Supplementary Information

Visible-light Promoted Regioselective Amination and Alkylation of Remote C(sp³)-H bonds

Guo et al.

Supplementary Methods

General Information

Unless stated otherwise, all reactions were carried out under argon atmosphere. All solvents were purified and dried according to standard methods prior to use. ¹H NMR, ¹³C NMR, and ¹⁹F NMR spectra were recorded on a Bruker instrument (300 MHz, 75MHz, and 282 MHz) spectrometer in CDCl₃ using tetramethylsilane (TMS) as the internal standard unless otherwise noted. Data for ¹H NMR are recorded as follows: chemical shift (δ , ppm), multiplicity (s = singlet, d = doublet, t = triplet, m = multiplet, br = broad, q = quartet, coupling constant(s) in Hz integration). Data for ¹³C NMR and ¹⁹F NMR are reported in terms of chemical shift (δ , ppm). HRMS were obtained by the ESI ionization sources. GC-MS were obtained by the EI sources.

Materials and Methods: Commercial grade reagents and solvents were purchased from Energy-Chemical and Inno-Chemical, and used as received without further purifications.

Optimization of Reaction Condition A.

Supplementary Table 1. Photo Catalyst Screening.^{a,b}

^a Unless otherwise noted, the reactions were carried out by using **1a** (0.1 mmol), **2a** (3.0 equiv), photo cat. (1 mol %), DMF (1 ml), K_2CO_3 (3 equiv) under Ar and stirred at room temperature for 12 h under 24-W violet LED (390-410 nm) light irradiation. ^b Isolated yields.

Supplementary Table 2. Light Sources Screening.^{a,b}

		u	la lic	aht source	CONH ^t Bu ↓ Ph	
	$\langle \overline{} \rangle$	+	Ir(ppy) ₂ (dtbpy)PF ₆ (1 %	→ 6 mol)	
	1a	2a	К	₂ CO ₃ (3 equiv) DMF, rt, 12h	3a	
Entry	Light	source	Yield(%) ^b	Entry	Light source	Yield(%) ^b
1	violet LED (24-	W, 390-410 nm) 73	4	18-W green LED	trace
2	18-W b	lue LED	53	5	25-W 365 nm UV light	19
3	18-W w	hite LED	21	6	25-W 254 nm UV light	16

^a **1a** (0.1 mmol), **2a** (3.0 equiv), photo cat. (1 mol %), DMF (1 ml), base (3 equiv), under Ar and stirred at room temperature for 12 h under specific light irradiation. ^b Isolated yields.

	CONF ^I Bu + Configuration 1 a 2a	NH ₂ Ir(ppy) ₂ DMF, 24-W	additive (dtbpy)PF ₆ (1 r ' violet LED (390 rt, 12h	CONH ^t Bu mol %) 0-410 nm) 3a	Ph
Entry	base	yield(%) ^b	Entry	base	yield(%) ^b
1	K ₂ CO ₃	73	10	CsF	51
2	Na ₂ CO ₃	22	11	NaHCO ₃	25
3	Cs_2CO_3	35	12	KHCO ₃	27
4	K ₃ PO ₄	10	13	LiOH	23
5	<i>t</i> -BuONa	42	14	NaOH	5
6	<i>t-</i> BuOK	15	15	DABCO	26
7	<i>t-</i> BuOLi	36	16	TBACI	24
8	KOMe	26	17	TBAI	trace
9	NaOMe	37			

Supplementary Table 3. Bases Screening.^{a,b}

^a **1a** (0.1 mmol), **2a** (3.0 equiv), photo cat. (1 mol %), DMF (1 ml), base (3 equiv), under Ar and stirred at room temperature for 12 h under 24-W violet LED (390-410 nm) light irradiation. ^b Isolated yields.

	CONF ^t Bu	NH ₂ I r(ppy) ₂ K ₂ 24-W viol	solvent (dtbpy)PF ₆ (1 mol %) CO ₃ (3 equiv) et LED (390-410 nm) rt, 12h	CONH ^I Bu H ² Ph 3a	
Entry	solvent	yield (%) ^b	Entry	solvent	yield (%) ^b
1	DMF	73	5	toluene	37
2	THF	44	6	DMAc	61
3	DMSO	66	7	1,4-dioxane	24
4	MeCN	22	8	H ₂ O	trace

Supplementary Table 4. Solvents Screening.^{a,b}

^a **1a** (0.1 mmol), **2a** (3.0 equiv), photo cat. (1 mol %), solvent (1 ml), K_2CO_3 (3.0 equiv), under Ar and stirred at room temperature for 12 h under 24-W violet LED (390-410 nm) light irradiation. ^b Isolated yields.

Optimization of Reaction Condition B.

Supplementary Table 5. Photo Catalyst Screening.^{a,b}

%), DMF (1 ml), under Ar and stirred at room temperature for 12 h under 18-W blue LED light irradiation. ^b Isolated yields.

Supplementary Table 6. Light Sources Screening.^{a,b}

4	CONF ^t Bu + MeO ₂ C 1a 7a	_CO₂Me — Ir(į	<mark>light s</mark> ppy) ₂ (dtbpy) DMF, r	FF ₆ (1 % mol)	Bu
Entry	Light source	Yield(%) ^b	Entry	Light source	Yield(%) ^b
1	18-W blue LED	25	4	18-W green LED	0
2	violet LED (24-W, 390-410 nn	ו) 23	5	25-W 365 nm UV light	0
3	18-W white LED	12	6	25-W 254 nm UV light	0

^a **1a** (0.1 mmol), **7a** (2.0 equiv), Ir(ppy)₂(dtby)PF₆ (1 % mol), DMF (1 ml), under Ar and stirred at room temperature with specific light irradiation. ^b Isolated yields.

Supplementary Table 7. Additive Screening.^{a,b}

(1a	CONF ^t Bu MeO ₂ C	CO2Me -	additive (Ir(ppy) ₂ (dtbpy) DMF, blue L	2 equiv) PF ₆ (1 mol %) .ED, rt, 12h	ONH ^t Bu
entry	additive	yield(%) ^b	entry	additive	yield(%) ^b
1	Cs_2CO_3	36	10	CsF	26
2	Na ₂ CO ₃	31	11	NaHCO ₃	25
3	K ₂ CO ₃	35	12	KHCO3	24
4	K ₃ PO ₄	28	13	LiOH	27
5	<i>t</i> -BuONa	27	14	NaOH	24
6	<i>t</i> -BuOK	35	15	DABCO	21
7	<i>t-</i> BuOLi	33	16	TBACI	24
8	KOMe	46	17	TBAI	25
9	NaOMe	40			

^a **1a** (0.1 mmol), **7a** (2.0 equiv), photo cat. (1 mol %), DMF (1 ml), additive (2.0 equiv), under Ar and stirred at room temperature for 12 h under 18-W blue LED light irradiation. ^b Isolated yields.

Supplementary Table 8. Solvents Screening.^{a,b}

^a **1a** (0.1 mmol),**7a** (2.0 equiv), photo cat. (1 mol %), solvent (1 mI), MeOK (2.0 equiv), under Ar and stirred at room temperature for 12 h under 18-W blue LED light irradiation. ^b Isolated yields.

Supplementary Table 9. Control Experiments.^{a,b}

CONF ^t Bu	MeO ₂ C	CONH ^t Bu 8a
entry	change from the "conditions"	yield(%) ^b
1	no change	65
2	CH ₃ OK (3.0 equiv)	67
3	CH ₃ OK (2.5 equiv)	68
4	CH ₃ OK (1.0 equiv)	40
5	CH ₃ OK (2.5 equiv), 7a (3.0 equiv)	71
6	CH ₃ OK (2.5 equiv), 7a (2.5 equiv)	68
7	CH ₃ OK (2.5 equiv), 7a (1.0 equiv)	32
9	without Ir cat.	0
10	In the dark, 24 h at rt	0
11	In the dark, 12 h at 80 $^{\circ}\mathrm{C}$	0

^a 0.1 mmol scale. ^b Isolated yields.

List of substrates.

Supplementary Table 10. List of N-fluoroamides¹

Supplementary Table 11. List of amines.

Supplementary Table 12. List of Hantzsch esters or Hantzsch nitrile.³

2º alkyl Hantzsch ester:

General procedure of "condition A"

In a dry 10 ml glass test tube, substrate *N*-fluoroamides (0.2 mmol), aniline (0.6 mmol, 3 equiv), $Ir(ppy)_2(dtbpy)PF_6$ (1 mol %), and K_2CO_3 (0.6 mmol, 3 equiv) were dissolved in DMF (2.0 mL) under Ar atmosphere. The glass test tube was then transferred to a 24-W violet light photoreactor, where it was irradiated for 12 h. Then, the reaction mixture was quenched by H_2O , extracted by EtOAc, wash by saturation NaCl, dried over anhydrous sodium sulfate, concentrated in vacuo, and the residue was purified by column chromatography to afford the product.

General procedure of "condition B"

In a dry 10 ml glass test tube, substrate *N*-fluoroamides (0.2 mmol), Hantzsch esters or Hantzsch nitrile (0.6 mmol, 3 equiv), $Ir(ppy)_2(dtbpy)PF_6$ (1 mol %), and MeOK (0.5 mmol, 2.5 equiv) were dissolved in DCM (2.0 mL) under Ar atmosphere. The glass test tube was then transferred to an 18-W blue LED photoreactor, where it was irradiated for 12 h. Then, the reaction mixture was quenched by H₂O, extracted by DCM, wash by saturation NaCl, dried over anhydrous sodium sulfate, concentrated in vacuo, and the residue was purified by column chromatography to afford the product.

Synthetic application:⁴⁻⁵

N-(tert-butyl)-2-(((3,5-dimethylphenyl)amino)methyl)benzamide (3f, 31.0 mg, 0.1 mmol) was dissolved in sulfuric acid (20 wt% in H_2O). The reaction mixture was stirred for 12 h at 100 °C. Then, it was cooled down to the room temperature and extracted with ethyl ether. The organic layer was dried over anhydrous sodium sulfate, concentrated in vacuo, and the residue was purified by chromatography on silica gel (*n*-hexane/EtOAc) to give the 2-(3,5-dimethylphenyl)isoindolin-1-one (3f', 95%).

N-(tert-butyl)-2-(2-(diphenylamino)ethyl)-5-methylbenzamide (4s, 37.2 mg, 0.1 mmol) was dissolved in sulfuric acid (20 wt% in H_2O). The reaction mixture was stirred for 12 h at 100 °C. Then, it was cooled down to the room temperature and extracted with ethyl ether. The organic layer was dried over anhydrous sodium sulfate, concentrated in vacuo, and the residue was purified by chromatography on silica gel (*n*-hexane/EtOAc) to give the 2-(2-(diphenylamino)ethyl)-5-methylbenzoic acid (4S', 93%).

N-(tert-butyl)-2-(2-ethylbutyl)benzamide (10b, 26.1 mg, 0.1 mmol) was dissolved in conc. HCl (1 mL). The mixture was then reflux for 48 hours. Then, it was cooled down to the room temperature and extracted with ethyl ether. The organic layer was dried over anhydrous sodium sulfate, concentrated in vacuo, and the residue was purified by chromatography on silica gel (*n*-hexane/EtOAc) to give the 2-(2-ethylbutyl)benzoic acid (10b', 20.2 mg, 98%).

Supplementary Discussion

The Mechanistic Study.

Trapping with TEMPO:

Supplementary Figure 1. Mass Spectrum of TEMPO addition.

2,2,6,6-tetramethyl-1-(1-phenylethoxy)piperidine (16)

¹**HNMR** (300 MHz, CDCl₃) δ 7.21-7.42 (m, 5H), 4.77 (dd, *J* = 6.6 Hz, 13.3 Hz, 1H), 1.48 (d, *J* = 6 Hz, 6H), 1.37 (s, 3H), 1.29 (s, 3H), 1.16 (s, 3H), 1.02 (s, 3H), 0.65 (s, 3H).

¹³CNMR (75 MHz, CDCl₃) δ 145.86, 128.00, 126.77, 126.61, 83.14, 59.67, 40.38, 23.58, 20.35, 17.25. HRMS (ESI): C₁₇H₂₇NO+Na⁺Calcd: 284.1985, Found: 284.1986.

Radical clock experiments:

N-(tert-butyl)-2-(3,3-diphenyl-3-(phenylamino)propyl)benzamide (13), 40.4 mg, yield: 45%. Yellow oil.

¹**HNMR** (300 MHz, CDCl3): δ 7.59 (d, *J* = 7.8 Hz, 4H), 7.10-7.36 (m, 9H), 6.95 (t, *J* = 7.5 Hz, 2H), 6.81 (d, *J* = 7.2 Hz, 1H), 6.55 (t, *J* = 7.2 Hz, 1H), 6.46 (d, *J* = 7.8 Hz, 2H), 5.69 (s, 1H), 5.62 (s, 1H), 2.72-2.78 (m, 2H), 2.48-2.55 (m, 2H), 1.49 (s, 9H).

¹³CNMR (75 MHz, CDCl3): δ 170.13, 146.66, 144.37, 140.68, 137.01, 130.36, 129.82, 128.35, 128.10, 127.85, 126.47, 125.89, 116.64, 115.64, 65.93, 51.91, 44.74, 28.96, 28.81 (d, *J* = 3.8 Hz) HRMS (ESI) C₃₂H₃₄N₂O+Na⁺ Calcd: 485.2563, Found: 485.2573.

N-(tert-butyl)-2-(4-ethyl-2,2-diphenylhexyl)benzamide (17), 52.1 mg, yield: 58%. Yellow oil. ¹HNMR (300 MHz, CDCl₃) δ 7.15-7.25 (m, 11H), 7.06 (t, *J* = 7.5 Hz, 1H), 6.93 (t, *J* = 7.8 Hz, 1H), 6.37 (d, *J* = 7.8 Hz, 1H), 5.31 (s, 1H), 3.83 (s, 2H), 1.89 (d, *J* = 4.5 Hz, 2H), 1.45 (s, 9H), 1.20-1.30 (m, 1H), 0.83-0.93 (m, 4H), 0.56 (t, *J* = 7.2 Hz, 6H).

¹³**CNMR** (75 MHz, CDCl₃) δ 17.24, 147.22, 139.72, 136.69, 131.18, 129.28, 128.34, 127.59, 126.49, 125.80, 125.65, 52.63, 51.63, 43.23, 42.23, 35.33, 28.72, 25.37, 10.23.

HRMS (ESI): C₃₁H₃₉NO+Na⁺Calcd: 464.2924, Found: 464.2940.

Homo coupling results:

2,2'-(ethane-1,2-diyl)bis(N-(tert-butyl)benzamide) (14), 3.8 mg, yield: 5%. Colorless oil.

¹**HNMR** (300 MHz, CDCl₃) δ 7.25-7.31 (m, 5H), 7.18 (t, *J* = 7.5 Hz, 3H), 5.64 (s, 2H), 3.09 (s, 4H), 1.45 (s, 18H).

¹³CNMR (75 MHz, CDCl₃) δ 169.85, 139.46, 137.84, 130.54, 129.44, 126.60, 125.92, 51.75, 35.16, 28.82.

HRMS (ESI) C₂₄H₃₂N₂O₂+Na⁺ Calcd: 403.2361, Found: 403.2360.

butane-2,3-diyldibenzene (18), dr = 1:1.3. Colorless oil.

¹**HNMR** (300 MHz, CDCl₃) δ 6.93-7.34 (m, 10H), 2.93-2.95 (m, 1H), 2.79-2.80 (m, 1H), 1.28 (d, *J* = 6.6 Hz, 3H), 1.02 (d, *J* = 6 Hz, 3H).

¹³CNMR (75 MHz, CDCl₃) δ 146.51, 145.86, 128.31, 127.85, 127.80, 127.04, 126.08, 125.72, 47.29, 46.50, 29.75, 21.08, 17.97.

HRMS (ESI) C₁₆H₁₈+Na⁺ Calcd: 233.1301, Found: 233.1302.

Isotope tracing:

Supplementary Figure 2. GC-MS of isotope tracing.

Reactions under oxidative conditions:

The reactions with N-chloro-amide substrate.

Other radical precursors:

Other radical precursors, such as PhSO₂Na and BnBF₃K were used instead of *N*,*N*-dimethylaniline.

(a) When PhSO₂Na was used as radical precursor, the desired product was obtained in 45% yield.

CONH^tBu

N-(tert-butyl)-2-((phenylsulfonyl)methyl)benzamide, white solid, mp: 143-144°C.

¹**HNMR** (300 MHz, CDCl₃): δ 7.81 (d, J = 7.2 Hz, 2H), 7.68 (t, J = 7.5 Hz, 1H), 7.55 (t, J = 7.8 Hz, 2H), 7.46-7.49 (m, 1H), 7.27-7.41 (m, 2H), 7.11 (d, J = 7.2 Hz, 1H), 6.37 (br, 1H), 4.68 (s, 2H), 1.50 (s, 9H). ¹³**CNMR** (75 MHz, CDCl₃): δ 168.62, 139.88, 138.78, 133.96, 132.53, 129.57, 129.29, 129.07, 128.38, 128.06, 124.63, 58.98, 52.08, 28.70.

