ − iγ)

(13)
= κ2 |E0|2

∑
k,k′

δkk′
[
β
(k)
pq

]∗
β
(k′)
pq

(ω − ωk + iγ) (ω − ω′k − iγ)
= κ2 |E0|2

∑
k

|β(k)pq |2

(ω − ωk)2 + γ2
. (21)

Thus, for symmetric pumping into (p, q) and (q, p) with the same amplitudes E0/2 and E0/2 and equal

phases the sum of squares of field amplitudes in all sites of the system reads:

I(p, q) ≡
∑
m,n

|cmn|2 = κ2 |E0|2
∑
k

|β(k)pq |2

(ω − ωk)2 + γ2
, (22)
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where the sum extends only over the symmetric eigenmodes. If the driving frequency is close enough to

the eigenfrequency ωk, the obtained distribution I(p, q) will closely resemble the distribution |β(k)pq |2, which

is actually the eigenmode intensity (or two-photon probability distribution in the original 1D two-particle

problem).

The outlined eigenmode reconstruction protocol works especially well once the spectral distance from

the given mode to the rest of the modes exceeds the dissipation rate γ. In such a case, reconstruction of the

eigenmode will be very precise as can be seen from the comparison made in the main text. This technique

is also useful for the group of modes, e.g. doublon band, well-separated from the rest of the modes.

Note also that the developed eigenmode reconstruction technique is very general and applicable to a

wide range of physical systems. In this work, we apply this protocol to LC circuits. Further identification of

driven-dissipative model Supplementary Equation (11) with Kirchhoff’s equations for the electric circuit is

provided in Supplementary Notes 3-4.

Supplementary Note 3 – Mapping of tight-binding model onto the topolectrical circuit: ideal loss-

less case

As indicated in the article main text, the two-particle one-dimensional quantum problem with extended

Bose-Hubbard Hamiltonian is described by the following system of tight-binding equations:

(ε− 2U) β2m+1,2m+1 = −2J β2m,2m+1 − 2J β2m+1,2m+2 + P β2m+2,2m+2 , (23)

(ε− 2U) β2m,2m = −2J β2m−1,2m − 2J β2m,2m+1 + P β2m−1,2m−1 , (24)

ε βmn = −J βm−1,n − J βm+1,n − J βm,n−1 − J βm,n+1 (m 6= n) . (25)
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with βmn = βnm and open boundary conditions at the edges and corners:

(ε− 2U)β11 = −2J β12 + P β22 , (26)

ε β1m = −J [β1,m−1 + β1,m+1 + β2,m] , (27)

(ε− 2U)βNN = −2J βN,N−1 , (28)

where N is the size of the system.

In this Supplementary Note, we analyze the 2D system in Fig. 2a with Kirchhoff’s circuit laws and

express the parameters of the Hamiltonian U and P in terms of the circuit parameters. In our analysis we

assume that the voltages in the circuit nodes Umn ∝ e−iωt, and hence Ümn = −ω2 Umn. We also assume

J = 1 and denote

CPCJ

L

LCU

(n,n)

(m,n)

ba

n

m

c

Supplementary Figure 2 a, Implementation of a 2D system emulating extended Bose-Hubbard

model, top view. b, Side view of a diagonal node in the 2D system. c, Side view of an off-diagonal

node in the 2D system.
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ω2
0 =

1

LCj
, ε =

ω2
0

ω2
− 4 , (29)

U =
CP + CU

2Cj
, P = −CP

Cj
. (30)

To establish one-to-one correspondence of the initial tight-binding problem with LC circuit, we ana-

lyze several representative situations.

1. Site (m,n) with m 6= n, not at the edge of the system. From the first Kirchhoff’s law we get

Umn

L
− ω2Cj [(Umn − Um,n+1) + (Umn − Um,n−1) + (Umn − Um+1,n) + (Umn − Um−1,n)] = 0 (31)

or with designations Supplementary Equations (29)-(30)

εUmn = −Um,n+1 − Um,n−1 − Um+1,n − Um−1,n , (32)

which is consistent with Supplementary Equation (25).

