Supplementary Information

Hollow Polyaniline Microsphere/Fe₃O₄ Nanocomposite as an Effective

Adsorbent for Removal of Arsenic from Water

Soumi Dutta¹, Kunal Manna², Suneel Kumar Srivastava^{2,3*}, Ashok Kumar Gupta¹⁺, Manoj Kumar Yadav⁴

¹School of Water Resources, Indian Institute of Technology Kharagpur, Kharagpur–721302, India

²Department of Chemistry, Indian Institute of Technology Kharagpur, Kharagpur–721302, India

³School of Energy Science and Engineering, Indian Institute of Technology Kharagpur, Kharagpur–721302, India

⁴School of Environmental Science and Engineering, Indian Institute of Technology Kharagpur,

Kharagpur-721302, India

For Correspondence:

*S.K. Srivastava (<u>sunil111954@yahoo.co.uk)</u>, +A.K. Gupta (<u>agupta@civil.iitkgp.ac.in</u>)

Figure S1. FTIR spectra of (a) SPS, PNHM and PNHM/Fe₃O₄ composites; (b) Fe₃O₄ nanoparticles.

Figure S2. X-ray diffraction pattern of PNHM, Fe₃O₄ and PNHM/Fe₃O₄ composites.

Figure S3. (a) N₂ adsorption–desorption isotherm measured for PNHM/Fe₃O₄–40; (b) BJH pore size distribution plot of PNHM/ Fe₃O₄-40.

Materials	Saturation magnetization,	Remanence,	Coercivity,
	M _s (emu g ⁻¹)	M_r (emu g ⁻¹)	H _c (Oe)
Fe ₃ O ₄	~66.733	~4.293	~31.336
PNHM/Fe ₃ O ₄ -40	~24.398	~0.558	~30.837

Table S1. M_s , M_r , H_c values of Fe₃O₄ and PNHM/Fe₃O₄-40

Figure S4. (a) Photos of PNHM/Fe₃O₄-40 dispersed in aqueous solution; (b) Separating by an external magnetic field.

Figure S5. The effect of Fe₃O₄ content in PNHM/Fe₃O₄ nanocomposites on As(III) and As(V) uptake (Experimental conditions: C₀: 1000 μ g L⁻¹; pH~7; adsorbent dose: 1g L⁻¹; contact time: 240 min; T: 300±3 K)

Figure S6. Effect of initial concentration of arsenic on removal efficiency (Experimental conditions: pH~7; adsorbent dose: $1g L^{-1}$; Contact time: 240 min; T: 300±3 K).

Figure S7. Effect of contact time on As(III) removal % at different adsorbent dose (1, 3, 5 g L^{-1}) with a fixed adsorbate concentration (1000 µg L^{-1}).

SI–1: Adsorption kinetics. The pseudo first-order kinetics model also referred as Lagergren first-order model, as following form^{1,2}:

$$q_t = q_e (1 - e^{-k_1 t}) \tag{1}$$

where q_e and q_t indicates the amount arsenic uptake per unit weight (mg g⁻¹) of PNHM/Fe₃O₄-40 at equilibrium and any time *t*, respectively, and k_l represents the rate constant (min⁻¹) of pseudo first-order model. Experimental data's are also fitted in the pseudo second-order kinetic model using the rate equation described by Ho and McKay³ as follows:

$$q_t = \frac{(k_2 \, q_e^2 \, t)}{(1 + k_2 q_e \, t)} \tag{2}$$

where k_2 is the pseudo second-order rate constant. The residual root means square error (*RMSE*) was used to measure the goodness-of-fit and was calculated by the following equation:

$$RMSE = \sqrt{\frac{\sum_{i=1}^{m} (Q_i - q_i)^2}{m}}$$
(3)

Where, Q_i and q_i indicates the observed data from the batch experiment and estimate data from kinetics and isotherm models, respectively. *m* is the number of observations taken in the experiment. It is observed that the smaller *RMSE* value indicates the better curve-fitting.

Figure S8. Kinetics data fitted to The Weber–Morris intra-particle diffusion plot for As(III) and As(V) adsorption on PNHM/Fe₃O₄-40 (Experimental conditions: adsorbent dose: 1 g L^{-1} ; C₀: 1000 µg L⁻¹; pH~7; T: 300 ± 3 K).