HRMS (ESI): C₁₈H₂₁NO₃S+Na⁺Calcd: 354.1134, Found: 354.1134.

Supplementary Figure 3. Mass Spectrum of the PhSO₂Na reaction.

Supplementary Figure 4. ¹H NMR (300 MHz, CDCl₃) spectra for compound *N*-(tert-butyl)-2-((phenylsulfonyl)methyl)benzamide.

Supplementary Figure 5. ¹³C NMR (75 MHz, CDCl₃) spectra for compound *N*-(tert-butyl)-2-((phenylsulfonyl)methyl)benzamide.

(b) When BnBF₃K was used as radical precursor, the desired product was obtained in 38% yield.

N-(tert-butyl)-2-phenethylbenzamide. Pale yellow solid, mp: 97-100°C.

¹**HNMR** (300 MHz, CDCl₃) δ 7.16-7.32 (m, 9H), 5.48(s, 1H), 3.07 (t, *J* = 7.2 Hz, 2H), 2.92 (t, *J* = 8.7 Hz, 2H), 1.45 (s, 9H).

¹³CNMR (75 MHz, CDCl₃) δ 169.72, 141.81, 139.44, 137.95, 130.21, 129.45, 128.55, 128.31, 126.58, 125.96, 125.88, 51.70, 38.08, 35.47, 28.78.

HRMS (ESI): C₁₉H₂₃NO+Na⁺ Calcd: 304.1672, Found: 304.1672.

Supplementary Figure 6. Mass Spectrum of the BnBF₃K reaction.

Supplementary Figure 7. ¹H NMR (300 MHz, CDCl₃) spectra for compound *N*-(tert-butyl)-2phenethylbenzamide.

Supplementary Figure 8. ¹³C NMR (75 MHz, CDCl₃) spectra for compound *N*-(tert-butyl)-2phenethylbenzamide.

Cyclic Voltammetry Experiments:

Cyclic Voltammetry was performed on a CH Instruments Electrochemical Workstation model CHI760E. A solution of the sample in MeCN (0.001 M) was tested with 0.1 M Bu₄NPF₆ as the supporting electrolyte, using a glassy carbon as the working electrode, a Pt as the counter electrode, and a saturated calomel electrode reference electrode. Scan rate = 0.05 V/s, 2 sweep segments, a sample interval of 0.001 V.

Reductive potential of substrate N-fluorocarboxamides 1a and 1o.

Supplementary Figure 9. Cyclic Voltammogram of 1a, $E_p^{0/-1}(1a) = -0.84 V$ (vs SCE).

Supplementary Figure 10. Cyclic Voltammogram of 10, $E_p^{0/-1}(10) = -0.83$ V (vs SCE).

Reductive potential of substrate Hantzsch ester PhNH₂ (2a).

Supplementary Figure 11. Cyclic Voltammogram of PhNH₂ (2a), $E_p^{0/+1}(2a) = 0.94$ V (vs SCE).

Reductive potential of substrate Hantzsch ester 7c, 7ca, 7cb.

Supplementary Figure 12. Cyclic Voltammogram of 7c, $E_p^{0/+1}(7c) = 0.78 V$ (vs SCE)

Supplementary Figure 13. Cyclic Voltammogram of 7ca, $E_p^{0/+1}(7ca) = 0.97 V$ (vs SCE).

Supplementary Figure 14. Cyclic Voltammogram of 7cb, $E_p^{0/+1}(7cb) = 0.91$ V (vs SCE).

Stern-Volmer fluorescence quenching study.

DMF was degassed with a stream of argon for 30 min. $Ir(ppy)_2(dtbpy)PF_6$ (4.6 mg, 5.0 µmol) was dissolved in 1.0 mL DMF to prepare a 5×10⁻³ M solution. 100 µL of this solution was added to each of a set of 6 volumetric flasks (10 mL). Subsequently, the solution of quencher **1a** or **2a** in DMF (1.0 mL, 0.025 M) was added in increasing amounts (0, 100 µL, 200 µL, 300 µL, 400 µL, 500 µL) to the volumetric

flasks and the volume of volumetric flasks were adjusted to 10 mL by adding DMF. Emission intensities were recorded by using a HITACHI spectrofluorophotometer F-7000. All solutions were excited at 375 nm and the fluorescence emission spectra were recorded.

Supplementary Figure 15. The emission quenching spectrum of Ir(ppy)₂(dtbpy)PF₆ by various concentrations of quencher 1a.

Supplementary Figure 16. The emission quenching spectrum of Ir(ppy)₂(dtbpy)PF₆ by various concentrations of quencher **2a**.

Supplementary Figure 17. Stern-Volmer plot for the emission quenching of Ir(ppy)₂(dtbpy)PF₆ by various concentrations of quencher **1a** or **2a**.

EPR experients

EPR spectra were recorded at room temperature without using any free radical spin trapping agent. According to general procedure,⁴ the HFIP solutions of PC ($Ir(ppy)_2(dtbpy)PF_6$), aniline (**2a**), or PC ($Ir(ppy)_2(dtbpy)PF_6$) with aniline **2a** were respectively stirred under violet LED (24-W, 390-410 nm) irradiation for 1h, and then measured by EPR. As shown in Figure S10, EPR signals were observed only in Fig. c, where PC ($Ir(ppy)_2(dtbpy)PF_6$) and aniline (**2a**) were added together in the HFIP solution. The result indicated that radical species were generated therein.

Supplementary Figure 18. EPR experiments. (a): PC (Ir(ppy)₂(dtbpy)PF₆, 0.005 mol, 5 mol %); (b):
PhNH₂ (2a, 0.1 mol), and (c): [PhNH₂ (2a, 0.1 mmol) + PC (Ir(ppy)₂(dtbpy)PF₆, 5 mol %)] in HFIP (1 ml), respectively. Stirred at room temperature under violet LED (24-W, 390-410 nm) irradiation for 1h, and the mixture were directly used for EPR experiments.

Proposed mechanism.

"condition A"

Based on our investigations and previous reports,⁶ a plausible mechanism was proposed in Supplementary Figure 19. The reaction starts with the oxidation of **2** by the excited-state Ir(III)* in the presence of base, yielding amine radical **A** and Ir(II). Then, the Ir(II) $(E_{1/2}^{III/II} = -1.51 \text{ V vs SCE})^{7.9}$ species facilitated the second SET process of substrate **1** $(Ep^{0/-1}(1a) = -0.84 \text{ V versus SCE in MeCN})^{7.9}$ to generate the amidyl radical **B**. The subsequently 1,5-HAT formed the radical intermediate **C** along with the oxidation of Ir(II) to Ir(III) to close the catalytic cycle. Finally, the radical-radical cross-coupling between N-center radical **A** and C-center radical intermediate **C** was proposed to provide the sp³ C-N cross coupling product **3**.

Supplementary Figure 19. Proposed mechanism of amine.

"condition B"

Based on our investigations and previous reports,⁶ a plausible mechanism was proposed in Supplementary Figure 20. The reaction starts with the oxidation of **7** by the excited-state Ir(III)* in the presence of base, yielding alkyl radical **A** and Ir(II). Then, the Ir(II) $(E_{1/2}^{III/II} = -1.51 \text{ V vs SCE})^{7.9}$ species facilitated the second SET process of substrate **1** $(Ep^{0/-1}(1a) = -0.84 \text{ V versus SCE in MeCN})^{7.9}$ to generate the amidyl radical **B**. The subsequently 1,5-HAT formed the radical intermediate **C** along with the oxidation of Ir(II) to Ir(III) to close the catalytic cycle. Finally, the radical-radical cross-coupling between alkyl radical **A** and C-center radical intermediate **C** was proposed to provide the sp³ C-C cross coupling product **3**.

Supplementary Figure 20. Proposed mechanism of Hantzsch esters.

The wavelength of the violet LED (24-W, 390-410 nm).

The wavelength of the violet LED light we used (recorded on an AVANTES[®] AvaSpec-ULS2048 spectrometer instrument):

Supplementary Figure 21. The wavelength of the violet LED.

Characterization of products.

N-(tert-butyl)-2-((phenylamino)methyl)benzamide (3a), 41.2 mg, yield: 73%. Yellow oil.
¹HNMR (300 MHz, CDCl₃): δ 7.61-7.64 (m, 1H), 7.37 (s, 3H), 7.21 (t, *J* = 8.1 Hz, 2H), 7.05 (s, 1H), 6.79 (t, *J* = 7.2 Hz, 1H), 6.71 (d, *J* = 7.8 Hz, 2H), 4.34 (s, 2H), 4.13 (br, 1H), 1.34 (s, 9H).
¹³CNMR (75 MHz, CDCl₃): δ 168.44, 147.38, 137.90, 135.73, 130.14, 129.33, 128.82, 128.04, 118.80, 114.56, 113.70, 51.49, 47.32, 28.67.

HRMS (ESI): C₁₈H₂₂N₂O+Na⁺ Calcd: 305.1624, Found: 305.1615.

N-(tert-butyl)-3-chloro-2-((phenylamino)methyl)benzamide (3b), 43.7 mg, yield: 69%. White solid, mp: 172-173°C.

¹**HNMR** (300 MHz, CDCl₃): δ 7.53 (d, *J* = 7.5 Hz, 1H), 7.46 (d, *J* = 7.8 Hz, 1H), 7.22-7.34 (m, 3H), 7.02 (s, 1H), 6.84 (t, *J* = 7.2 Hz, 1H), 6.77 (d, *J* = 7.8 Hz, 2H), 4.46 (s, 2H), 4.05 (br, 1H), 1.30 (s, 9H).

¹³**CNMR** (75 MHz, CDCl₃): δ 167.51, 147.27, 140.89, 135.24, 132.73, 131.06, 129.36, 129.24, 127.61, 119.31, 114.05, 51.70, 43.90, 28.48.

HRMS (ESI): C₁₈H₂₁ClN₂O+Na⁺Calcd: 339.1235, Found: 339.1227.

N-(tert-butyl)-3-methyl-2-((phenylamino)methyl)benzamide (3c), 38.5 mg, yield: 65%. Yellow oil.

¹**HNMR** (300 MHz, CDCl₃): δ 7.44 (t, *J* = 4.2 Hz, 1H), 7.21-7.27 (m, 3H), 6.78-6.84 (m, 2H), 6.74 (d, *J* = 8.1 Hz, 2H), 4.26 (s, 2H), 3.90 (br, 1H), 2.42 (s, 3H), 1.30 (s, 9H).

¹³**CNMR** (75 MHz, CDCl₃): δ 168.98, 147.69, 139.61, 137.58, 133.00, 132.00, 129.36, 128.02, 126.43, 118.79, 113.64, 51.52, 43.53, 28.59, 19.39.

HRMS (ESI): C₁₉H₂₄N₂O+Na⁺ Calcd: 319.1781, Found: 319.1773.

5-bromo-*N***-(tert-butyl)-2-((phenylamino)methyl)benzamide (3d),** 48.4 mg, yield: 67%. White solid, mp: 114-117°C.

¹**HNMR** (300 MHz, CDCl₃): δ 7.72 (s, 1H), 7.49 (d, *J* = 8.1 Hz, 1H), 7.17-7.23 (m, 3H), 6.87 (s, 1H), 6.79 (t, *J* = 7.2 Hz, 1H), 6.67 (d, *J* = 7.8 Hz, 2H), 4.31 (s, 2H), 4.09 (br, 1H), 1.34 (s, 9H). ¹³**CNMR** (75 MHz, CDCl₃): δ 166.92, 147.10, 139.50, 134.93, 133.02, 131.65, 129.37, 121.82, 118.97, 113.67, 51.77, 46.70, 28.61.

HRMS (ESI): C₁₈H₂₁BrN₂O+Na⁺Calcd: 383.0729, Found: 383.0715.

4-bromo-N-(tert-butyl)-2-((phenylamino)methyl)benzamide (3e), 54.2 mg, yield: 75%. Yellow oil.

¹**HNMR** (300 MHz, CDCl₃): δ 7.53 (s, 1H), 7.49 (s, 2H), 7.19-7.26 (m, 2H), 7.00 (s, 1H), 6.81 (t, *J* = 7.5 Hz, 1H), 6.70 (d, *J* = 7.5 Hz, 2H), 4.31 (s, 2H), 4.11 (br, 1H), 1.33 (s, 9H).

¹³**CNMR** (75 MHz, CDCl₃): δ 167.51, 147.03, 138.05, 136.61, 132.85, 131.08, 130.47, 129.40, 124.22, 119.10, 113.69, 51.67, 46.92, 28.63.

HRMS (ESI): C₁₈H₂₁BrN₂O+Na⁺Calcd: 383.0729, Found: 383.0712.

N-(tert-butyl)-2-((phenylamino)methyl)-4-(trifluoromethyl)benzamide (3f), 35.7 mg, yield: 51%. Yellow solid, mp: 153-155°C.

¹**HNMR** (300 MHz, CDCl₃): δ 7.88 (d, *J* = 7.8 Hz, 1H), 7.77 (d, *J* = 7.5 Hz, 1H), 7.62 (br, 1H), 7.51 (t, *J* = 7.8 Hz, 1H), 7.24-7.30 (m, 2H), 6.89 (t, *J* = 7.5 Hz, 1H), 6.78 (d, *J* = 7.8 Hz, 2H), 4.39 (s, 2H), 3.97 (br, 1H), 1.24 (s, 9H).

¹⁹FNMR (282 MHz) δ -58.34.

¹³**CNMR** (75 MHz, CDCl₃): δ 167.14, 146.81, 141.77, 133.44, 132.59, 129.43, 128.50, 127.50 (q, *J* = 6.0 Hz), 126.03(t, *J* = 273.0 Hz), 119.98, 114.30, 51.63, 43.07, 28.35.

HRMS (ESI): C₁₉H₂₁F₃N₂O+Na⁺ Calcd: 373.1498, Found: 373.1502.

N-(tert-butyl)-2-(((4-methoxyphenyl)amino)methyl)benzamide (3g), 24.9 mg, yield: 40%. White oil liquid.

¹**HNMR** (300 MHz, CDCl₃): δ 7.61-7.65 (m, 1H), 7.54 (br, 1H), 7.24-7.33 (m, 3H), 6.75 (d, *J* = 9 Hz, 2H), 6.63 (d, *J* = 8.7 Hz, 2H), 4.18 (s, 2H), 3.70 (s, 3H), 1.24 (s, 9H).

¹³CNMR (75 MHz, CDCl₃): δ 167.06, 152.15, 140.12, 137.10, 134.14, 129.28, 129.13, 128.32,

127.20, 114.15, 113.79, 54.64, 50.32, 47.41, 27.65.

HRMS (ESI): C₁₉H₂₄N₂O₂+Na⁺ Calcd: 335.1703, Found: 335.1734.

N-(tert-butyl)-2-(((3,5-dimethylphenyl)amino)methyl)benzamide (3h), 39.7 mg, yield: 64%. White solid, mp: 128-131°C.

¹**HNMR** (300 MHz, CDCl₃): δ 7.63-7.66 (m, 1H), 7.34-7.37 (m, 3H), 7.22 (s, 1H), 6.47 (s, 1H), 6.35 (s, 2H), 4.30 (s, 2H), 3.93 (br, 1H), 2.25 (s, 6H), 1.34 (s, 9H).

¹³**CNMR** (75 MHz, CDCl₃): δ 168.33, 147.45, 138.97, 137.94, 135.68, 130.15, 128.96, 128.04, 120.91, 111.75, 51.44, 47.52, 28.68, 21.50.

HRMS (ESI): C₂₀H₂₆N₂O+Na⁺ Calcd: 333.1937, Found: 333.1926.

N-(tert-butyl)-2-(((4-fluorophenyl)amino)methyl)benzamide (3i), 37.8 mg, yield: 63%. White solid, mp: 147-150°C.

¹**HNMR** (300 MHz, CDCl₃): δ 7.61-7.64 (m, 1H), 7.35-7.38 (m, 3H), 7.04 (s, 1H), 6.93 (t, *J* = 8.7 Hz, 2H), 6.63-6.68 (m, 2H), 4.29 (s, 2H), 4.06 (br, 1H), 1.34 (s, 9H).

¹⁹**FNMR** (282 MHz) δ -126.16.

¹³CNMR (75 MHz, CDCl₃): δ 168.43, 143.66, 137.88, 135.51, 130.17, 128.82, 128.13, 115.96, 115.5.66, 114.68, 114.58, 51.51, 47.93, 28.69.

HRMS (ESI): C₁₈H₂₁FN₂O+Na⁺ Calcd: 323.1530, Found: 323.1519.

N-(tert-butyl)-4-methyl-2-(((4-(trifluoromethyl)phenyl)amino)methyl)benzamide (3j), 48.1 mg, yield: 66%. White solid, mp: 174-175°C.