2. Site (1, n) with n 6= 1, at the edge of the system.

U1n

L
− ω2Cj [(U1n − U1,n−1) + (U1n − U1,n+1) + (U1n − U2n) + U1n] = 0 , (33)

where the last term in the square bracket is associated with extra capacitance Cj connected to the ground.

Supplementary Equation (33) can be rearranged to yield

εU1n = −U1,n−1 − U1,n+1 − U2,n , (34)

which reproduces open boundary condition for the tight-binding model Supplementary Equation (27). The

equations for the sites (m, 1), (m,N) and (N,n) (not at the corner) where N is the system size are com-

pletely analogous.
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3. Site (2m+ 1, 2m+ 1) at the diagonal of the system, not the corner one.

U2m+1,2m+1

L
− ω2Cj [(U2m+1,2m+1 − U2m,2m+1) + (U2m+1,2m+1 − U2m+2,2m+1)

+ (U2m+1,2m+1 − U2m+1,2m) + (U2m+1,2m+1 − U2m+1,2m+2)]−

− ω2Cp (U2m+1,2m+1 − U2m+2,2m+2)− ω2CU U2m+1,2m+1 = 0 ,

(35)

which can be rewritten as

(ε− 2U) U2m+1,2m+1 = −U2m,2m+1−U2m+2,2m+1−U2m+1,2m−U2m+1,2m+2 +PU2m+2,2m+2 (36)

and coincides with Supplementary Equation (23) provided the pattern of voltages is symmetric, i.e. U2m,2m+1 =

U2m+1,2m and U2m+2,2m+1 = U2m+1,2m+2.

4. Site (2m, 2m) at the diagonal of the system

U2m,2m

L
− ω2Cj [(U2m,2m − U2m,2m+1) + (U2m,2m − U2m,2m−1) +

+ (U2m,2m − U2m+1,2m) + (U2m,2m − U2m−1,2m)]−

− ω2Cp (U2m,2m − U2m−1,2m−1)− ω2CU U2m,2m = 0 ,

(37)

which can be recast in the form

(ε− 2U) U2m,2m = −U2m,2m+1 − U2m,2m−1 − U2m+1,2m − U2m−1,2m + P U2m−1,2m−1 (38)

in agreement with Supplementary Equation (24).

5. Site (1, 1) at the corner of the system. For this corner site, we include two capacitances Cj to the

ground to compensate the absence of the two neighbors.

U11

L
− ω2Cj [(U11 − U12) + (U11 − U21) + 2U11]− ω2Cp (U11 − U22)− ω2CU U11 = 0 , (39)

which is equivalent to

(ε− 2U)U11 = −U12 − U21 + P U22 (40)
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exactly reproducing an open boundary condition Supplementary Equation (26) for the corner of the system.

6. Site (N,N) at the corner of the system (N is assumed to be odd). In contrast to (1, 1) site, besides

two capacitances Cj connected to the ground, we also include an extra capacitance CP connected to the

ground:

UNN

L
− ω2Cj [(UNN − UN−1,N ) + (UNN − UN,N−1) + 2UNN ]−

− ω2Cp UNN − ω2CU UNN = 0 ,

(41)

which can be rearranged to yield

(ε− 2U)UNN = −UN−1,N − UN,N−1 (42)

in agreement with open boundary condition for the corner of the system, Supplementary Equation (28).

Hence, the proposed experimental setup allows us to emulate two-body physics in Bose-Hubbard

model, but with several constraints on parameters that enter the Bose-Hubbard Hamiltonian: (i) P is always

negative, cf. Supplementary Equation (30); (ii) U > |P |/2, i.e. we cannot realize the regime of too weak

on-site interactions; (iii) to emulate boson states, the pattern of voltages in a circuit should be symmetric

with reasonable accuracy.