Kinetic models		Parameters	As(III)	As(V)
Pseudo first-order model		$q_e (\mathrm{mg \ g}^{-1})$	0.877	0.943
		k_1 (min ⁻¹)	0.226	0.359
		R^2	0.919	0.964
		$Adj. R^2$	0.910	0.960
		RMSE	0.083	0.058
Pseudo second-order model		$q_e (\mathrm{mg g}^{-1})$	0.916	0.966
		k_2 (g mg ⁻¹ min ⁻¹)	0.363	0.733
		R^2	0.969	0.983
		$Adj. R^2$	0.965	0.982
		RMSE	0.051	0.039
		$k_d (\mathrm{mg \ g^{-1} \ min^{-0.5}})$	0.022	0.014
	Steep	$C (\text{mg g}^{-1})$	0.622	0.778
	slope	R^2	0.950	0.979
		$Adj. R^2$	0.940	0.974
Intra-particle		RMSE	0.027	0.011
diffusion model		$k_d (\mathrm{mg \ g^{-1} \ min^{-0.5}})$	8.2×10 ⁻⁴	0.001
	Gradual	$C (\text{mg g}^{-1})$	0.929	0.969
	slope	R^2	0.918	0.848
		$Adj. R^2$	0.877	0.772
		RMSE	6.5×10 ⁻⁴	0.001

Table S2. Kinetic parameters for As(III) and As(V) adsorption on PNHM/Fe₃O₄-40

SI–2: Adsorption isotherm. Langmuir isotherm model is described below⁴:

$$q_e = \frac{Q_m \, b \, C_e}{1 + b \, C_e} \tag{4}$$

where, *b* refers the Langmuir constant corresponding to the binding energy (L mg⁻¹) of the solute and Q_m is the maximum adsorption capacity (mg g⁻¹). In addition, Freundlich isotherm model has been used to describe adsorption of arsenic taking place on a heterogeneous surface⁵ of PNHM/Fe₃O₄-40 is not restricted to monolayer formations and can be described as below:

$$q_e = K_f \ C_e^{\frac{1}{n}} \tag{5}$$

where, K_f and n are the Freundlich constant corresponding to the adsorption capacity [(mg g⁻¹)(L mg⁻¹))^{1/n}] and intensity of the adsorption, respectively.

Isotherm models	Parameters	As(III)	As(V)
	$Q_m (\mathrm{mg g}^{-1})$	28.265	83.078
Langmuir isotherm	<i>b</i> (L mg ⁻¹)	0.015	0.002
	R^2	0.907	0.987
	$Adj. R^2$	0.901	0.986
	RMSE	3.047	2.212
	$K_f [(mg g^{-1})(L mg^{-1})^{1/n}]$	3.145	1.057
Freundlich isotherm	1/n	0.326	0.576
	R^2	0.984	0.999
	$Adj. R^2$	0.983	0.998
	RMSE	1.264	0.730

Table S3. Isotherm parameters for As(III) and As(V) adsorption on PNHM/Fe₃O₄-40

Type of adsorbent	Maximum adsorption capacity (mg g ⁻¹)		Dof
Type of ausor bent	As(III)	As(V)	KUI.
Fe ₃ O ₄ nanoparticles	46.06	16.56	6
α-Fe ₂ O ₃	95.0	47.0	7
Fe ₃ O ₄ @Polyaniline	1.385	1.066	8
polyaniline/polystyrene	50	50	0
nanocomposite	52	30	9
Nano Zero-Valent Iron on Activated	10.2	12.0	10
Carbon	18.2	12.0	10
Porous Fe ₃ O ₄	6.77	7.23	11
Commercial Fe ₃ O ₄	0.76	1.35	11
Poly(lauryl methacrylate			
divinylbenzene)/poly(glycidyl	53.97	-	12
methacrylate)/Fe ₃ O ₄			
Fe ₂ O ₃ @C	29.40	17.9	13
Fe ₃ O ₄ -Honeycomb briquette cinders	1.566	1.288	14
DNHM/FacO 40	20.27	92.09	Present
r in fivi/f e304-40	20.21	83.08	study

Table S4. Comparison of maximum adsorption capacity of the PNHM/Fe₃O₄-40 with other adsorbents for removal of arsenic (pH~7)

Figure S9. Effect of competing ions on removal of As(III) using PNHM/Fe₃O₄-40 (Experimental conditions: adsorbent dose: $1g L^{-1}$; C₀: 1000 µg L⁻¹; T: 300±3 K; contact time: 240 min).

Figure S10. FTIR spectra of PNHM/Fe₃O₄-40 composite particles at before and after As(III) adsorption.

Figure S11. Probable mechanism of arsenic adsorption on PNHM/Fe₃O₄-40 at pH ~7.