¹**HNMR** (300 MHz, CDCl₃): δ 7.39 (d, J = 8.7 Hz, 3H), 7.19 (s, 1H), 7.12 (d, J = 7.8 Hz, 1H), 6.66 (d, J = 8.4 Hz, 2H), 6.15 (s, 1H), 4.76 (br, 1H), 4.41 (d, J = 5.7 Hz, 2H), 2.36 (s, 3H), 1.39 (s, 9H). ¹⁹**FNMR** (282 MHz) δ -61.04.

¹³**CNMR** (75 MHz, CDCl₃): δ 169.16, 150.28, 140.45, 136.44, 134.42, 130.68, 128.42, 127.96, 126.63, 126.58, 112.35, 51.68, 46.45, 28.75, 21.29.

HRMS (ESI): C₂₀H₂₃F₃N₂O+Na⁺ Calcd: 387.1655, Found: 387.1645.

N-(tert-butyl)-2-((quinolin-8-ylamino)methyl)benzamide (3k), 38.0 mg, yield: 57%. White oil liquid.

¹**HNMR** (300 MHz, CDCl₃): δ 8.69-8.71 (m, 1H), 8.10 (d, *J* = 8.4 Hz, 1H), 7.60-7.63 (m, 1H), 7.35-7.49 (m, 5H), 7.15 (d, *J* = 7.8 Hz, 1H), 6.82 (d, *J* = 7.8 Hz, 2H), 6.41 (br, 1H), 4.58 (s, 2H), 1.27 (s, 9H).

¹³**CNMR** (75 MHz, CDCl₃): δ 168.48, 147.14, 143.94, 137.99, 136.09, 135.45, 130.08, 129.92, 128.57, 128.50, 127.92, 127.66, 121.50, 115.40, 106.18, 51.53, 46.38, 28.53.

HRMS (ESI): C₂₁H₂₃N₃O+Na⁺ Calcd: 356.1733, Found: 356.1731.

N-(tert-butyl)-4-fluoro-2-((methyl(phenyl)amino)methyl)benzamide (31), 40.9 mg, yield: 65%. Yellow oil.

¹**HNMR** (300 MHz, CDCl₃): δ 7.43-7.48 (m, 1H), 7.20-7.23 (m, 2H), 6.94-6.99 (m, 2H), 6.72-6.79 (m, 3H), 6.05 (s, 1H), 4.63 (s, 2H), 3.00 (s, 3H), 1.42 (s, 9H).

¹⁹**FNMR** (282 MHz) δ -110.05.

¹³**CNMR** (75 MHz, CDCl₃): δ 167.98, 149.47, 140.60 (d, *J* = 6.8 Hz), 132.80, 129.45 (d, *J* = 9.0 Hz), 129.19, 117.51, 115.16 (d, *J* = 22.5 Hz), 113.65 (d, *J* = 21 Hz), 113.00, 54.82, 51.84, 38.91, 28.82.

HRMS (ESI): C₁₉H₂₃FN₂O+Na⁺ Calcd: 337.1687, Found: 337.1680.

N-(tert-butyl)-4-chloro-2-((methyl(phenyl)amino)methyl)benzamide (3m), 45.0 mg, yield: 68%. White solid, mp: 109-112°C.

¹**HNMR** (300 MHz, CDCl₃): δ 7.41 (d, *J* = 8.7 Hz, 1H), 7.21-7.27 (m, 4H), 6.74-6.80 (m, 3H), 6.13 (s, 1H), 4.58 (s, 2H), 2.98 (s, 3H), 1.40 (s, 9H).

¹³**CNMR** (75 MHz, CDCl₃): δ 167.87, 149.59, 139.20, 136.07, 135.19, 129.19, 128.90, 128.28, 127.16, 117.73, 113.25, 54.89, 51.90, 38.90, 28.78.

HRMS (ESI): C₁₉H₂₃ClN₂O+Na⁺ Calcd: 353.1391, Found: 353.1381.

N-(tert-butyl)-2-((methyl(phenyl)amino)methyl)benzamide (3n), 36.2 mg, yield: 61%. Yellow oil.

¹**HNMR** (300 MHz, CDCl₃): δ 7.46-7.49 (m, 1H), 7.20-7.35 (m, 5H), 6.77 (d, *J* = 8.7 Hz, 3H), 6.19 (s, 1H), 4.63 (s, 2H), 2.98 (s, 3H), 1.40 (s, 9H).

¹³**CNMR** (75 MHz, CDCl₃): δ 168.86, 149.78, 137.01, 136.55, 129.88, 129.13, 128.41, 127.50, 127.03, 117.34, 113.16, 54.75, 51.72, 38.73, 28.82.

HRMS (ESI): C₁₉H₂₄N₂O+Na⁺ Calcd: 319.1781, Found: 319.1771.

4-bromo-*N***-(tert-butyl)-2-((methyl(phenyl)amino)methyl)benzamide (30),** 36.8 mg, yield: 49%. Yellow oil.

¹**HNMR** (300 MHz, CDCl₃): δ 7.41-7.43 (m, 2H), 7.32-7.35 (m, 1H), 7.21-7.24 (m, 2H), 6.74-6.81 (m, 3H), 6.11 (s, 1H), 4.57 (s, 2H), 2.97 (s, 3H), 1.39 (s, 9H).

¹³**CNMR** (75 MHz, CDCl₃): δ 167.90, 149.66, 139.32, 135.74, 131.23, 130.20, 129.20, 129.06, 124.38,

117.81, 113.34, 54.91, 51.91, 38.89, 28.79.

HRMS (ESI): C₁₉H₂₃BrN₂O+Na⁺Calcd: 397.0886, Found: 397.0874.

N-(tert-butyl)-4-methyl-2-((methyl(phenyl)amino)methyl)benzamide (3p), 44.7 mg, yield: 72%. White solid, mp: 105-108°C.

¹**HNMR** (300 MHz, CDCl₃): δ 7.39 (d, *J* = 7.5 Hz, 1H), 7.22 (d, *J* = 7.5 Hz, 2H), 7.06-7.10 (m, 2H), 6.73-6.81 (m, 3H), 6.22 (s, 1H), 4.58 (s, 2H), 2.95 (s, 3H), 2.30 (s, 3H), 1.38 (s, 9H).

¹³**CNMR** (75 MHz, CDCl₃): δ 168.91, 149.99, 140.01, 136.53, 134.27, 129.11, 127.73, 127.66, 117.38, 113.29, 112.51, 54.96, 51.57, 38.60, 28.82, 21.46.

HRMS (ESI): C₂₀H₂₆N₂O+Na⁺ Calcd: 333.1937, Found: 333.1931.

N-(tert-butyl)-5-methyl-2-((methyl(phenyl)amino)methyl)benzamide (3q), 45.9 mg, yield: 74%. White solid, mp: 105-108°C.

¹**HNMR** (300 MHz, CDCl₃): δ 7.30 (s, 1H), 7.21 (d, *J* = 7.5 Hz, 2H), 7.12 (s, 2H), 6.72-6.81 (m, 3H), 6.27 (s, 1H), 4.55 (s, 2H), 2.94 (s, 3H), 2.34 (s, 3H), 1.38 (s, 9H).

¹³**CNMR** (75 MHz, CDCl₃): δ 168.93, 149.88, 137.04, 136.89, 133.13, 130.46, 129.10, 128.74, 128.36, 117.45, 113.39, 54.51, 51.61, 38.57, 28.79, 20.90.

HRMS (ESI): C₂₀H₂₆N₂O+Na⁺ Calcd: 333.1937, Found: 333.1929.

N-(tert-butyl)-4-methoxy-2-((methyl(phenyl)amino)methyl)benzamide (3r), 41.8 mg, yield: 64%. Yellow oil.

¹**HNMR** (300 MHz, CDCl₃): δ 7.47 (d, *J* = 7.8 Hz, 1H), 7.21 (d, *J* = 7.5 Hz, 2H), 6.77 (d, *J* = 8.7 Hz, 5H), 6.22 (s, 1H), 4.61 (s, 2H), 3.74 (s, 3H), 2.97 (s, 3H), 1.39 (s, 9H).

¹³**CNMR** (75 MHz, CDCl₃): δ 168.56, 160.85, 149.82, 139.09, 129.46, 129.34, 129.10, 117.43, 114.38, 113.27, 111.40, 55.27, 55.16, 51.53, 38.71, 28.84.

HRMS (ESI): C₂₀H₂₆N₂O₂+Na⁺Calcd: 349.1886, Found: 349.1878.

N-(tert-butyl)-2-(((4-fluorophenyl)(methyl)amino)methyl)-4-methylbenzamide (3s), 41.4 mg, yield: 63%. White solid, mp: 147-150°C.

¹**HNMR** (300 MHz, CDCl₃):δ 7.41 (d, *J* = 7.8 Hz, 1H), 7.09 (d, *J* = 7.8 Hz, 1H), 7.03 (s, 1H), 6.93 (t, *J* = 9.0 Hz, 2H), 6.71-6.77 (m, 2H), 6.38 (s, 1H), 4.48 (s, 2H), 2.89 (s, 3H), 2.31 (s, 3H), 1.37 (s, 9H).

¹⁹**FNMR** (282 MHz): δ -127.59.

¹³**CNMR** (75 MHz, CDCl₃): δ 168.82, 157.66, 154.52, 146.68, 139.98, 136.16, 134.40, 129.56, 127.92 (d, *J* = 12.0 Hz), 115.45 (d, *J* = 21.2Hz), 114.99 (d, *J* = 7.5 Hz), 55.92, 51.53, 39.29, 28.83, 21.42.

HRMS (ESI): C₂₀H₂₅FN₂O+Na⁺ Calcd: 351.1843, Found: 351.1833.

N-(tert-butyl)-2-((methyl(4-(trifluoromethyl)phenyl)amino)methyl)benzamide (3t), 50.3 mg, yield: 69%. White solid, mp: 127-130°C.

¹**HNMR** (300 MHz, CDCl₃): δ 7.41 (d, *J* = 8.1 Hz, 3H), 7.26-7.35 (m, 2H), 7.15 (d, *J* = 7.2 Hz, 1H), 6.70 (d, *J* = 8.4 Hz, 2H), 5.78 (s, 1H), 4.79 (s, 2H), 3.09 (s, 3H), 1.46 (s, 9H).

¹⁹**FNMR** (282 MHz): δ -60.87.

¹³**CNMR** (75 MHz, CDCl₃): δ 168.90, 151.59, 136.38, 130.14, 127.12, 127.04, 127.00, 126.89, 126.44, 126.39, 111.31, 54.09, 51.92, 38.86, 28.87.

HRMS (ESI): C₂₀H₂₃F₃N₂O+Na⁺Calcd: 387.1655, Found: 387.1646.

N-(tert-butyl)-2-((methyl(p-tolyl)amino)methyl)benzamide (3u), 39.7 mg, yield: 64%. White solid, mp: 118-121°C.

¹**HNMR** (300 MHz, CDCl₃): δ 7.50-7.53 (m, 1H), 7.21-7.32 (m, 3H), 7.04 (d, *J* = 8.1 Hz, 2H), 6.72 (d, *J* = 8.4 Hz, 2H), 6.51 (s, 1H), 4.52 (s, 2H), 2.90 (s, 3H), 2.25 (s, 3H), 1.38 (s, 9H).

¹³**CNMR** (75 MHz, CDCl₃): δ 168.77, 147.78, 137.27, 136.26, 129.81, 129.65, 129.04, 127.90, 127.16, 114.00, 55.33, 51.62, 39.01, 28.80, 20.30.

HRMS (ESI): C₂₀H₂₆N₂O+Na⁺Calcd: 333.1937, Found: 333.1927.

N-(tert-butyl)-2-((methyl(phenyl)amino)methyl)-4-(trifluoromethyl)benzamide (3v), 45.2mg, yield: 62%. Pale yellow solid, mp: 115-117°C.

¹**HNMR** (300 MHz, CDCl₃): δ 7.74 (d, *J* = 7.8 Hz, 1H), 7.59 (d, *J* = 7.2 Hz, 1H), 7.43 (t, *J* = 7.8 Hz, 1H), 7.21-7.27 (m, 2H), 6.87 (d, *J* = 8.4 Hz, 2H), 6.80 (t, *J* = 7.5 Hz, 1H), 5.89 (br, 1H), 4.64 (s, 2H), 2.70 (s, 3H), 1.19 (s, 9H).

¹⁹**FNMR** (282 MHz, CDCl₃): δ -58.01.

¹³**CNMR** (75 MHz, CDCl₃): δ 168.10, 150.07, 140.53, 135.71, 132.35, 129.87, 127.63, 126.96 (q, j = 6.0 Hz), 125.93 (t, J = 266.25 Hz), 118.55, 114.30, 51.60, 50.88 (d, J = 2.3 Hz), 37.53, 28.69. **HRMS (ESI):** C₂₀H₂₃F₃N₂O+Na⁺ Calcd: 387.1655, Found: 387.1661.

N-(tert-butyl)-2-((ethyl(phenyl)amino)methyl)benzamide (3w), 35.4 mg, yield: 57%. White solid, mp: 114-117°C.

¹**HNMR** (300 MHz, CDCl₃): δ 7.37-7.40 (m, 1H), 7.18-7.24 (m, 3H), 7.12 (t, *J* = 7.8 Hz, 2H), 6.60-6.65 (m, 3H), 6.07 (br, 1H), 4.55 (s, 2H), 3.37 (q, *J* = 7.2 Hz, 2H), 1.34 (s, 9H), 1.09 (t, *J* = 6.9 Hz, 3H).

¹³**CNMR** (75 MHz, CDCl₃): δ 168.94, 148.25, 136.74, 129.92, 129.20, 128.14, 127.40, 126.92, 116.73, 112.96, 51.81, 51.72, 44.98, 28.83, 11.72.

HRMS (ESI): C₂₀H₂₆N₂O+Na⁺ Calcd: 333.1937, Found: 333.1944.

N-(tert-butyl)-2-((isopropyl(phenyl)amino)methyl)benzamide (3x), 33.1 mg, yield: 51%. White solid, mp: 144-146°C.

¹**HNMR** (300 MHz, CDCl₃): δ 7.38 (t, *J* = 7.8 Hz, 2H), 7.28-7.31 (m, 1H), 7.23 (d, *J* = 7.5 Hz, 1H), 7.17 (t, *J* = 7.8 Hz, 2H), 6.65-6.89 (m, 3H), 5.78 (br, 1H), 4.59 (s, 2H), 4.21-4.30 (m, 1H), 1.49 (s, 9H), 1.20 (d, *J* = 6.6 Hz, 6H).

¹³**CNMR** (75 MHz, CDCl₃): δ 169.26, 149.14, 138.90, 135.60, 129.88, 129.11, 127.72, 126.30, 116.37, 113.15, 51.86, 48.19, 46.24, 28.92, 19.74.

HRMS (ESI): C₂₁H₂₈N₂O+Na⁺ Calcd: 347.2094, Found: 347.2111.

N-(2,6-dimethyl-5-((4-(trifluoromethyl)phenyl)amino)heptan-2-yl)benzamide (3y), 41.5 mg, yield: 51%. Colorless oil.

¹**HNMR** (300 MHz, CDCl₃): δ 7.65 (d, J = 6.9 Hz, 2H), 7.37-7.51 (m, 3H), 7.30 (d, J = 8.7 Hz, 2H), 6.56 (d, J = 8.7 Hz, 2H), 5.81 (s, 1H), 3.97 (d, J = 7.2 Hz, 1H), 3.23 (br, 1H), 1.88-1.95 (m, 1H), 1.80-1.86 (m, 2H), 1.38-1.40 (m, 6H), 1.25-1.32 (m, 2H), 0.88-0.95 (m, 6H). ¹⁹**FNMR** (282 MHz) δ -60.85.

¹³**CNMR** (75 MHz, CDCl₃): δ 167.06, 150.95, 135.75, 131.22, 128.56, 126.64, 126.59, 117.82 (d, *J* = 32.3 Hz), 111.89, 58.16, 54.11, 35.73, 31.10, 27.61, 27.45, 25.69, 18.79, 18.18

HRMS (ESI): C₂₃H₂₉F₃N₂O+Na⁺Calcd: 429.2124, Found: 429.2119.

N-(tert-butyl)-2-(2-(methyl(phenyl)amino)ethyl)benzamide (4a), 46.6 mg, yield: 75%. White solid, mp: 53-56°C.

¹**HNMR** (300 MHz, CDCl₃): δ 7.32 (d, *J* = 6.9 Hz, 2H), 7.21-7.26 (m, 4H), 6.77 (d, *J* = 8.4 Hz, 2H), 6.68 (t, *J* = 7.2 Hz, 1H), 5.61 (s, 1H), 3.63 (t, *J* = 7.5 Hz, 2H), 2.98 (t, *J* = 8.1 Hz, 2H), 2.92 (s, 3H), 1.47 (s, 9H).

¹³CNMR (75 MHz, CDCl₃): δ 169.67, 148.87, 138.14, 137.65, 130.90, 129.67, 129.23, 126.60, 126.21, 115.90, 112.03, 54.59, 51.84, 38.21, 30.67, 28.84.

HRMS (ESI) C₂₀H₂₆N₂O+Na⁺ Calcd: 333.1937, Found: 333.1935.