Supplementary Note 4 – Analysis of topolectrical circuit with realistic losses

As we have demonstrated, the lossless 2D topolectrical circuit corresponds precisely to the Bose-Hubbard

model. However, realistic circuits necessarily have losses, and in this section, we examine excitation of the

system taking the effect of loss into account. We assume that the system is excited with a current source

and current is pumped into one or several lattice sites. We aim to compare the governing equations with the

simple driven-dissipative model outlined in Supplementary Note 2, which is described by the equation

ω cmn =
∑
m′,n′

Hmn,m′n′ cm′n′ − i γ cmn − iκEmn , (43)
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where ω is a driving frequency, cmn describe the stationary state of the system, γ is the dissipation rate and

κ is the coupling coefficient.

In circuit analysis, we assume e−iωt time dependence of voltages, which yields the following impedances:

ZL = −iωL+RL , ZC =
1

−iω Cj
+RC , (44)

ZP =
1

−iω CP
+RP , ZU =

1

−iω CU
+RU . (45)

For sufficiently small losses, the ratios of impedances read

ZC

ZL
= −ω

2
0

ω2
+ i

(
RL ω

2
0

Lω3
+
RC

Lω

)
, (46)

ZC

ZP
=
CP

Cj
+ i ω

CP

C
(RP CP −RC Cj) , (47)

ZC

ZU
=
CU

Cj
+ i ω

CU

Cj
(RU CU −RC Cj) . (48)

Similarly to Supplementary Note 3, we analyze several characteristic situations:

1. Site (m,n) with m 6= n, not at the edge of the system. First Kirchhoff’s law now yields:

Umn

ZL
+

1

ZC
(4Umn − Um,n−1 − Um,n+1 − Um−1,n − Um+1,n) = Imn (49)

which can be rearranged as

εUmn = −Um,n−1 − Um,n+1 − Um−1,n − Um+1,n + i γ Umn − ZC Imn , (50)

where γ is a frequency-dependent damping

γ =
RL ω

2
0

Lω3
+
RC

Lω
. (51)

Note also the sign in front of γ in Supplementary Equation (51): it is different from the sign in Supplemen-

tary Equation (43). This happens due to the definition of “energy” variable Supplementary Equation (29)

which ensures that imaginary parts of ω and ε have opposite signs:

ω′′ = −ω0

2

ε′′

(ε′ + 4)3/2
. (52)
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Since in the dissipative case eigenmode frequency has negative imaginary part, “energy variable” ε should

have positive imaginary part.

2. Site (1, n) with n 6= 1, at the edge of the system. In a similar way we derive an equation

U1n

ZL
+
U1n

ZC
+

1

ZC
(3U1n − U1,n−1 − U1,n+1 − U2n) = I1n , (53)

which yields

εU1n = −U1,n−1 − U1,n+1 − U2n + i γ U1n − ZC I1n . (54)

3. Site (2m+ 1, 2m+ 1) at the diagonal of the system, not the corner one.

U2m+1,2m+1

ZL
+
U2m+1,2m+1

ZU
+
U2m+1,2m+1 − U2m+2,2m+2

ZP
+

+
1

ZC
(4U2m+1,2m+1 − U2m,2m+1 − U2m+2,2m+1 − U2m+1,2m − U2m+1,2m+2) = I2m+1,2m+1

(55)

This yields an equation

(ε− 2U)U2m+1,2m+1 = −U2m,2m+1 − U2m+2,2m+1 − U2m+1,2m − U2m+1,2m+2+

+ iγ′ U2m+1,2m+1 + P ′ U2m+2,2m+2 − ZC I2m+1,2m+1 ,

(56)

where for the diagonal sites

γ′ = γ + ω
CP

Cj
(RP CP −RC Cj) + ω

CU

Cj
(RU CU −RC Cj) , (57)

P ′ = P − iω CP

Cj
(RP CP −RC Cj) . (58)

Thus, the diagonal elements have extra loss in tunneling P ′ and on-site losses γ′ stemming from the insertion

of additional elements. This problem, however, can be circumvented by requiring that

RC Cj = RP CP = RU CU (59)

in which case all elements (in the bulk and at the diagonal) are characterized by the same magnitude of loss,

though depending on frequency. However, even if Supplementary Equation (59) is not fulfilled, doublon

bands will remain almost unaffected, since the maximal voltages are expected at the diagonal sites only.
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4. Site (2m, 2m) at the diagonal of the system.