Figure S12. (a) Desorption of As(III) from loaded PNHM/Fe₃O₄–40 with different concentration of NaOH solutions; (b) As(III) removal % using regenerated PNHM/Fe₃O₄-40 upto three adsorption/desorption cycles (Experimental conditions: C₀: 1000 μ g L⁻¹, dose 1g L⁻¹, T: 300±3 K , pH~7).

Parameters	Quantity
Total arsenic (µg L ⁻¹)	152.54
Conductivity (µs cm ⁻¹)	2402
Total dissolved solid (mg L ⁻¹)	1404
Salinity (PSU)	1.09
pH	7.13
Turbidity (NTU)	59.27
Sodium (mg L ⁻¹)	239.348
Potassium (mg L ⁻¹)	273.596
Calcium (mg L ⁻¹)	65.920
Magnesium (mg L ⁻¹)	0.576
Chloride (mg L ⁻¹)	377.742
Phosphate (mg L ⁻¹)	1.153
Total alkalinity (mg L ⁻¹)	480
Total suspended solid (mg L ⁻¹)	41

Table S5. Physicochemical parameters of naturally arsenic contaminated groundwater sample

REFERENCES

- Ho, Y. S. & McKay, G. A Comparison of Chemisorption Kinetic Models Applied to Pollutant Removal on Various Sorbents. *Process Safety and Environmental Protection* 76, 332–340 (1998).
- 2. Qiu, H. *et al.* Critical review in adsorption kinetic models. *Journal of Zhejiang University-Science A* **10**, 716–724 (2009).
- 3. Ho, Y. S. & McKay, G. Sorption of dye from aqueous solution by peat. *Chemical Engineering Journal* **70**, 115–124 (1998).
- 4. Bhaumik, M., Noubactep, C., Gupta, V. K., McCrindle, R. I. & Maity, A. Polyaniline/Fe⁰ composite nanofibers: An excellent adsorbent for the removal of arsenic from aqueous solutions. *Chemical Engineering Journal* **271**, 135–146 (2015).
- 5. Srivastava, S. K., Senapati, S., Singh, S. B. & Raul, P. K. Magnetic Ni/PPy nanocomposite as effective reusable adsorbent for removal of arsenite and fluoride from contaminated water. *RSC Advances* **6**, 113424–113431 (2016).
- Feng, L., Cao, M., Ma, X., Zhu, Y. & Hu, C. Superparamagnetic high-surface-area Fe₃O₄ nanoparticles as adsorbents for arsenic removal. *Journal of Hazardous Materials* 217–218, 439–446 (2012).
- Tang, W., Li, Q., Gao, S. & Shang, J. K. Arsenic(III,V) removal from aqueous solution by ultrafine α-Fe₂O₃ nanoparticles synthesized from solvent thermal method. *Journal of Hazardous Materials* 192, 131–138 (2011).
- Zhou, Q., Wang, J., Liao, X., Xiao, J. & Fan, H. Removal of As(III) and As(V) from water using magnetic core-shell nanomaterial Fe₃O₄@polyaniline. *International Journal of Green Technology* 1, 54-64 (2015).
- 9. Davodi, B. & Jahangiri, M. Determination of optimum conditions for removal of As(III) and As(V) by polyaniline/polystyrene nanocomposite. *Synthetic Metals* **194**, 97–101 (2014).
- Zhu, H., Jia, Y., Wu, X. & Wang, H. Removal of arsenic from water by supported nano zero-valent iron on activated carbon. *Journal of Hazardous Materials* 172, 1591–1596 (2009).
- Wang, T. *et al.* Controllable Synthesis of Hierarchical Porous Fe₃O₄ Particles Mediated by Poly(diallyldimethylammonium chloride) and Their Application in Arsenic Removal. *ACS Applied Materials & Interfaces* 5, 12449–12459 (2013).
- 12. Shabnam, R. *et al.* Novel Magnetically Doped Epoxide Functional Cross-linked Hydrophobic Poly(lauryl methacrylate) Composite Polymer Particles for Removal of As(III) from Aqueous Solution. *Industrial & Engineering Chemistry Research* **56**, 7747–7756 (2017).
- Wu, Z., Li, W., Webley, P. A. & Zhao, D. General and controllable synthesis of novel mesoporous magnetic iron oxide@carbon encapsulates for efficient arsenic removal. *Advanced Materials* 24, 485–491 (2012).
- 14. Baig, S. A. *et al.* Arsenic removal from aqueous solutions using Fe₃O₄-HBC composite: effect of calcination on adsorbents performance. *PloS one* **9**, e100704 (2014).