N-(tert-butyl)-4-methyl-2-(2-(methyl(phenyl)amino)ethyl)benzamide (4b), 43.5 mg, yield: 67%. Yellow oil.

¹**HNMR** (300 MHz, CDCl₃):δ 7.20-7.27 (m, 3H), 7.00-7.03 (m, 2H), 6.78 (d, *J* = 8.1 Hz, 2H), 6.68 (t, *J* = 7.2 Hz, 1H), 5.59 (s, 1H), 3.61 (t, *J* = 7.5 Hz, 2H), 2.92-2.98 (m, 5H), 2.34 (s, 3H), 1.46 (s, 9H).

¹³**CNMR** (75 MHz, CDCl₃): δ 169.77, 148.91, 139.68, 137.69, 135.33, 131.61, 129.23, 126.80, 126.68, 115.86, 112.04, 54.60, 51.73, 38.17, 30.59, 28.85, 21.25.

HRMS (ESI) C₂₁H₂₈N₂O+Na⁺ Calcd: 347.2094, Found: 347.2092.

N-(tert-butyl)-4-chloro-2-(2-(methyl(phenyl)amino)ethyl)benzamide (4c), 51.0 mg, yield: 74%. White solid, mp: 99-102°C.

¹**HNMR** (300 MHz, CDCl₃): δ 7.16-7.28 (m, 5H), 6.76 (d, *J* = 8.1 Hz, 2H), 6.70 (t, *J* = 7.2 Hz, 1H), 5.61 (s, 1H), 3.61 (t, *J* = 7.5 Hz, 2H), 2.91-2.97 (m, 5H), 1.45 (s, 9H).

¹³**CNMR** (75 MHz, CDCl₃): δ 168.67, 148.74, 139.89, 136.48, 135.34, 130.80, 129.28, 128.03, 126.31, 116.18, 112.12, 54.40, 52.01, 38.26, 30.57, 28.79.

HRMS (ESI): C₂₀H₂₅ClN₂O+Na⁺Calcd: 367.1548, Found: 367.1544.

N-(tert-butyl)-4-fluoro-2-(2-(methyl(phenyl)amino)ethyl)benzamide (4d), 47.3 mg, yield: 72%. White solid, mp: 63-66°C.

¹**HNMR** (300 MHz, CDCl₃):δ 7.21-7.31 (m, 3H), 6.90-6.95 (m, 2H), 6.76 (d, *J* = 8.1 Hz, 2H), 6.69 (t, *J* = 7.2 Hz, 1H), 5.57 (s, 1H), 3.63 (t, *J* = 7.5 Hz, 2H), 2.98 (t, *J* = 7.8 Hz, 2H), 2.92 (s, 3H), 1.46 (s, 9H).

¹⁹**FNMR** (282 MHz): δ -111.22.

¹³**CNMR** (75 MHz, CDCl₃): δ 168.80, 164.72, 161.42, 148.77, 140.91 (d, *J* = 5.3 Hz), 134.28, 129.27, 128.61 (d, *J* = 9 Hz), 117.58 (d, *J* = 21 Hz), 116.15, 113.02(d, *J* = 21 Hz), 112.11, 54.37, 51.92, 38.25, 30.77, 28.80.

HRMS (ESI): C₂₀H₂₅FN₂O+Na⁺ Calcd: 351.1843, Found: 351.1841.

2-(2-((4-bromophenyl)(methyl)amino)ethyl)-*N*-(tert-butyl)benzamide (4e), 52.9 mg, yield: 68%. White solid, mp: 70-72°C.

¹**HNMR** (300 MHz, CDCl₃): δ 7.17-7.35 (m, 6H), 6.64 (d, *J* = 9.0 Hz, 2H), 5.60 (s, 1H), 3.61 (t, *J* = 7.5 Hz, 2H), 2.94 (t, *J* = 8.1 Hz, 2H), 2.89 (s, 3H), 1.47 (s, 9H).

¹³**CNMR** (75 MHz, CDCl₃): δ 169.60, 147.87, 138.08, 137.44, 131.80, 130.93, 129.73, 126.59, 126.33, 113.67, 107.73, 54.57, 51.87, 38.31, 30.63, 28.85.

HRMS (ESI): C₂₀H₂₅BrN₂O+Na⁺ Calcd: 411.1042, Found: 411.1033.

N-(tert-butyl)-2-(2-((3-methoxyphenyl)(methyl)amino)ethyl)benzamide (4f), 49.7 mg, yield: 73%. Yellow oil.

¹**HNMR** (300 MHz, CDCl₃): δ 7.23-7.28 (m, 2H), 7.04-7.19 (m, 3H), 6.31-6.35 (m, 1H), 6.17-6.24 (m, 2H), 5.53 (s, 1H), 3.74 (s, 3H), 3.55 (t, *J* = 7.2 Hz, 2H), 2.91 (t, *J* = 8.1 Hz, 2H), 2.83 (s, 3H), 1.39 (s, 9H).

¹³**CNMR** (75 MHz, CDCl₃): δ 168.61, 159.85, 149.32, 137.06, 136.66, 129.92, 128.84, 128.65, 125.56, 125.19, 104.18, 99.95, 97.46, 54.11, 53.57, 50.79, 37.25, 29.82, 27.79.

HRMS (ESI): C₂₁H₂₈N₂O₂+Na⁺ Calcd: 363.2043, Found: 363.2039.

N-(tert-butyl)-2-(2-(methyl(m-tolyl)amino)ethyl)benzamide (4g), 43.5 mg, yield: 67%. Yellow oil.

¹**HNMR** (300 MHz, CDCl₃): δ 7.32 (d, *J* = 7.2 Hz, 2H), 7.15-7.25 (m, 2H), 7.09-7.13 (m, 1H), 6.59 (s, 2H), 6.52 (d, *J* = 7.2 Hz, 1H), 5.59 (s, 1H), 3.61 (t, *J* = 7.2 Hz, 2H), 2.98 (t, *J* = 7.8 Hz, 2H), 2.90 (s, 3H), 2.32 (s, 3H), 1.46 (s, 9H).

¹³**CNMR** (75 MHz, CDCl₃): δ 169.63, 149.00, 138.84, 138.15, 137.79, 130.88, 129.64, 129.06, 126.59, 126.17, 116.93, 112.83, 109.30, 54.65, 51.80, 38.25, 30.79, 28.83, 21.95.

HRMS (ESI): C₂₁H₂₈N₂O+Na⁺Calcd: 347.2094, Found: 347.2086.

N-(tert-butyl)-2-(2-(methyl(p-tolyl)amino)ethyl)benzamide (4h), 46.7 mg, yield: 72%. White solid, mp: 79-82°C.

¹**HNMR** (300 MHz, CDCl₃): δ 7.31 (d, *J* = 6.9 Hz, 2H), 7.22 (d, *J* = 7.2 Hz, 2H), 7.05 (d, *J* = 8.4 Hz, 2H), 6.70 (d, *J* = 8.4 Hz, 2H), 5.60 (s, 1H), 3.59 (t, *J* = 7.5 Hz, 2H), 2.96 (t, *J* = 7.8 Hz, 2H), 2.89 (s, 3H), 2.25 (s, 3H), 1.46 (s, 9H).

¹³**CNMR** (75 MHz, CDCl₃): δ 169.66, 146.91, 138.15, 137.78, 130.87, 129.75, 129.63, 126.60, 126.14, 125.19, 112.45, 54.93, 51.81, 38.37, 30.50, 28.84, 20.22.

HRMS (ESI): C₂₁H₂₈N₂O+Na⁺ Calcd: 347.2094, Found: 347.2085.

N-(tert-butyl)-2-(2-((4-(dimethylamino)benzyl)phenyl)(methyl)amino)ethyl)benzamide (4i), 63.0 mg, yield: 71%. Yellow oil.
¹**HNMR** (300 MHz, CDCl₃): δ 7.30 (d, J = 6.9 Hz, 2H), 7.21 (d, J = 7.2 Hz, 2H), 7.03-7.08 (m, 4H), 6.69 (d, J = 8.4 Hz, 4H), 5.59 (s, 1H), 3.80 (s, 2H), 3.59 (t, J = 7.5 Hz, 2H), 2.96 (t, J = 7.8 Hz, 2H), 2.90 (s, 6H), 2.88 (s, 3H), 1.45 (s, 9H).

¹³**CNMR** (75 MHz, CDCl₃): δ 169.65, 149.06, 147.21, 138.15, 137.77, 130.85, 130.50, 129.62, 129.57, 129.52, 129.41, 126.59, 126.13, 113.07, 112.33, 54.85, 51.81, 40.96, 39.87, 38.32, 30.62, 28.84.

HRMS (ESI): C₂₉H₃₇N₃O+Na⁺Calcd: 466.2829, Found: 466.2825.

N-(tert-butyl)-2-(2-((4-formylphenyl)(methyl)amino)ethyl)benzamide (4j), 44.7 mg, yield: 66%. White solid, mp: 99-102°C.

¹**HNMR** (300 MHz, CDCl₃): δ 9.64 (s, 1H), 7.65 (d, *J* = 8.7 Hz, 2H), 7.25 (t, *J* = 7.2 Hz, 2H), 7.10-7.16 (m, 2H), 6.72 (d, *J* = 9 Hz, 2H), 5.59 (s, 1H), 3.68 (t, *J* = 7.5 Hz, 2H), 2.89-2.95 (m, 5H), 1.41 (s, 9H).

¹³**CNMR** (75 MHz, CDCl₃): δ 189.20, 168.53, 152.34, 136.98, 135.85, 131.13, 129.96, 128.83, 125.63, 125.59, 123.98, 109.97, 53.21, 50.90, 37.44, 30.17, 27.82.

HRMS (ESI): C₂₁H₂₆N₂O₂+Na⁺ Calcd: 361.1886, Found: 361.1883.

N-(tert-butyl)-2-(2-((4-chlorophenyl)(methyl)amino)ethyl)benzamide (4k), 50.4 mg, yield: 73%. White solid, mp: 96-99°C.

¹**HNMR** (300 MHz, CDCl3): δ 7.30-7.33 (m, 2H), 7.14-7.24 (m, 4H), 6.68 (d, *J* = 8.7 Hz, 2H), 5.60 (s, 1H), 3.61 (t, *J* = 7.5 Hz, 2H), 2.95 (t, *J* = 7.8 Hz, 2H), 2.89 (s, 3H), 1.47 (s, 9H).

¹³**CNMR** (75 MHz, CDCl₃): δ 169.61, 147.48, 138.08, 137.44, 130.91, 129.71, 128.92, 126.58, 126.31, 120.66, 113.16, 54.66, 51.85, 38.35, 30.62, 28.84.

HRMS (ESI): C₂₀H₂₅ClN₂O+Na⁺Calcd: 367.1548, Found: 367.1538.

ethyl 4-((2-(tert-butylcarbamoyl)phenethyl)(methyl)amino)benzoate (41), 54.3 mg, yield: 71%. White solid, mp: 96-99°C.

¹**HNMR** (300 MHz, CDCl3): δ 7.90 (d, *J* = 8.7 Hz, 2H), 7.16-7.34 (m, 4H), 6.71 (d, *J* = 9.0 Hz, 2H), 5.64(s, 1H),4.31 (q, *J* = 7.2 Hz, 2H), 3.71 (t, *J* = 7.5 Hz, 2H), 2.95-3.01 (m, 5H), 1.48 (s, 9H), 1.36 (t, *J* = 7.2 Hz, 3H).

¹³**CNMR** (75 MHz, CDCl₃): δ 169.58, 167.06, 152.04, 138.03, 137.16, 131.36, 130.97, 129.78, 126.62, 126.46, 117.01, 110.54, 60.04, 54.15, 51.88, 38.32, 31.00, 28.84, 14.05.

HRMS (ESI): C₂₃H₃₀N₂O₃+Na⁺ Calcd: 405.2149, Found: 405.2142.

N-(tert-butyl)-4-chloro-2-(2-(diphenylamino)ethyl)benzamide (4m), 56.2 mg, yield: 69%. White solid, mp: 120-121°C.

¹**HNMR** (300 MHz, CDCl₃): δ 7.14-7.29 (m, 7H), 7.01 (d, *J* = 7.8 Hz, 4H), 6.49 (t, *J* = 7.2 Hz, 2H), 5.48 (s, 1H), 3.99 (t, *J* = 7.5 Hz, 2H), 3.08 (t, *J* = 7.8 Hz, 2H), 1.41 (s, 9H).

¹³**CNMR** (75 MHz, CDCl₃): δ 168.64, 147.67, 139.53, 136.51, 135.31, 130.89, 129.33, 127.91, 126.39, 121.28, 120.96, 53.55, 51.99, 31.50, 28.77.

HRMS (ESI): C₂₅H₂₇ClN₂O+Na⁺Calcd: 429.1704, Found: 429.1705.

N-(tert-butyl)-2-(2-(diphenylamino)ethyl)-4-fluorobenzamide (4n), 53.9 mg, yield: 69%. White solid, mp: 144-147°C.

¹**HNMR** (300 MHz, CDCl₃): δ 7.23-7.28 (m, 5H), 6.84-7.03 (m, 8H), 5.46 (s, 1H), 4.01 (t, *J* = 7.5 Hz, 2H), 3.10 (t, *J* = 7.8 Hz, 2H), 1.42 (s, 9H).

¹⁹**FNMR** (282 MHz) δ: -111.21.

¹³**CNMR** (75 MHz, CDCl₃): δ 168.76, 164.69, 161.38, 147.68, 140.55 (d, *J* = 7.5 Hz), 134.31, 129.32, 128.50 (d, *J* = 8.3 Hz), 121.10 (d, *J* = 24.0 Hz), 117.70 (d, *J* = 21.0 Hz), 113.09 (d, *J* = 21 Hz), 53.53, 51.90, 31.64, 28.77.

HRMS (ESI): C₂₅H₂₇FN₂O+Na⁺ Calcd: 413.2000, Found: 413.1997.

N-(tert-butyl)-2-(2-(diphenylamino)ethyl)-4-methoxybenzamide (40), 55.5 mg, yield: 69%. White solid, mp: 84-87°C.

¹**HNMR** (300 MHz, CDCl₃): δ 7.22-7.28 (m, 5H), 7.02 (d, *J* = 7.8 Hz, 4H), 6.92 (t, *J* = 7.2 Hz, 2H), 6.65-6.72 (m, 2H), 5.48 (s, 1H), 4.01 (t, *J* = 7.5 Hz, 2H), 3.76 (s, 3H), 3.12 (t, *J* = 7.8 Hz, 2H), 1.41 (s, 9H).

¹³**CNMR** (75 MHz, CDCl₃): δ 169.42, 160.33, 147.79, 139.74, 130.76, 129.23, 128.19, 121.07, 120.95, 116.64, 111.07, 55.30, 53.68, 51.63, 31.80, 28.81.

HRMS (ESI): C₂₆H₃₀N₂O₂+Na⁺ Calcd: 425.2199, Found: 425.2195.

4-bromo-*N***-(tert-butyl)-2-(2-(diphenylamino)ethyl)benzamide (4p),** 65.9 mg, yield: 73%. White solid, mp: 170-173°C.

¹**HNMR** (300 MHz, CDCl₃): δ 7.16-7.33 (m, 7H), 7.02 (d, *J* = 7.8 Hz, 4H), 6.93 (t, *J* = 7.2 Hz, 2H), 5.48 (s, 1H), 4.01 (t, *J* = 7.8 Hz, 2H), 3.11 (t, *J* = 7.8 Hz, 2H), 1.42 (s, 9H).

¹³**CNMR** (75 MHz, CDCl₃): δ 169.64, 147.78, 138.20, 137.71, 130.94, 129.63, 129.26, 126.53, 126.29, 121.09, 120.94, 53.84, 51.79, 31.53, 28.79.

HRMS (ESI): C₂₅H₂₇BrN₂O+Na⁺ Calcd: 473.1199, Found: 473.1189.

N-(tert-butyl)-2-(2-(diphenylamino)ethyl)-4-methylbenzamide (4q), 55.7 mg, yield: 72%. White solid, mp: 119-122°C.

¹**HNMR** (300 MHz, CDCl₃): δ 7.23-7.29 (m, 4H), 7.19 (d, *J* = 7.5 Hz, 1H), 7.04 (d, *J* = 8.1 Hz, 4H), 6.90-6.99 (m, 4H), 5.48 (s, 1H), 3.99 (t, *J* = 7.5 Hz, 2H), 3.09 (t, *J* = 8.1 Hz, 2H), 2.31 (s, 3H), 1.41 (s, 9H).

¹³CNMR (75 MHz, CDCl₃): δ 169.74, 147.81, 139.62, 137.31, 135.39, 131.62, 129.24, 126.85, 126.59, 121.05, 120.96, 53.88, 51.69, 31.52, 28.80, 21.20.
HRMS (ESI): C₂₆H₃₀N₂O+Na⁺ Calcd: 409.2250, Found: 409.2244.

5-bromo-*N***-(tert-butyl)-2-(2-(diphenylamino)ethyl)benzamide (4r),** 61.4 mg, yield: 68%. White solid, mp: 184-187°C.