U2m,2m

ZL
+
U2m,2m

ZU
+
U2m,2m − U2m−1,2m−1

ZP
+

+
1

ZC
(4U2m,2m − U2m−1,2m − U2m+1,2m − U2m,2m−1 − U2m,2m+1) = I2m,2m

(60)

which yields

(ε− 2U)U2m,2m = −U2m−1,2m − U2m+1,2m − U2m,2m−1 − U2m,2m+1+

+ iγ′ U2m,2m + P ′ U2m−1,2m−1 − ZC I2m,2m .

(61)

5. Site (1, 1) at the corner of the system.

(
Z−1L + Z−1U + 2Z−1C

)
U11 +

1

ZC
(2U11 − U12 − U21) +

1

ZP
(U11 − U22) = I11 , (62)

which yields

(ε− 2U)U11 = iγ′ U11 − U12 − U21 + P ′ U22 − ZC I11 . (63)

6. Site (N,N) at the corner of the system [N is assumed to be odd].

(
Z−1L + Z−1U + Z−1P + 2Z−1C

)
UNN +

1

ZC
(2UNN − UN−1,N − UN,N−1) = INN (64)

which can be transformed as

(ε− 2U)UNN = i γ′ UNN − UN−1,N − UN,N−1 − ZC INN . (65)

To summarize, the designed LC circuit is described by the same driven-dissipative system Supple-

mentary Equations (43) apart from the following differences:

• dissipation coefficient γ depends on the frequency of driving ω;

• the magnitude of dissipation for diagonal and off-diagonal sites is different unless an additional con-

straint Supplementary Equation (59) is fulfilled;
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• instead of frequency in Supplementary Equation (43), we deal with the auxiliary “energy variable”

ε which is inversely proportional to frequency and therefore has a positive imaginary part in the

dissipative case.

• instead of external field Emn we have a combination ZCImn which is frequency-dependent.

In all other aspects, the standard driven-dissipative model captures all essential features of the proposed

topolectrical circuit and hence the tomography technique developed in Supplementary Note 2 can be applied

to the designed LC circuit.

Supplementary Note 5 – Distribution of elements in the experimental setup

In contrast to the idealized model of electric circuit discussed above, the actual values of inductances and ca-

pacitances of setup elements slightly fluctuate from one element to another. Hence, the experimental circuit

possesses an inherent disorder in the tunneling constants J and P (ascribed to capacitorsCJ andCP ) as well

as in the interaction strength U and on-site resonant frequencies ω0, depending on capacitors CU and induc-

tors L, respectively. The elements used in our experimental sample are Murata GRM32RR71H105KA01

for CJ , Murata GRM31CR61A476ME15L for CP , Murata GRM31CR71C106KAC7 for CU , and Bourns

RLB1314-220KL for L. In the process of fabrication, we created a detailed map of elements that allows us

to determine the precise value of the given circuit bond. The distributions of the element values are shown

in Supplementary Figure 3. As seen from the histograms, actual mean values in the fabricated circuit are

L = 22.77µH, CJ = 1.0024µF, CU = 10.031µF, and CP = 4.1863µF which are slightly different from

the ones provided in specifications. Typical fluctuations of parameters are of the order of 1-2%. We use

these measured mean values for numerical simulations described in the Article main text.
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Supplementary Figure 3 Distribution of the lumped element values in the experimental setup

for (a) capacitors CJ , (b) inductors L, (c) CU and (d) CP . Different number of bins in panels (a)

and (b) is due to the different precision of measurements in cases (a-d). Total amounts of

corresponding elements in the circuit are 225 for L, 480 for CJ , 15 for CU , and 8 for CP .

Supplementary Note 6 – Mutual inductance

Some elements in the experimental setup can have extra parasitic couplings besides the couplings intro-

duced intentionally. This effect is especially pronounced for inductive coils, which have relatively large size

compared to the inter-coil distance, as can be seen from Fig. 1 of the article main text. We estimate now the

effects of such inductive coupling on the performance of the studied setup.

Incorporating mutual inductance between the coils (grounding elements) into the Kirchhoff’s rule for
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the site (2m+ 1, 2m+ 1), which we consider as an example, we get:

(U2m+1,2m+1 + Uind)(Z−1L + Z−1U ) + (U2m+1,2m+1 − U2m+2,2m+2)Z
−1
P +

+ (4U2m+1,2m+1 − U2m,2m+1 − U2m+2,2m+1 − U2m+1,2m − U2m+1,2m+2)Z
−1
C =

= I2m+1,2m+1,

(66)

where Uind denotes the voltage induced in the coil connecting the site (2m + 1, 2m + 1) to the ground

by all surrounding coils. A diagonal capacitor CP is present between the sites (2m + 1, 2m + 1) and

(2m+ 2, 2m+ 2). Taking into account the interaction of the given coil with its nearest neighbors and also

with the coils having both coordinates m, n shifted by 1 (diagonal neighbors), we can express this induced

voltage as

Uind = −ZM (I
(g)
2m,2m+1 + I

(g)
2m+2,2m+1 + I

(g)
2m+1,2m + I

(g)
2m+1,2m+2)−

− Z ′M (I
(g)
2m,2m + I

(g)
2m,2m+2 + I

(g)
2m+2,2m + I

(g)
2m+2,2m+2),

(67)

where I(g)m,n is a current through the inductance which connects the site (m,n) to the ground, ZM and Z ′M

are the impedances corresponding to the mutual inductance between the nearest neighbors and diagonal

neighbors, respectively.

In the limit of strong interaction U � 1, which is the case in the considered model, all voltages are

mostly concentrated at the diagonal sites of the circuit in the frequency range of interest. Then, the above

expression takes the form

Uind ≈ −Z ′M
(U2m+1,2m+1 − U2m+2,2m+2

ZP
+ I2m+2,2m+2

)
− Z ′MI2m,2m, (68)

where I2m,2m and I2m+2,2m+2 denote external currents applied to the corresponding sites. Then, Supple-

mentary Equation (66) reads

U2m+1,2m+1(Z
−1
L + Z−1U )

(
1−

Z ′M
ZP

)
+ (U2m+1,2m+1 − U2m+2,2m+2)Z

−1
P =

= I2m+1,2m+1 + Z ′M (Z−1L + Z−1U )(I2m,2m + I2m+2,2m+2).

(69)
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If only one site of the circuit is driven, which is the case in our measurements, then the second term at the

right-hand side vanishes, and we finally obtain the equation

U2m+1,2m+1(Z
−1
L + Z−1U )

(
1−

Z ′M
ZP

)
+ (U2m+1,2m+1 − U2m+2,2m+2)Z

−1
P = I2m+1,2m+1, (70)

which has the same form as the equation describing the circuit without inductive couplings up to renormal-

ization of the effective model parameters caused by the extra factor (1− Z ′M/ZP ).

Supplementary Note 7 – Circuit impedance and doublon spectroscopy

To demonstrate doublon states experimentally, we need a technique to distinguish doublon modes from the

rest of the modes supported by the two-dimensional sample. In this regard, it is useful to consider the

quantity 2

Sm(f) =
∑
n

|ϕmm
nn |2, (71)

where ϕmn
ij is the potential at the site (i, j) of the circuit when the external driving voltage at frequency f

is applied to the site (m,m). Since doublon modes are characterized by the voltage maxima at the diagonal

sites, this quantity exhibits resonant peaks at frequencies of doublon modes. If the external voltage is

applied to the site (N,N), where N = 15 in our case, a single peak corresponding to the doublon edge state

is observed. On the other hand, if any other diagonal site is driven, then two peaks centered at frequencies

of bulk doublon bands emerge, Supplementary Figure 4a.
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Supplementary Figure 4 (a) Numerically simulated doublon spectroscopy relying on the

protocol with quantity Sm, Supplementary Equation (71), for m = 1,14 and 15. (b) Circuit

impedance spectroscopy showing the real part Rm of the total impedance between the given site

(m,m) and ground. Both panels are calculated for the values of circuit elements taken from the

exact map of the experimental setup. (c) Equivalent scheme for the experimental setup including

an external voltage source Uext with the resistance Rs and the associated voltage drop Us. Rc

denotes the real part of the total impedance between the driven site of the circuit and the ground

with the associated voltage drop Uc. (d) Experimental results of the circuit impedance

spectroscopy.