¹**HNMR** (300 MHz, CDCl₃): δ 7.40-7.42 (m, 2H), 7.22-7.28 (m, 4H), 6.91-7.06 (m, 7H), 5.46 (s, 1H), 3.98 (t, *J* = 7.5 Hz, 2H), 3.05 (t, *J* = 7.8 Hz, 2H), 1.42 (s, 9H).

¹³**CNMR** (75 MHz, CDCl₃): δ 167.94, 147.67, 139.84, 136.39, 132.69, 132.54, 129.41, 129.30, 121.24, 120.92, 119.81, 53.53, 52.08, 31.10, 28.72.

HRMS (ESI): C₂₅H₂₇BrN₂O+Na⁺ Calcd: 473.1199, Found: 473.1191.

N-(tert-butyl)-2-(2-(diphenylamino)ethyl)-5-methylbenzamide (4s), 56.4 mg, yield: 73%. White solid, mp: 138-141°C.

¹**HNMR** (300 MHz, CDCl₃): δ 7.22-7.28 (m, 4H), 7.01-7.12 (m, 7H), 6.93 (t, *J* = 7.2 Hz, 2H), 5.48 (s, 1H), 3.97 (t, *J* = 7.8 Hz, 2H), 3.06 (t, *J* = 7.8 Hz, 2H), 2.32 (s, 3H), 1.42 (s, 9H).

¹³**CNMR** (75 MHz, CDCl₃): δ 169.78, 147.79, 138.12, 135.97, 134.08, 130.79, 130.27, 129.25, 127.14, 121.05, 120.94, 53.94, 51.75, 31.05, 28.80, 20.88.

HRMS (ESI): C₂₆H₃₀N₂O+Na⁺ Calcd: 409.2250, Found: 409.2245.

N-(tert-butyl)-2-(2-(diphenylamino)ethyl)-6-fluorobenzamide (4t), 52.3 mg, yield: 67%. White solid, mp: 162-165°C.

¹HNMR (300 MHz, CDCl₃): δ 7.23-7.29 (m, 5H), 6.90-7.03 (m, 8H), 5.51 (s, 1H), 4.01 (t, *J* = 7.5 Hz, 2H), 3.05 (t, *J* = 7.8 Hz, 2H), 1.42 (s, 9H).
¹⁹FNMR (282 MHz): δ -116.87.

¹³**CNMR** (75 MHz, CDCl₃): δ 164.29, 160.61, 157.36, 147.66, 139.78 (d, *J* = 3.0 Hz), 130.30 (d, *J* = 9.0 Hz), 129.32, 126.33 (d, *J* = 18.0 Hz), 126.08 (d, *J* = 3.0 Hz), 121.10 (d, *J* = 24.1 Hz), 113.64 (d, *J* = 22.5 Hz), 53.66, 52.28, 31.37, 28.77.

HRMS (ESI): C₂₅H₂₇FN₂O+Na⁺ Calcd: 413.2000, Found: 413.1995.

N-(tert-butyl)-3-chloro-2-(2-(diphenylamino)ethyl)benzamide (4u), 51.3 mg, yield: 63%. White solid, mp: 91-94°C.

¹**HNMR** (300 MHz, CDCl₃): δ 7.35-7.39 (m, 1H), 7.24-7.30 (m, 4H), 7.13-7.19 (m, 6H), 6.94 (t, *J* = 7.2 Hz, 2H), 5.49 (s, 1H), 4.01 (t, *J* = 8.1 Hz, 2H), 3.20 (t, *J* = 8.4 Hz, 2H), 1.42 (s, 9H).

¹³**CNMR** (75 MHz, CDCl₃): δ 168.65, 147.71, 140.76, 135.74, 134.57, 130.68, 129.21, 127.46, 124.95, 121.14, 52.08, 51.53, 29.36, 28.80.

HRMS (ESI): C₂₅H₂₇ClN₂O+Na⁺Calcd: 429.1704, Found: 429.1703.

N-(tert-butyl)-2-(2-(diphenylamino)ethyl)benzamide (4v), 56.6 mg, yield: 76%. White solid, mp: 176-178°C.

¹**HNMR** (300 MHz, CDCl₃): δ 7.16-7.31 (m, 8H), 7.02 (d, *J* = 7.8 Hz, 4H), 6.93 (t, *J* = 7.2 Hz, 2H), 5.49 (s, 1H), 4.01 (t, *J* = 7.5 Hz, 2H), 3.11 (t, *J* = 7.8 Hz, 2H), 1.42 (s, 9H).

¹³**CNMR** (75 MHz, CDCl₃): δ 169.64, 147.77, 138.19, 137.31, 130.95, 129.64, 129.27, 126.54, 126.29, 121.09, 120.93, 53.84, 51.80, 31.53, 28.79.

HRMS (ESI): C₂₅H₂₈N₂O+Na⁺ Calcd: 395.2094, Found: 395.2090.

N-(tert-butyl)-2-(1-(methyl(phenyl)amino)propan-2-yl)benzamide (4w), 38.3 mg, yield: 59%. White solid, mp: 78-81°C.

¹**HNMR** (300 MHz, CDCl₃): δ 7.40 (s, 2H), 7.16-7.26 (m, 4H), 6.68 (d, *J* = 8.7 Hz, 3H), 5.49 (s, 1H), 3.40-3.67 (m, 3H), 2.79 (s, 3H), 1.28-1.33 (m, 12H).

¹³**CNMR** (75 MHz, CDCl₃): δ 169.86, 149.46, 142.66, 138.53, 129.57, 129.15, 126.99, 126.75, 126.07, 116.03, 111.95, 60.65, 51.72, 39.11, 34.89, 28.65, 19.34.

HRMS (ESI): C₂₁H₂₈N₂O+Na⁺Calcd: 347.2094, Found: 347.2091.

N-(tert-butyl)-2-(1-(diphenylamino)propan-2-yl)benzamide (4x), 49.5 mg, yield: 64%. Yellow oil.

¹**HNMR** (300 MHz, CDCl₃): δ 7.18-7.30 (m, 7H), 6.92 (d, *J* = 6.9 Hz, 7H), 5.42 (s, 1H), 3.98-4.06 (m, 1H), 3.77-3.86 (m, 1H), 3.62 (q, *J* = 7.2 Hz, 1H), 1.35 (d, *J* = 6.9 Hz, 3H), 1.32 (s, 9H).

¹³CNMR (75 MHz, CDCl₃): δ 169.74, 148.61, 142.46, 138.54, 129.50, 129.17, 127.16, 126.54,

126.08, 121.23, 59.30, 51.71, 34.98, 28.65, 20.00.

HRMS (ESI): C₂₆H₃₀N₂O+Na⁺ Calcd: 409.2250, Found: 409.2249.

N-(6-(diphenylamino)-2,4,4-trimethylhexan-2-yl)benzamide (5), 39.0 mg, yield: 47%. Colorless oil.

¹**HNMR** (300 MHz, CDCl₃): δ 7.63 (d, *J* = 7.2 Hz, 2H), 7.34-7.48 (m, 3H), 7.22 (d, *J* = 7.8 Hz, 4H), 6.94 (d, *J* = 8.1 Hz, 6H), 5.85 (s, 1H), 3.77 (t, *J* = 8.4 Hz, 2H), 1.93 (s, 2H), 1.73 (t, *J* = 8.4 Hz, 2H), 1.49 (s, 6H), 1.10 (s, 6H).

¹³CNMR (75 MHz, CDCl₃): δ 166.74, 147.88, 136.08, 131.03, 129.25, 128.55, 126.58, 121.02, 120.78, 55.37, 49.63, 48.04, 40.93, 33.86, 29.61, 28.25.

HRMS (ESI): C₂₈H₃₄N₂O+Na⁺ Calcd: 437.2563, Found: 437.2554.

 (3R,8R,9S,10R,13S,14S)-10,13-dimethyl-17-oxo-2,3,4,7,8,9,10,11,12,13,14,15,16,17

 tetradecahydro-1H-cyclopenta[a]phenanthren-3-yl

 4-((2-(tert-butylcarbamoyl)-5

 methylphenethyl)(methyl)amino)benzoate (6), 71.6 mg, yield: 56%. Yellow oil.

¹**HNMR** (300 MHz, CDCl₃): δ 7.87 (d, *J* = 8.7 Hz, 2H), 7.22 (d, *J* = 7.5 Hz, 1H), 7.00-7.04 (m, 2H), 6.73 (d, *J* = 8.7 Hz, 2H), 5.62 (s, 1H), 5.34 (s, 1H), 5.21 (s, 1H), 3.68 (t, *J* = 7.2 Hz, 2H), 2.92-2.99 (m, 5H), 2.39-2.60 (m, 3H), 2.33 (s, 3H), 1.52-2.15 (m, 12H), 1.46 (s, 9H), 1.15-1.36 (m, 4H), 1.09 (s, 3H), 0.91 (s, 3H).

¹³CNMR (75 MHz, CDCl₃):8 169.68, 166.37, 152.02, 139.85, 139.12, 137.17, 135.20, 131.68, 131.35, 127.03, 126.68, 121.25, 117.53, 110.58, 69.72, 54.23, 51.86, 51.76, 50.45, 47.57, 38.28, 37.25, 36.72, 35.87, 34.01, 31.50, 30.90, 30.85, 29.70, 28.88, 26.45, 21.88, 21.20, 20.12, 19.02, 13.56.

HRMS (ESI): C₄₁H₅₄N₂O₄+Na⁺ Calcd: 661.3976, Found: 661.3984.

N-(tert-butyl)-2-(cyclohexylmethyl)benzamide (8a), 38.8 mg, yield: 71%. Pale yellow solid, mp: 85-88°C.

¹**HNMR** (300 MHz, CDCl₃) δ 7.25-7.31 (m, 2H), 7.17 (t, *J*= 6.9 Hz, 2H), 5.55 (s, 1H), 2.68 (d, *J* = 6.8 Hz, 2H), 1.65 (d, *J* = 10.8 Hz, 6H), 1.46 (s, 9H), 1.13-1.61 (m, 3H), 0.80-1.10 (m, 2H).

¹³**CNMR** (75 MHz, CDCl₃) δ169.92, 138.89, 138.15, 130.91, 128.98, 126.64, 125.63, 51.70, 40.85, 39.59, 33.31, 28.81, 26.53, 26.36.

HRMS (ESI): C₁₈H₂₇NO+Na⁺ Calcd: 296.1985, Found: 296.198

8b

N-(tert-butyl)-2-(cyclohexylmethyl)-3-methylbenzamide (8b), 32.1 mg, yield: 56%. Pale yellow solid, mp: 101-110°C.

¹**HNMR** (300 MHz, CDCl₃) δ 7.03-7.17 (m, 3H), 5.52 (s, 1H), 2.75 (d, *J* = 6.9 Hz, 2H), 2.32 (s, 3H), 1.54-1.65 (m, 6H), 1.46 (s, 9H), 0.88-1.06 (m, 5H).

¹³**CNMR** (75 MHz, CDCl₃) δ 170.57, 138.90, 137.80, 137.49, 131.27, 125.36, 124.53, 51.61, 39.38, 36.52, 33.54, 28.79, 26.56, 26.51, 20.41.

HRMS (ESI): C₁₉H₂₉NO+Na⁺ Calcd: 310.2141, Found: 310.2148.

N-(tert-butyl)-2-(cyclohexylmethyl)-4-methylbenzamide (8c), 36.6 mg, yield: 63%. Pale yellow solid, mp: 119-121°C.

¹**HNMR** (300 MHz, CDCl₃) δ 7.20 (d, *J* = 8.1 Hz, 1H), 6.97 (d, *J* = 6.9 Hz, 2H), 5.53 (s, 1H), 2.64 (d, *J* = 7.2 Hz, 2H), 2.32 (s, 3H), 1.66 (d, *J* = 9.6 Hz, 6H), 1.45 (s, 9H), 1.13-1.26 (m, 3H), 0.88-0.99 (m, 2H).

¹³CNMR (75 MHz, CDCl₃) δ 170.05, 138.96, 138.85, 135.38, 131.62, 126.69, 126.22, 51.59, 40.81, 39.63, 33.35, 28.82, 26.55, 26.38, 21.30. HRMS (ESI): C₁₉H₂₉NO+Na⁺ Calcd: 310.2141, Found: 310.2142.

N-(tert-butyl)-2-(cyclohexylmethyl)-5-methylbenzamide (8d), 38.5 mg, yield: 67%. Pale yellow solid, mp: 106-109°C.

¹**HNMR** (300 MHz, CDCl₃) δ 7.02-7.11 (m, 3H), 5.52 (s, 1H), 2.62 (d, *J* = 7.2 Hz, 2H), 2.31 (s, 3H), 1.65 (d, *J* = 12.6 Hz, 6H), 1.45 (s, 9H), 1.11-1.16 (m, 3H), 0.80-1.05 (m, 2H).

¹³**CNMR** (75 MHz, CDCl₃) δ 170.05, 138.06, 135.64, 135.21, 130.82, 129.64, 127.27, 51.64, 40.45, 39.63, 33.32, 28.81, 26.55, 26.36, 20.82.

HRMS (ESI): C₁₉H₂₉NO+Na⁺ Calcd: 310.2141, Found: 310.2140.

N-(tert-butyl)-2-(cyclohexylmethyl)-4-methoxybenzamide (8e), 33.4 mg, yield: 55%. Pale yellow solid, mp: 76-79°C.

¹**HNMR** (300 MHz, CDCl₃) δ 7.27 (s, 1H), 6.69 (t, *J* = 3 Hz, 2H), 5.52 (s, 1H), 3.80 (s, 3H), 2.67 (d, *J* = 6.9 Hz, 2H), 1.66 (d, *J* = 11.4 Hz, 6H), 1.45 (s, 9H), 1.08-1.30 (m, 3H), 0.81-1.06 (m, 2H). ¹³**CNMR** (75 MHz, CDCl₃) δ 169.74, 159.87, 141.28, 130.91, 128.27, 116.52, 110.41, 55.24, 51.55, 41.08, 39.57, 33.30, 28.82, 26.52, 26.36.

HRMS (ESI): C₁₉H₂₉NO₂+Na⁺ Calcd: 326.2091, Found: 326.2095.

N-(tert-butyl)-2-(cyclohexylmethyl)-4-fluorobenzamide (8f), 42.5 mg, yield: 73%. Pale yellow solid, mp: 85-88°C.

¹HNMR (300 MHz, CDCl₃) δ 7.25-7.31 (m, 1H), 6.86 (d, J = 9.3 Hz, 2H), 5.53 (s, 1H), 2.66 (d, J = 6.9 Hz, 2H), 1.67-1.71 (m, 6H), 1.45 (s, 9H), 1.13-1.26 (m, 3H), 0.88-0.99 (m, 2H). ¹⁹FNMR (282 MHz) δ -112.10.

³**CNMR** (75 MHz, CDCl₃) δ 169.06, 164.37, 161.08, 142.18 (d, J = 7.5 Hz), 134.32 (d, J = 3.0 Hz),

128.55 (d, *J* = 8.3 Hz), 117.44 (d, *J* = 21.0 Hz), 112.44 (d, *J* = 21.8 Hz), 51.79, 40.80, 39.44, 33.22, 28.78, 26.43, 26.28.

HRMS (ESI): C₁₈H₂₆FNO+Na⁺ Calcd: 314.1891, Found: 314.1887.

8g

N-(tert-butyl)-2-(cyclohexylmethyl)-6-fluorobenzamide (8g), 40.2 mg, yield: 69%. Pale yellow solid, mp: 70-73°C.

¹**HNMR** (300 MHz, CDCl₃) δ 7.17-7.23 (m, 1H), 6.86-6.95 (m, 2H), 5.55 (s, 1H), 2.59 (d, J = 6.9 Hz, 2H), 1.60-1.75 (m, 6H), 1.47 (s, 9H), 1.14-1.26 (m, 3H), 0.83-0.93 (m, 2H).

¹⁹**FNMR** (282 MHz) δ -117.37.

³**CNMR** (75 MHz, CDCl₃) δ 164.48, 141.46, 129.62, 129.51, 126.03, 113.04, 112.75, 52.12, 40.66, 39.33, 33.28, 28.78, 26.49, 26.30.

HRMS (ESI): C₁₈H₂₆FNO+Na⁺ Calcd: 314.1891, Found: 314.1896.

8h

N-(tert-butyl)-3-chloro-2-(cyclohexylmethyl)benzamide (8h), 39.9 mg, yield: 65%. Pale yellow solid, mp: 115-118°C.

¹**HNMR** (300 MHz, CDCl₃) δ7.34-7.38 (m, 1H), 7.07-7.20(m, 2H), 5.53 (s, 1H), 2.87(d, *J* = 6.9 Hz, 2H), 1.61-1.67 (m, 6H), 1.46(s, 9H), 1.01-1.15(m, 5H).

¹³**CNMR** (75 MHz, CDCl₃) δ168.94, 140.33, 137.08, 135.79, 130.53, 126.71, 125.21, 51.93, 38.81, 37.05, 33.30, 28.75, 26.45.