We now demonstrate that the frequency dependence of the quantity Sm is consistent with the results
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of the circuit impedance spectroscopy. Indeed, one can introduce Green’s matrix of the circuit Ĝ 3, which is

by definition related to the admittance matrix Ŷ introduced in the main text as

Gmn,m′n′ = (Y −1)mn,m′n′ (72)

Then, potentials at the nodes of the externally driven circuit are related to the driving current Imn as

ϕmn =
∑
m′,n′

Gmn,m′n′ Im′n′ , (73)

and therefore ϕmm
nn = Gnn,mm Iext where Iext is a value of the driving current. Hence, Supplementary

Equation (71) takes the form

Sm = I2ext
∑
n

|Gnn,mm|2 . (74)

At the same time, the characteristic impedance Rm between the given node (m,m) of the circuit and

the ground is simply given by the diagonal element of the Green’s matrix:

Rm = Re{Gmm,mm}. (75)

As seen from Supplementary Figure 4b, the characteristic impedance of the circuit Rm demonstrates a very

similar structure of resonant peaks compared to the quantity Sm for various positions of the driven site

(m,m), which highlights the dominant role of diagonal entries of the Green’s matrix in our system.

The equivalent scheme of the experimental setup with an external source applied to the diagonal

site has the form shown in Supplementary Figure 4c. It represents a series connection of the total circuit

impedance with the real partRc and the voltage source equivalent impedanceRs = 50 Ω. In the experiment,

the voltage drop between the given site of the circuit and the ground Uc is measured as a function of the

driving frequency f . The external voltage Uext is fixed and set to the value 1 V. Then, the circuit impedance

Rc can be obtained as

Rc(f) =
Uc(f)

Uext − Uc(f)
Rs, (76)
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while the external current flowing into the circuit is given by the relation Iext(f) = Uext/(Rc(f) + Rs).

All calculations in the article main text are carried on for the constant external current Iext flowing into

the system, whereas the experimental data is obtained for the fixed external voltage Uext. To make a fair

comparison of these results, we multiply the experimental values of Sm(f) by the factor I2(f0)/I2(f)

with f0 = 6 kHz defining a calibrating value of the external current. Experimental results on doublon

spectroscopy recalculated in this way are presented in Fig. 2c of the article main text.

Supplementary Note 8 – Scattering states

Besides two bulk doublon bands and doublon edge state, there exists a vast set of the system eigenmodes

termed as scattering states. These modes shown by the shaded region in the dispersion (Fig. 2a of the article

main text) correspond to such a state of two photons when they are typically located at distinct resonators and

possess energy equal to the sum of single-photon energies. Supplementary Figure 5 shows the probability

distributions |βmn|2 for such states obtained by the diagonalization of the tight-binding Hamiltonian in the

absence of dissipation. Here, panels (a-d) correspond to the eigenmodes of an ideal system without any

disorder. Introducing the disorder in coupling constants J and P with the uniform distribution within the

range ±10%, we observe only slight changes in the eigenmode intensity patterns accompanied by weak

energy shifts, Supplementary Figure 5(e-h). However, when the strength of disorder is increased further up

to 30%, quite strong distortions of eigenmode profiles are observed and the energy shifts become comparable

with the spectral distance between the spectrally close modes, Supplementary Figure 5(i-l).
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Supplementary Figure 5 Scattering states of photon pair with energies (a) ε/J = 0.68, (b)

ε/J = 1.35, (c) ε/J = 2.11, and (d) ε/J = 3.80 . Color encodes the magnitude of the two-photon

probability distribution |βmn|2. Panels (a)-(d) are obtained by diagonalization of the tight binding