HRMS (ESI): C₁₈H₂₆ClNO+Na⁺ Calcd: 330.1595, Found: 330.1598.

N-(tert-butyl)-4-chloro-2-(cyclohexylmethyl)benzamide (8i), 40.2 mg, yield: 67%. Pale yellow solid, mp: 141-144°C.

¹**HNMR** (300 MHz, CDCl₃) δ 7.22(d, *J* = 8.7 Hz, 1H), 7.14 (s, 2H), 5.54 (s, 1H), 2.64 (d, *J* = 7.2 Hz, 2H), 1.60-1.70 (m, 6H), 1.45 (s, 9H), 1.10-1.21 (m, 3H), 0.92-1.17 (m, 2H).

¹³CNMR (75 MHz, CDCl₃) δ 168.91, 141.19, 136.49, 134.74, 130.71, 128.03, 125.75, 51.88, 40.65,

39.47, 33.23, 28.77, 26.43, 26.28. **HRMS (ESI):** C₁₈H₂₆ClNO+Na⁺ Calcd: 330.1595, Found: 330.1602.

N-(tert-butyl)-2-chloro-6-(cyclohexylmethyl)benzamide (8j), 36.3 mg, yield: 59%. Pale yellow solid, mp: 99-102°C.

¹**HNMR** (300 MHz, CDCl₃) δ 7.15-7.20 (m, 2H), 7.04-7.08 (m, 1H), 5.46 (s, 1H), 2.54 (*d*, J = 6.9 Hz, 2H), 1.60-1.75 (m, 6H), 1.48 (s, 9H), 1.07-1.31 (m, 3H), 0.88-0.99 (m, 2H).

¹³**CNMR** (75 MHz, CDCl₃) δ 166.24, 140.37, 137.58, 130.62, 129.11, 128.58, 126.81, 52.16, 41.09, 39.34, 33.30, 28.73, 26.47, 26.28.

HRMS (ESI): C₁₈H₂₆ClNO+Na⁺ Calcd: 330.1595, Found: 330.1599.

4-bromo-*N***-(tert-butyl)-2-(cyclohexylmethyl)benzamide (8k),** 49.3 mg, yield: 70%. Pale yellow solid, mp: 130-133°C.

¹**HNMR** (300 MHz, CDCl₃) δ 7.26-7.36 (m, 2H), 7.16 (d, J = 8.7 Hz, 1H), 5.51 (s, 1H), 2.63 (d, J = 6.9Hz, 2H), 1.52-1.67 (m, 6H), 1.45 (s, 9H), 1.13-1.35 (m, 3H), 0.89-0.99 (m, 2H).

¹³**CNMR** (75 MHz, CDCl₃) δ 168.92, 141.41, 136.95, 133.63, 128.71, 128.21, 123.12, 51.89, 40.61, 39.50, 33.23, 28.77, 26.43, 26.28.

HRMS (ESI): C₁₈H₂₆BrNO+Na⁺ Calcd: 374.1090, Found: 374.1092.

N-(tert-butyl)-3-(cyclohexylmethyl)thiophene-2-carboxamide (81), 40.2 mg, yield: 72%. Pale yellow solid, mp: 94-97°C.

¹**HNMR** (300 MHz, CDCl₃) δ 7.04 (s, 2H), 5.59 (s, 1H), 2.96 (d, *J* = 7.2 Hz, 2H), 1.55-1.76 (m, 6H), 1.44 (s, 9H), 1.11-1.28 (m, 3H), 0.93-1.05 (m, 2H).

¹³**CNMR** (75, MHz, CDCl₃) δ 164.61, 146.90, 134.41, 126.53, 122.14, 51.52, 40.52, 36.05, 33.05, 28.93, 26.36, 26.19.

HRMS (ESI): C₁₆H₂₅NOS+Na⁺ Calcd: 302.1549, Found: 302.1550.

N-(tert-butyl)-2-(1-cyclohexylethyl)benzamide (8m, $\delta : \epsilon = 3 : 1$), 25.8 mg, yield: 45%. Pale yellow solid, mp: 78-81°C.

¹**HNMR** (300 MHz, CDCl₃) δ 7.26-7.36 (m, 3H), 7.12-7.24 (m, 1H), 5.53 (s, 1H), 2.74-2.93 (m, 1H), 1.60-1.70 (m, 4H), 1.46 (s, 9H), 1.06-1.39 (m, 8H), 0.82-0.99 (m, 2H).

¹³**CNMR** (75 MHz, CDCl₃) δ 170.15, 144.90, 138.30, 129.30, 126.91, 126.17, 125.30, 51.77, 43.83, 41.00, 32.01, 30.49, 28.86, 26.49, 19.46.

HRMS (ESI): C₁₉H₂₉NO+Na⁺ Calcd: 310.2141, Found: 310.2145.

N-(tert-butyl)-2-propylbenzamide (9a), 28.5 mg, yield: 65%. Pale yellow solid, mp: 84-87°C. ¹HNMR (300 MHz, CDCl₃) δ 7.26-7.33 (m, 2H), 7.15-7.23 (m, 2H), 5.55 (s, 1H), 2.74 (t, *J* = 7.8 Hz, 2H), 1.60-1.69 (m, 2H), 1.46 (s, 9H), 0.96 (t, *J* = 7.2 Hz, 3H).

¹³**CNMR** (75 MHz, CDCl₃) δ 169.85, 140.21, 137.89, 130.01, 129.31, 126.57, 125.66, 51.73, 35.23, 28.81, 24.84, 14.17.

HRMS (ESI): C₁₄H₂₁NO+Na⁺ Calcd: 242.1515, Found: 242.1517.

N-(tert-butyl)-2-butylbenzamide (9b), 29.4 mg, yield: 63%. Yellow solid, mp: 83-85°C. ¹HNMR (300 MHz, CDCl₃) δ 7.26-7.33 (m, 2H), 7.14-7.23 (m, 2H), 5.55 (s, 1H), 2.76 (t, *J* = 7.8 Hz, 2H), 1.54-1.65 (m, 2H), 1.46 (s, 9H), 1.31-1.42 (m, 2H), 0.95 (t, *J* = 7.2 Hz, 3H). ¹³CNMR (75 MHz, CDCl₃) δ 169.84, 140.44, 137.82, 129.97, 129.33, 126.58, 125.61, 51.71, 33.91, 32.95, 28.81, 22.79, 13.96.

HRMS (ESI): C₁₅H₂₃NO+Na⁺ Calcd: 256.1672, Found: 256.1677.

N-(tert-butyl)-2-pentylbenzamide (9c), 32.6 mg, yield: 66%. Yellow solid, mp: 73-76°C.

¹**HNMR** (300 MHz, CDCl₃) δ 7.26-7.33 (m, 2H), 7.14-7.23 (m, 2H), 5.55 (s, 1H), 2.76 (t, *J* = 7.5 Hz, 2H), 1.58-1.64 (m, 2H), 1.46 (s, 9H), 1.33-1.35 (m, 4H), 0.89 (t, J = 6.9 Hz, 3H). ¹³CNMR (75 MHz, CDCl₃) & 169.84, 140.49, 137.80, 129.97, 129.34, 126.58, 125.62, 51.72, 33.20, 31.93, 31.46, 28.81, 22.55, 14.05.

HRMS (ESI): C₁₆H₂₅NO+Na⁺ Calcd: 270.1828, Found: 270.1831.

N-(tert-butyl)-2-heptylbenzamide (9d), 35.8 mg, yield: 65%. Yellow solid, mp: 39-42°C. ¹**HNMR** (300 MHz, CDCl₃) δ 7.26-7.32 (m, 2H), 7.17-7.23 (m, 2H), 5.55 (s, 1H), 2.76 (t, *J* = 2.76 Hz, 2H), 1.61 (s, 2H), 1.46 (s, 9H), 1.18-1.40 (m, 8H), 0.85 (t, *J* = 6.9 Hz, 3H). ¹³CNMR (75 MHz, CDCl₃) & 169.84, 140.48, 137.81, 129.96, 129.33, 126.58, 125.61, 51.72, 33.26, 31.83, 31.79, 29.72, 29.19, 28.81, 22.66, 14.09. **HRMS (ESI)**: C₁₈H₂₉NO+Na⁺ Calcd: 298.2141, Found: 298.2146.

N-(tert-butyl)-2-octylbenzamide (9e), 39.9 mg, yield: 69%. Yellow oil. ¹**HNMR** (300 MHz, CDCl₃) δ 7.26-7.32 (m, 2H), 7.14-7.22 (m, 2H), 5.54 (s, 1H), 2.75 (t, J = 7.5Hz, 2H), 1.56-1.59 (m, 2H), 1.46 (s, 9H), 1.28 (s, 10H), 0.87 (t, *J* = 6.0 Hz, 3H). ¹³CNMR (75 MHz, CDCl₃) δ 169.84, 140.49, 137.80, 129.97, 129.33, 126.58, 125.61, 51.72, 33.27, 31.88, 31.79, 29.77, 29.49, 29.28, 28.82, 22.67, 14.11. **HRMS (ESI)**: C₁₉H₂₃NO+Na⁺ Calcd: 312.2298, Found: 312.2298.

N-(tert-butyl)-2-nonylbenzamide (9f), 38.8 mg, yield: 64%. Yellow solid, mp: 35-38°C. ¹**HNMR** (300 MHz, CDCl₃) δ 7.26-7.32 (m, 2H), 7.14-7.22 (m, 2H), 5.55 (s, 1H), 2.75 (t, J = 8.1Hz, 2H), 1.57-1.63 (m, 2H), 1.46 (s, 9H), 1.21-1.31 (m, 12H), 0.87 (t, *J* = 6 Hz, 3H). ¹³CNMR (75 MHz, CDCl₃) & 169.84, 140.49, 137.80, 129.96, 129.33, 126.58, 125.61, 51.72, 33.26, 31.89, 31.79, 29.76, 29.57, 29.53, 29.32, 28.82, 22.67, 14.11.

HRMS (ESI): C₂₀H₃₃NO+Na⁺ Calcd: 326.2454, Found: 326.2452.

N-(tert-butyl)-2-decylbenzamide (9g), 38.7 mg, yield: 61%. Yellow solid, mp: 46-49°C.
¹HNMR (300 MHz, CDCl₃) δ 7.26-7.32 (m, 2H), 7.14-7.22 (m, 2H), 5.54 (s, 1H), 2.75 (t, *J* = 7.8 Hz, 2H), 1.57-1.63 (m, 2H), 1.46 (s, 9H), 1.28(s, 14H), 0.88 (t, *J* = 6.0 Hz, 3H).
¹³CNMR (75 MHz, CDCl₃) δ 169.83, 140.49, 137.81, 129.96, 129.33, 126.58, 125.61, 51.72, 33.26, 31.90, 31.79, 29.77, 29.62, 29.53, 29.33, 28.82, 22.68, 14.12.
HRMS (ESI): C₂₁H₃₅NO+Na⁺ Calcd: 340.2611, Found: 340.2610.

N-(tert-butyl)-2-undecylbenzamide (9h), 39.1 mg, yield: 59%. Yellow solid, mp: 47–50°C. ¹HNMR (300 MHz, CDCl₃) δ 7.26-7.32 (m, 2H), 7.14-7.22 (m, 2H), 5.55 (s, 1H), 2.75 (t, *J* =7.8 Hz, 2H), 1.56-1.65 (m, 2H), 1.46 (s, 9H), 1.28(s, 16H), 0.88 (t, *J* = 6.0 Hz, 3H). ¹³CNMR (75 MHz, CDCl₃) δ 169.84, 140.49, 137.80, 129.96, 129.33, 126.57, 125.60, 51.72, 33.26, 31.92, 31.80, 29.77, 29.67, 29.62, 29.53, 29.35, 28.82, 22.69, 14.13. HRMS (ESI): C₂₂H₃₇NO+Na⁺ Calcd: 354.2767, Found: 354.2764.

N-(tert-butyl)-2-dodecylbenzamide (9i), 44.9 mg, yield: 65%. Yellow solid, mp: 40-43°C. ¹HNMR (300 MHz, CDCl₃) δ7.26-7.32 (m, 2H), 7.14-7.22 (m, 2H), 5.54 (s, 1H), 2.75 (t, J = 7.8 Hz, 2H), 1.58 (s, 2H), 1.46 (s, 9H), 1.25-1.32 (m, 18H), 0.87 (t, J = 6.0 Hz, 3H). ¹³CNMR (75 MHz, CDCl₃) δ 169.83, 140.49, 137.81, 129.96, 129.33, 126.57, 125.60, 53.42, 51.72, 33.26, 31.92, 31.79, 29.77, 29.67, 29.62, 29.53, 29.36, 28.82, 22.69, 14.12. HRMS (ESI): C₂₃H₃₉NO+Na⁺ Calcd: 368.2924, Found: 368.2926.

N-(tert-butyl)-2-phenethylbenzamide (9j), 40.5 mg, yield: 72%. Pale yellow solid, mp: 97-100°C. ¹HNMR (300 MHz, CDCl₃) δ 7.16-7.32 (m, 9H), 5.48(s, 1H), 3.07 (t, *J* = 7.2 Hz, 2H), 2.92 (t, *J* = 8.7 Hz, 2H), 1.45 (s, 9H).

¹³CNMR (75 MHz, CDCl₃) δ 169.72, 141.81, 139.44, 137.95, 130.21, 129.45, 128.55, 128.31, 126.58, 125.96, 125.88, 51.70, 38.08, 35.47, 28.78.

N-(tert-butyl)-2-isopentylbenzamide (9k), 33.6 mg, yield: 68%. Pale yellow solid, mp: 84-87°C. ¹HNMR (300 MHz, CDCl₃) δ7.26-7.32 (m, 2H), 7.19 (t, *J* = 8.4 Hz, 2H), 5.55 (s, 1H), 2.73-2.79 (m, 2H), 1.59 (s, 1H), 1.46 (s, 9H), 1.27 (s, 2H), 0.93 (d, *J* = 6.6 Hz, 6H).

¹³**CNMR** (75 MHz, CDCl₃) δ 169.81, 140.66, 137.82, 129.92, 129.36, 126.59, 125.58, 51.72, 41.07, 31.18, 28.82, 28.27, 22.52, 14.11.

HRMS (ESI): C₁₆H₂₅NO+Na⁺ Calcd: 270.1828, Found: 270.1827.

N-(tert-butyl)-2-(6-chlorohexyl)benzamide (9l), 27.8 mg, yield: 47%. Yellow oil.
¹HNMR (300 MHz, CDCl₃) δ 7.26-7.33 (m, 2H), 7.15-7.22 (m, 2H), 5.55 (s, 1H), 3.52 (t, *J* = 6.6 Hz, 2H), 2.77 (t, *J* = 7.8 Hz, 2H), 1.73-1.81 (m, 2H), 1.64-1.69 (m, 2H), 1.57-1.63 (m, 13H).
¹³CNMR (75 MHz, CDCl₃) δ 169.77, 140.28, 137.76, 129.97, 129.39, 126.59, 125.72, 51.73, 45.09, 33.12, 32.53, 31.47, 28.88, 28.82, 26.71.

HRMS (ESI): C₁₇H₂₆ClNO+Na⁺ Calcd: 318.1595, Found: 318.1598.

N-(tert-butyl)-2-(2-methylbutyl)benzamide (10a), 34.6 mg, yield: 70%. Yellow solid, mp: 60-63°C.

¹**HNMR** (300 MHz, CDCl₃) δ 7.29 (d, *J* = 7.8 Hz, 2H),7.10-7.19 (m, 2H), 5.55 (s, 1H), 2.83-2.90 (m, 1H), 2.38-2.60 (m, 1H), 1.55-1.74(m, 1H), 1.42 (s, 9H), 1.35-1.40 (m, 1H),1.12-1.25 (m, 1H), 0.81-0.92 (m, 6H).

¹³CNMR (75 MHz, CDCl₃) δ 169.91, 139.35, 138.20, 130.88, 129.04, 126.65, 125.62, 51.70, 40.24, 36.45, 29.54, 28.89, 28.81, 18.96, 11.51.

HRMS (ESI): C₁₆H₂₅NO+Na⁺ Calcd: 270.1828, Found: 270.1831.

N-(tert-butyl)-2-(2-ethylbutyl)benzamide (10b), 39.2 mg, yield: 75%. Pale yellow solid, mp: 60-63°C.

¹**HNMR** (300 MHz, CDCl₃) δ 7.26-7.29 (m, 2H), 7.16 (d, *J* = 7.5 Hz, 2H), 5.55 (s, 1H), 2.73 (d, *J* = 7.2 Hz, 2H), 1.51-1.62 (m, 1H), 1.45(s, 9H), 1.24-1.34 (m, 4H), 0.84 (t, *J* = 8.4 Hz, 6H).

¹³**CNMR** (75 MHz, CDCl₃) δ 169.90, 139.62, 138.26, 130.86, 129.09, 126.69, 125.54, 51.69, 41.96, 36.95, 28.82, 25.00, 10.72.

HRMS (ESI): C₁₇H₂₇NO+Na⁺ Calcd: 284.1985, Found: 284.1986.

10c

N-(tert-butyl)-2-(cyclopentylmethyl)benzamide (10c), 34.7 mg, yield: 67%. Pale yellow solid, mp: 63-66°C.

¹**HNMR** (300 MHz, CDCl₃) δ 7.26-7.30 (m, 2H), 7.14-7.23 (m, 2H), 5.56 (s, 1H), 2.79 (d, *J* = 7.5 Hz, 2H), 2.04-2.20 (m, 1H), 1.61-1.74 (m, 6H), 1.56 (s, 9H), 1.15-1.53 (m, 2H).

¹³**CNMR** (75 MHz, CDCl₃) δ169.93, 139.86, 137.96, 130.38, 129.15, 126.58, 125.59, 51.71, 41.84, 38.80, 32.57, 28.81, 24.86.

HRMS (ESI): C₁₇H₂₅NO+Na⁺ Calcd: 282.1828, Found: 282.1829.

N-(tert-butyl)-2-(2-phenylpropyl)benzamide (10d), 43.7 mg, yield: 74%. Pale yellow solid, mp: 57-60°C.

¹**HNMR** (300 MHz, CDCl₃) δ 7.11-7.35 (m, 8H), 7.03 (d, *J* = 7.8 Hz, 1H), 5.46 (s, 1H), 2.97-3.14 (m, 3H), 1.45 (s, 9H), 1.25 (d, *J* = 6.3 Hz, 3H).

¹³**CNMR** (75 MHz, CDCl₃) δ 169.91, 146.84, 138.51, 138.19, 130.90, 129.08, 128.25, 127.12, 126.60, 125.97, 125.86, 51.71, 42.05, 41.40, 28.81, 21.17.

HRMS (ESI): C₂₀H₂₅NO+Na⁺ Calcd: 318.1828, Found: 318.1829.

51

N-(tert-butyl)-2-(cyclohex-3-en-1-ylmethyl)benzamide (10e), 36.9 mg, yield: 68%. Pale yellow solid, mp: 80-83°C.

¹**HNMR** (300 MHz, CDCl₃) δ 7.26-7.32 (m, 2H), 7.19 (d, *J* = 7.2 Hz, 2H), 5.50-5.67 (m, 3H), 2.76 (d, *J* = 6.9 Hz, 2H), 1.96-2.03 (m, 4H), 1.71-1.76 (m, 2H), 1.45 (s, 9H), 1.20-1.34 (m, 1H).

³**CNMR** (75 MHz, CDCl₃) δ 169.86, 138.67, 138.20, 130.80, 129.08, 126.92, 126.66, 126.34, 125.77, 51.73, 39.81, 35.41, 31.78, 28.79, 28.65, 25.21.

HRMS (ESI): C₁₈H₂₅NO+Na⁺ Calcd: 294.1828, Found: 294.1829.

10f

N-(tert-butyl)-2-(2,6-dimethylhept-5-en-1-yl)benzamide (10f), 43.3 mg, yield: 72%. Yellow oil. ¹HNMR (300 MHz, CDCl₃) δ 7.26-7.31 (m, 2H), 7.15-7.20 (m, 2H), 5.54 (s, 1H), 5.07 (t, *J* = 7.2 Hz, 1H), 2.82-2.89 (m, 1H), 2.52-2.60 (m, 1H), 1.87-2.11 (m, 2H), 1.75-1.83 (m, 1H), 1.71 (s, 3H), 1.67 (s, 3H), 1.45 (s, 9H), 1.24-1.39 (m, 1H), 1.11-1.23 (m, 1H), 0.84 (d, *J*= 6.6 Hz, 3H). ¹³CNMR (75 MHz, CDCl₃) δ 169.91, 139.23, 138.21, 131.11, 130.86, 129.07, 126.63, 125.64, 124.78, 51.69, 40.54, 37.14, 34.54, 28.80, 25.74, 25.64, 19.33, 17.65.

HRMS (ESI): C₂₀H₃₁NO+Na⁺ Calcd: 324.2298, Found: 324.2298.

N-(tert-butyl)-3-chloro-2-(2-ethylbutyl)benzamide (10g), 42.0 mg, yield: 71%. Yellow solid, mp: 81-84°C.

¹**HNMR** (300 MHz, CDCl₃) δ 7.35-7.38 (m, 1H), 7.19 (d, J = 6.6 Hz, 1H), 7.11 (t, J = 7.5 Hz, 1H), 5.52 (s, 1H), 2.93 (d, J = 7.5 Hz, 2H), 1.62-1.69 (m, 1H), 1.45 (s, 9H), 1.17-1.40 (m, 4H), 0.85 (t, J = 7.5 Hz, 6H).

¹³**CNMR** (75 MHz, CDCl₃) δ 168.92, 140.47, 137.73, 135.91, 130.64, 126.71, 125.33, 51.93, 41.05, 34.08, 28.78, 25.25, 10.96.

HRMS (ESI): C₁₇H₂₆ClNO+Na⁺ Calcd: 318.1595, Found: 318.1601.

10h

5-bromo-*N***-(tert-butyl)-2-(2-ethylbutyl)benzamide (10h),** 46.9 mg, yield: 69%. Pale yellow solid, mp: 73-76°C.

¹**HNMR** (300 MHz, CDCl₃) δ 7.40 (s, 2H), 7.05 (d, J = 7.8 Hz, 1H), 5.54 (s, 1H), 2.66 (d, J = 7.2

Hz, 2H), 1.50-1.69 (m, 1H), 1.45 (s, 9H), 1.22-1.31 (m, 4H), 0.83 (t, *J* = 7.2 Hz, 6H). ¹³**CNMR** (75 MHz, CDCl₃) δ 168.16, 139.92, 138.71, 132.59, 131.99, 129.55, 119.03, 51.97, 41.90, 36.48, 28.76, 24.97, 10.68.

HRMS (ESI): C₁₇H₂₆BrNO+Na⁺ Calcd: 362.1090, Found: 362.1096.

10i

N-(tert-butyl)-2-fluoro-6-(2-phenylpropyl)benzamide (10i), 45.7 mg, yield: 73%. Yellow solid, mp: 93-96°C.

¹**HNMR** (300 MHz, CDCl₃) δ 7.11-7.28 (m, 6H), 6.80-6.90 (m, 2H), 5.43 (s, 1H), 3.06-3.17 (m, 1H), 2.88-3.02 (m, 2H), 1.46 (s, 9H), 1.27 (*d*, *J* = 6.9 Hz, 3H).

¹⁹**FNMR** (282 MHz) δ -117.220.

¹³**CNMR** (75 MHz, CDCl₃) δ 164.43, 160.58, 157.32, 146.44, 140.92 (*d*, *J* = 3 Hz), 129.65 (*d*, *J* = 8.3 Hz), 128.29, 127.07, 126.11, 126.03 (*d*, *J* = 3 Hz), 113.15 (*d*, *J* = 22 Hz), 52.13, 41.91, 41.17, 28.76, 21.13.

HRMS (ESI): C₂₀H₂₄FNO+Na⁺ Calcd: 336.1734, Found: 336.1741.

5-bromo-N-(tert-butyl)-2-(2-phenylpropyl)benzamide 10j), 48.6 mg, yield: 65%. Pale yellow solid, mp: 90-93°C.

¹**HNMR** (300 MHz, CDCl₃) δ 7.10-7.37 (m, 7H), 6.86 (d, *J* = 8.1 Hz, 1H), 5.43 (s, 1H), 2.95-3.07 (m, 3H), 1.44 (s, 9H), 1.25 (d, *J* = 6.6 Hz, 3H).

¹³**CNMR** (75 MHz, CDCl₃) δ 167.92, 146.06, 139.64, 137.34, 132.34, 131.75, 129.22, 128.10, 126.86, 125.90, 119.15, 51.74, 41.28, 41.07, 28.51, 21.05.

HRMS (ESI): C₂₀H₂₄BrNO+Na⁺ Calcd: 396.0933, Found: 396.0942.

N-(tert-butyl)-3-methoxy-2-(2-phenylpropyl)benzamide (10k), 36.4 mg, yield: 56%. Pale yellow solid, mp: 58-61°C.

¹**HNMR** (300 MHz, CDCl₃) δ 7.11-7.23 (m, 6H), 6.84 (d, *J* = 7.8 Hz, 2H), 5.28 (s, 1H), 3.76 (s, 3H), 2.97-3.22 (m, 3H), 1.42 (s, 9H), 1.23 (d, *J* = 6.9 Hz, 3H).

¹³**CNMR** (75 MHz, CDCl₃) δ 169.70, 158.14, 147.59, 140.02, 128.00, 127.32, 127.16, 126.89, 125.70, 118.79, 111.23, 55.46, 51.61, 39.72, 35.57, 28.74, 20.61.

HRMS (ESI): C₂₁H₂₇NO₂+Na⁺ Calcd: 348.1934, Found: 348.1942.

N-(tert-butyl)-3-(2-phenylpropyl)thiophene-2-carboxamide (10l), 44.5 mg, yield: 74%. Pale yellow solid, mp: 86-89°C.

¹**HNMR** (300 MHz, CDCl₃) δ 7.17-7.29 (m, 5H), 6.94-7.00 (m, 2H), 5.48 (s, 1H), 3.31-3.45 (m, 2H), 3.07-3.18 (m, 1H), 1.43 (s, 9H), 1.32 (d, *J* = 6.9 Hz, 3H).

³**CNMR** (75 MHz, CDCl₃) δ 164.50, 146.74, 146.07, 134.28, 128.35, 127.13, 126.19, 126.08, 122.50, 51.51, 42.33, 37.01, 28.94, 21.69.

HRMS (ESI): C₁₈H₂₃NOS+Na⁺ Calcd: 324.1393, Found: 324.1399.

5-bromo-*N***-(tert-butyl)-2-(2,6-dimethylhept-5-en-1-yl)benzamide (10m),** 53.3 mg, yield: 70%. Yellow oil liquid.

¹**HNMR** (300 MHz, CDCl₃) δ 7.40 (d, *J* = 6.3 Hz, 2H), 7.04 (d, *J* = 8.7 Hz, 1H), 5.51 (s, 1H), 5.05 (t, *J* = 6.0 Hz, 1H), 2.75-2.83 (m, 1H), 2.46-2.54 (m, 1H), 1.88-2.04 (m, 2H), 1.66 (s, 3H), 1.58 (s, 3H), 1.45 (s, 9H), 1.10-1.39 (m, 3H), 0.82 (d, *J* = 6.6 Hz, 3H)

¹³CNMR (75 MHz, CDCl₃) δ 168.16, 139.89, 138.33, 132.58, 132.02, 131.27, 129.50, 124.59, 119.16, 51.98, 40.03, 37.04, 34.43, 28.74, 25.72, 25.58, 19.25, 17.64.

HRMS (ESI): C₂₀H₃₀BrNO+Na⁺ Calcd: 402.1403, Found: 402.1408.

N-(tert-butyl)-2-(3-methylpentan-2-yl)benzamide (10n, $\delta : \epsilon = 2 : 1$), 24.5 mg, yield: 47%. Pale yellow solid, mp: 51-54°C.

¹**HNMR** (300 MHz, CDCl₃) δ 7.24-7.34 (m, 3H), 7.09-7.18 (m, 1H), 5.50 (s, 1H), 2.55-3.08 (m, 1H), 1.58-1.64 (m, 2H), 1.45 (s, 9H), 1.19-1.27 (m, 4H), 0.68-0.91 (m, 6H).

¹³CNMR (75 MHz, CDCl₃) δ 170.15, 145.00, 138.28, 138.16, 129.29, 127.00, 126.92, 126.34, 126.14, 125.33, 51.74, 40.38, 40.20, 40.14, 28.84, 27.97, 25.85, 19.58, 18.56, 17.60, 15.62, 11.64, 10.73.

HRMS (ESI): C₁₇H₂₇NO+Na⁺ Calcd: 284.1985, Found: 284.1992.

N-(tert-butyl)-2-neopentylbenzamide (11a), 25.7 mg, yield: 52%. Pale yellow solid, mp: 65-68°C. ¹HNMR (300 MHz, CDCl₃) δ 7.31 (t, *J* = 7.5 Hz, 2H), 7.19 (t, *J* = 6.3 Hz, 2H), 5.57 (s, 1H), 2.86 (s, 2H), 1.45 (s, 9H), 0.90 (s, 9H).

¹³**CNMR** (75 MHz, CDCl₃) δ 170.20, 138.81, 137.80, 132.61, 128.64, 127.00, 125.75, 51.64, 45.08, 32.55, 29.73, 28.80.

HRMS (ESI): C₁₆H₂₅NO+Na⁺ Calcd: 270.1828, Found: 270.1827.

N-(tert-butyl)-3-chloro-2-neopentylbenzamide (11b), 18.2 mg, yield: 43%. Pale yellow solid, mp: 49–50°C.

¹**HNMR** (300 MHz, CDCl₃) δ 7.11-7.27 (m, 3H), 5.43 (s, 1H), 2.64 (s, 2H), 1.48 (s, 9H), 0.95 (s, 9H).

¹³**CNMR** (75 MHz, CDCl₃) δ 166.37, 139.17, 138.32, 130.84, 129.64, 128.67, 127.13, 52.20, 45.90, 32.37, 30.09, 28.67.

HRMS (ESI): C₁₆H₂₄ClNO+Na⁺ Calcd: 304.1439, Found: 304.1443.

N-(5-cyclohexyl-2,6-dimethylheptan-2-yl)benzamide (12a), 42.2 mg, yield: 64%. Yellow oil. ¹HNMR (300 MHz, CDCl₃) δ 7.70 (d, *J* = 6.9 Hz, 2H), 7.38-7.48 (m, 3H), 5.83 (s, 1H), 1.56-1.83 (m, 6H), 1.44 (s, 6H), 0.96-1.35 (m, 9H), 0.85-0.89 (m, 8H).

¹³**CNMR** (75 MHz, CDCl₃) δ 166.84, 136.24, 130.97, 128.49, 126.63, 54.48, 49.77, 41.43, 40.22, 31.79, 30.07, 28.90, 26.89, 22.12, 21.46, 19.19.

HRMS (ESI): C₂₂H₃₅NO+Na⁺ Calcd: 352.2611, Found: 352.2616.

N-(5-isopropyl-2-methyldodecan-2-yl)benzamide (12b), 38.7 mg, yield: 56%. Yellow oil. ¹HNMR (300 MHz, CDCl₃) δ 7.70 (d, *J* = 6.9 Hz, 2H), 7.38-7.48 (m, 3H), 5.82 (s, 1H), 1.67-1.81 (m, 3H), 1.43 (s, 6H), 0.95-1.25 (m, 14H), 0.80-0.90 (m, 10H).
¹³CNMR (75 MHz, CDCl₃) δ 166.83, 136.19, 130.99, 128.49, 126.63, 54.33, 44.09, 38.39, 31.91, 30.48, 30.08, 29.38, 29.23, 27.83, 26.97, 24.61, 22.68, 19.38, 19.14, 14.11.
HRMS (ESI): C₂₃H₃₉NO+Na⁺ Calcd: 368.2924, Found: 368.2934.

N-(6-ethyl-5-isopropyl-2-methyloctan-2-yl)benzamide (12c), 38.1 mg, yield: 60%. Yellow oil. ¹HNMR (300 MHz, CDCl₃) δ 7.70 (d, *J* = 6.6 Hz, 2H), 7.38-7.47 (m, 3H), 5.82 (s, 1H), 1.68-1.85 (m, 3H), 1.38 (s, 6H), 1.05-1.36 (m, 8H), 0.84-0.88 (m, 12H).

¹³**CNMR** (75 MHz, CDCl₃) δ 166.83, 136.22, 130.97, 128.48, 126.62, 54.44, 45.42, 42.98, 40.93, 29.25, 26.92, 23.98, 23.04, 22.00, 21.23, 20.34, 12.71, 12.21.

HRMS (ESI):C₂₁H₃₅NO+Na⁺ Calcd: 340.2611, Found: 340.2618.

N-(2,4,4-trimethyl-6-phenylhexan-2-yl)benzamide (12d), 34.29 mg, yield: 53%. Yellow oil. ¹HNMR (300 MHz, CDCl₃) δ 7.65 (d, *J* = 6.9 Hz, 2H), 7.35-7.49 (m, 4H), 7.22-7.28 (m, 1H), 7.15 (d, *J* = 7.5 Hz, 3H), 5.93 (s, 1H), 2.61 (t, *J* = 8.7 Hz, 2H), 1.97 (s, 2H), 1.64 (t, *J* = 7.8 Hz, 2H), 1.55 (s, 6H), 1.11 (s, 6H).

¹³**CNMR** (75 MHz, CDCl₃) δ 166.74, 143.21, 136.20, 131.00, 128.53, 128.32, 126.60, 125.56, 55.53, 49.37, 47.13, 34.47, 30.71, 29.56, 28.64.

HRMS (ESI):C₂₂H₂₉NO+Na⁺ Calcd: 346.2147, Found: 346.2146.