Hamiltonian for the model without disorder. (e-h) Scattering states corresponding to the same

eigenmodes as in the top row, but for a uniform ±10% disorder in the strength of bonds. (i-l) The

same modes as in (e-h), but for a ±30% bond disorder.
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Supplementary Note 9 – Effects of disorder

To examine the impact of disorder and losses on the results of tomography procedure (Supplementary

Note 2), we simulate eigenmode tomography for the designed circuit taking into account Ohmic losses

as well as fluctuations in the values of all lumped elements L, CJ , CU , and CP . For the sake of simplicity,

we consider uniformly distributed fluctuations, and Ohmic losses are assumed to be constant and equal to

their maximal possible values within the considered spectral range according to elements specifications.

The evolution of low-energy doublon mode, doublon edge state, and high-energy doublon mode with

the increase of disorder is shown in panels (a-c), (d-f), and (g-i) of Supplementary Figure 6, respectively. It

is seen that enhanced localization of doublon modes can be observed even at 10% disorder, which finally

results in the formation of localized states in the bulk of the circuit at 30% disorder. At the same time,

the edge state easily survives 10% disorder, since it is spectrally well-separated from the bulk doublon

bands having a relatively small spatial overlap with them. However, strong 30% disorder can mix it with

bulk doublon states, as seen in Supplementary Figure 6f. It should be stressed that the considered levels

of disorder in the values of circuit elements exceed those expected for the experimental circuit and the

corresponding results are calculated for the illustrative purpose only.
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Supplementary Figure 6 Simulation of eigenmode tomography in circuits with various levels of

disorder in element values. (a-c) Low-energy (high-frequency) doublon mode, f = 8730 Hz. (d-f)

doublon edge state, f = 7790 Hz. (g-i): high-energy (low-frequency) doublon mode, f = 7030 Hz.

Simulation of tomography is performed at frequencies corresponding to the peak positions in

doublon spectroscopy simulation.

Supplementary Note 10 – Evaluation of topological invariant from experimental data

The definition of topological invariant for interacting many-body systems is currently an open problem

which is being actively investigated. In our specific case, however, the clue to topological characterization is

provided by the fact that the effective doublon Hamiltonian corresponds to that of the Su-Schrieffer-Heeger

model once strong interaction regime U � J is realized. This is the case for our experimental sample with
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U/J = 7.09 and P/J = −4.18.

The effective Hamiltonian for doublons written in the basis of isolated resonators’ eigenstates takes

the form (see Supplementary Note 1 for details):

Ĥ(k) =

 0 j1 + j2 e
−ik

j1 + j2 e
ik 0

 , (77)

where j1 = J2/U and j2 = j1 + P are effective tunneling amplitudes for doublons. Hence, for the given

Bloch eigenmode the ratio of two components of the doublon wave function |ψ〉 = (ψA, ψB)T is given by:

ψA

ψB
=
j1 + j2 e

−ik

ε(k)
. (78)

We notice that the effective doublon Hamiltonian Supplementary Equation (77) is represented in chiral

basis and therefore the winding number is determined by plotting its off-diagonal block q(k) = j1 + j2 e
−ik

on the complex plane 4. Furthermore, according to Supplementary Equation (78) q(k) = ε(k)ψA/ψB,

where doublon energy ε(k) is purely real. Hence, the winding number can be found by plotting the ratio

ψA/ψB for a particular Bloch eigenmode.

In an experimental situation, we measure the distribution of voltages at the diagonal of the sample:

UA(n) andUB(n). To get a result, corresponding to the given value of wave number k, we perform a discrete

Fourier transform of those voltages extracting

UA(k) =
∑
n

UA(n)e−ikn , (79)

UB(k) =
∑
n

UB(n)e−ik(n−1) (80)

and then plotting the ratio UA(k)/UB(k) on the complex plane.

Calculating the winding number from experimental data, we assume that the pattern of voltages ex-

cited in a topolectrical circuit by the source inserted in the middle of the diagonal resembles the pattern of
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voltages expected for the eigenmode, which is justified in the case of doublon bands well-separated from

the scattering continuum.
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