2-(3,5-dimethylphenyl)isoindolin-1-one (3f'), 22.5 mg, yield: 95%. White solid, mp: 132-135°C. **¹HNMR** (300 MHz, CDCl₃): δ 7.92 (d, *J* = 8.1 Hz, 1H), 7.57-7.62 (m, 1H), 7.49-7.52 (m, 4H), 6.84 (s, 1H), 4.84 (s, 2H), 2.37 (s, 6H).

¹³**CNMR** (75 MHz, CDCl₃): δ 167.46, 140.20, 139.35, 138.82, 133.38, 131.95, 128.32, 126.34, 124.10, 122.56, 117.51, 51.01, 21.60.

HRMS (ESI): C₁₆H₁₅NO+Na⁺ Calcd: 260.1046, Found: 260.1062.

2-(2-(diphenylamino)ethyl)-5-methylbenzoic acid (4s'), 30.8 mg, yield: 93%. White solid, mp: 145-147°C.

¹**HNMR** (300 MHz, CDCl₃):δ 7.90 (s, 1H), 7.23-7.33 (m, 5H), 7.14 (d, *J* = 7.8 Hz, 1H), 7.05 (d, *J* = 7.8 Hz, 4H), 6.93 (t, *J* = 7.5 Hz, 2H), 4.01 (t, *J* = 7.5 Hz, 2H), 3.35 (t, *J* = 8.1 Hz, 2H), 2.40 (s, 3H).

¹³**CNMR** (75 MHz, CDCl₃): δ 172.30, 147.85, 139.28, 136.27, 134.00, 132.18, 132.07, 129.21, 128.04, 121.08, 120.90, 53.71, 32.40, 20.90.

HRMS (ESI): C₂₂H₂₁NO₂+Na⁺Calcd: 354.1465, Found: 354.1468.

10b'

2-(2-ethylbutyl)benzoic acid (10b'), 21.6 mg, yield: 98%. White oil liquid.

¹**HNMR** (300 MHz, CDCl₃): δ 8.04 (d, J = 7.8 Hz, 1H), 7.45 (t, J = 7.5 Hz, 1H), 7.22-7.31 (m, 2H), 2.98 (d, J = 6.9 Hz, 2H), 1.52-1.59 (m, 1H), 1.25-1.36 (m, 4H), 0.87 (t, J = 7.5 Hz, 6H). ¹³**CNMR** (75 MHz, CDCl₃): δ 173.65, 144.92, 132.36, 132.33, 131.64, 128.66, 125.82, 42.43, 38.34,

25.09, 10.73.

HRMS (ESI): C₁₃H₁₈O₂+Na⁺ Calcd: 229.1199, Found: 229.1201.

NMR spectra of the products.

Supplementary Figure 23. ¹³C NMR (75 MHz, CDCl₃) spectra for compound 3a.

Supplementary Figure 24. ¹H NMR (300 MHz, CDCl₃) spectra for compound 3b.

Supplementary Figure 25. ¹³C NMR (75 MHz, CDCl₃) spectra for compound 3b.

Supplementary Figure 26. ¹H NMR (300 MHz, CDCl₃) spectra for compound 3c.

Supplementary Figure 27. ¹³C NMR (75 MHz, CDCl₃) spectra for compound 3c.

Supplementary Figure 28. ¹H NMR (300 MHz, CDCl₃) spectra for compound 3d.

Supplementary Figure 29. ¹³C NMR (75 MHz, CDCl₃) spectra for compound 3d.

Supplementary Figure 30. ¹H NMR (300 MHz, CDCl₃) spectra for compound 3e.

Supplementary Figure 31. ¹³C NMR (75 MHz, CDCl₃) spectra for compound 3e.

Supplementary Figure 32. ¹H NMR (300 MHz, CDCl₃) spectra for compound 3f.

Supplementary Figure 33. ¹³C NMR (75 MHz, CDCl₃) spectra for compound 3f.

Supplementary Figure 35. ¹H NMR (300 MHz, CDCl₃) spectra for compound 3g.

Supplementary Figure 36. ¹³C NMR (75 MHz, CDCl₃) spectra for compound 3g.

Supplementary Figure 37. ¹H NMR (300 MHz, CDCl₃) spectra for compound 3h.

Supplementary Figure 38. ¹³C NMR (75 MHz, CDCl₃) spectra for compound 3h.

Supplementary Figure 39. ¹H NMR (300 MHz, CDCl₃) spectra for compound 3i.

Supplementary Figure 40. ¹⁹F NMR (282 MHz, CDCl₃) spectra for compound 3i.

Supplementary Figure 41. ¹³C NMR (75 MHz, CDCl₃) spectra for compound 3i.

Supplementary Figure 42. ¹H NMR (300 MHz, CDCl₃) spectra for compound 3j.

Supplementary Figure 43. ¹⁹F NMR (282 MHz, CDCl₃) spectra for compound 3j.

Supplementary Figure 44. ¹³C NMR (75 MHz, CDCl₃) spectra for compound 3j.

Supplementary Figure 45. ¹H NMR (300 MHz, CDCl₃) spectra for compound 3k.

Supplementary Figure 47. ¹H NMR (300 MHz, CDCl₃) spectra for compound 3l.

Supplementary Figure 48. ¹⁹F NMR (282 MHz, CDCl₃) spectra for compound 31.

Supplementary Figure 49. ¹³C NMR (75 MHz, CDCl₃) spectra for compound 31.

Supplementary Figure 51. ¹³C NMR (75 MHz, CDCl₃) spectra for compound 3m.

0 ppm

Supplementary Figure 53. ¹³C NMR (75 MHz, CDCl₃) spectra for compound 3n.

Supplementary Figure 55. ¹³C NMR (75 MHz, CDCl₃) spectra for compound 30.

Supplementary Figure 57. ¹³C NMR (75 MHz, CDCl₃) spectra for compound 3p.

Supplementary Figure 59. ¹³C NMR (75 MHz, CDCl₃) spectra for compound 3q.

Supplementary Figure 61. ¹³C NMR (75 MHz, CDCl₃) spectra for compound 3r.

Supplementary Figure 62. ¹H NMR (300 MHz, CDCl₃) spectra for compound 3s.

Supplementary Figure 63. ¹⁹F NMR (282 MHz, CDCl₃) spectra for compound 3s.

Supplementary Figure 65. ¹H NMR (300 MHz, CDCl₃) spectra for compound 3t.

Supplementary Figure 67. ¹³C NMR (75 MHz, CDCl₃) spectra for compound 3t.

Supplementary Figure 69. ¹³C NMR (75 MHz, CDCl₃) spectra for compound 3u.

Supplementary Figure 70. ¹H NMR (300 MHz, CDCl₃) spectra for compound 3v.

Supplementary Figure 71. ¹⁹F NMR (282 MHz, CDCl₃) spectra for compound 3v.

Supplementary Figure 73. ¹H NMR (300 MHz, CDCl₃) spectra for compound 3w.

Supplementary Figure 75. ¹H NMR (300 MHz, CDCl₃) spectra for compound 3x.

Supplementary Figure 77. ¹H NMR (300 MHz, CDCl₃) spectra for compound 3y.

Supplementary Figure 79. ¹³C NMR (75 MHz, CDCl₃) spectra for compound 3y.

Supplementary Figure 80. ¹H NMR (300 MHz, CDCl₃) spectra for compound 4a.

Supplementary Figure 81. ¹³C NMR (75 MHz, CDCl₃) spectra for compound 4a.

Supplementary Figure 83. ¹³C NMR (75 MHz, CDCl₃) spectra for compound 4b.

Supplementary Figure 85. ¹³C NMR (75 MHz, CDCl₃) spectra for compound 4c.

Supplementary Figure 86. ¹H NMR (300 MHz, CDCl₃) spectra for compound 4d.

Supplementary Figure 87. ¹⁹F NMR (282 MHz, CDCl₃) spectra for compound 4d.

Supplementary Figure 89. ¹H NMR (300 MHz, CDCl₃) spectra for compound 4e.

Supplementary Figure 91. ¹H NMR (300 MHz, CDCl₃) spectra for compound 4f.

Supplementary Figure 92. ¹³C NMR (75 MHz, CDCl₃) spectra for compound 4f.

Supplementary Figure 93. ¹H NMR (300 MHz, CDCl₃) spectra for compound 4g.

Supplementary Figure 95. ¹H NMR (300 MHz, CDCl₃) spectra for compound 4h.

Supplementary Figure 96. ¹³C NMR (75 MHz, CDCl₃) spectra for compound 4h.

Supplementary Figure 97. ¹H NMR (300 MHz, CDCl₃) spectra for compound 4i.

Supplementary Figure 99. ¹H NMR (300 MHz, CDCl₃) spectra for compound 4j.

Supplementary Figure 100. ¹³C NMR (75 MHz, CDCl₃) spectra for compound 4j.

Supplementary Figure 101. ¹H NMR (300 MHz, CDCl₃) spectra for compound 4k.

5.5 0.8 502 3.0 1.5 <u>3.07</u> 8.5 6.0 5.0 4.5 2.5 2.0 1.0 0.5 0.0 ppm 4.0 3.5 7.5 7.0 6.5 205 2.00 **ह** ীর্শ্ব

Supplementary Figure 103. ¹H NMR (300 MHz, CDCl₃) spectra for compound 4l.

Supplementary Figure 105. ¹H NMR (300 MHz, CDCl₃) spectra for compound 4m.

Supplementary Figure 107. ¹H NMR (300 MHz, CDCl₃) spectra for compound 4n.

Supplementary Figure 108. ¹⁹F NMR (282 MHz, CDCl₃) spectra for compound 4n.

Supplementary Figure 109. ¹³C NMR (75 MHz, CDCl₃) spectra for compound 4n.

Supplementary Figure 110. $^1\!\mathrm{H}$ NMR (300 MHz, CDCl₃) spectra for compound 40.

Supplementary Figure 111. ¹³C NMR (75 MHz, CDCl₃) spectra for compound 40.

Supplementary Figure 113. ¹³C NMR (75 MHz, CDCl₃) spectra for compound 4p.

Supplementary Figure 115. ¹³C NMR (75 MHz, CDCl₃) spectra for compound 4q.

Supplementary Figure 117. ¹³C NMR (75 MHz, CDCl₃) spectra for compound 4r.

Supplementary Figure 119. ¹³C NMR (75 MHz, CDCl₃) spectra for compound 4s.

Supplementary Figure 120. $^1\!\mathrm{H}$ NMR (300 MHz, CDCl_3) spectra for compound 4t.

Supplementary Figure 121. ¹⁹F NMR (282 MHz, CDCl₃) spectra for compound 4t.

Supplementary Figure 122. ¹³C NMR (75 MHz, CDCl₃) spectra for compound 4t.

Supplementary Figure 123. ¹H NMR (300 MHz, CDCl₃) spectra for compound 4u.

Supplementary Figure 125. ¹H NMR (300 MHz, CDCl₃) spectra for compound 4v.

Supplementary Figure 126. ¹³C NMR (75 MHz, CDCl₃) spectra for compound 4v.

Supplementary Figure 127. ¹H NMR (300 MHz, CDCl₃) spectra for compound 4w.

Supplementary Figure 128. ¹³C NMR (75 MHz, CDCl₃) spectra for compound 4w.

Supplementary Figure 129. ¹H NMR (300 MHz, CDCl₃) spectra for compound 4x.

Supplementary Figure 130. ¹³C NMR (75 MHz, CDCl₃) spectra for compound 4x.

Supplementary Figure 131. ¹H NMR (300 MHz, CDCl₃) spectra for compound 5.

Supplementary Figure 133. ¹H NMR (300 MHz, CDCl₃) spectra for compound 6.

Supplementary Figure 134. ¹³C NMR (75 MHz, CDCl₃) spectra for compound 6.

Supplementary Figure 135. ¹H NMR (300 MHz, CDCl₃) spectra for compound 8a.

Supplementary Figure 136. ¹³C NMR (75 MHz, CDCl₃) spectra for compound 8a.

Supplementary Figure 137. ¹H NMR (300 MHz, CDCl₃) spectra for compound 8b.

Supplementary Figure 138. ¹³C NMR (75 MHz, CDCl₃) spectra for compound 8b.

Supplementary Figure 139. ¹H NMR (300 MHz, CDCl₃) spectra for compound 8c.

Supplementary Figure 140. ¹³C NMR (75 MHz, CDCl₃) spectra for compound 8c.

Supplementary Figure 141. ¹H NMR (300 MHz, CDCl₃) spectra for compound 8d.

Supplementary Figure 142. ¹³C NMR (75 MHz, CDCl₃) spectra for compound 8d.

Supplementary Figure 143. ¹H NMR (300 MHz, CDCl₃) spectra for compound 8e.

Supplementary Figure 144. ¹³C NMR (75 MHz, CDCl₃) spectra for compound 8e.

Supplementary Figure 145. ¹H NMR (300 MHz, CDCl₃) spectra for compound 8f.

Supplementary Figure 147. ¹³C NMR (75 MHz, CDCl₃) spectra for compound 8f.

Supplementary Figure 148. ¹H NMR (300 MHz, CDCl₃) spectra for compound 8g.

Supplementary Figure 149. ¹⁹F NMR (282 MHz, CDCl₃) spectra for compound 8g.

Supplementary Figure 150. ¹³C NMR (75 MHz, CDCl₃) spectra for compound 8g.

Supplementary Figure 151. ¹H NMR (300 MHz, CDCl₃) spectra for compound 8h.

Supplementary Figure 152. ¹³C NMR (75 MHz, CDCl₃) spectra for compound 8h.

Supplementary Figure 153. ¹H NMR (300 MHz, CDCl₃) spectra for compound 8i.

Supplementary Figure 154. ¹³C NMR (75 MHz, CDCl₃) spectra for compound 8i.

Supplementary Figure 155. ¹H NMR (300 MHz, CDCl₃) spectra for compound 8j.

Supplementary Figure 156. ¹³C NMR (75 MHz, CDCl₃) spectra for compound 8j.

Supplementary Figure 157. ¹H NMR (300 MHz, CDCl₃) spectra for compound 8k.

Supplementary Figure 159. ¹H NMR (300 MHz, CDCl₃) spectra for compound 81.

Supplementary Figure 160. ¹³C NMR (75 MHz, CDCl₃) spectra for compound 81.

Supplementary Figure 161. ¹H NMR (300 MHz, CDCl₃) spectra for compound 8m.

Supplementary Figure 162. ¹³C NMR (75 MHz, CDCl₃) spectra for compound 8m.

Supplementary Figure 163. ¹H NMR (300 MHz, CDCl₃) spectra for compound 9a.

Supplementary Figure 164. ¹³C NMR (75 MHz, CDCl₃) spectra for compound 9a.

Supplementary Figure 165. ¹H NMR (300 MHz, CDCl₃) spectra for compound 9b.

Supplementary Figure 167. 1 H NMR (300 MHz, CDCl₃) spectra for compound 9c.

Supplementary Figure 169. ¹H NMR (300 MHz, CDCl₃) spectra for compound 9d.

Supplementary Figure 170. ¹³C NMR (75 MHz, CDCl₃) spectra for compound 9d.

Supplementary Figure 171. ¹H NMR (300 MHz, CDCl₃) spectra for compound 9e.

Supplementary Figure 172. ¹³C NMR (75 MHz, CDCl₃) spectra for compound 9e.

Supplementary Figure 173. ¹H NMR (300 MHz, CDCl₃) spectra for compound 9f.

Supplementary Figure 175. ¹H NMR (300 MHz, CDCl₃) spectra for compound 9g.

Supplementary Figure 176. ¹³C NMR (75 MHz, CDCl₃) spectra for compound 9g.

Supplementary Figure 177. ¹H NMR (300 MHz, CDCl₃) spectra for compound 9h.

Supplementary Figure 178. ¹³C NMR (75 MHz, CDCl₃) spectra for compound 9h.

Supplementary Figure 179. ¹H NMR (300 MHz, CDCl₃) spectra for compound 9i.

Supplementary Figure 180. ¹³C NMR (75 MHz, CDCl₃) spectra for compound 9i.

Supplementary Figure 181. ¹H NMR (300 MHz, CDCl₃) spectra for compound 9j.

Supplementary Figure 182. ¹³C NMR (75 MHz, CDCl₃) spectra for compound 9j.

Supplementary Figure 183. ¹H NMR (300 MHz, CDCl₃) spectra for compound 9k.

Supplementary Figure 184. ¹³C NMR (75 MHz, CDCl₃) spectra for compound 9k.

Supplementary Figure 185. ¹H NMR (300 MHz, CDCl₃) spectra for compound 9l.

Supplementary Figure 187. ¹H NMR (300 MHz, CDCl₃) spectra for compound 10a.

Supplementary Figure 189. $^1\mathrm{H}$ NMR (300 MHz, CDCl_3) spectra for compound 10b.

Supplementary Figure 190. ¹³C NMR (75 MHz, CDCl₃) spectra for compound 10b.

Supplementary Figure 191. ¹H NMR (300 MHz, CDCl₃) spectra for compound 10c.

Supplementary Figure 192. ¹³C NMR (75 MHz, CDCl₃) spectra for compound 10c.

Supplementary Figure 193. ¹H NMR (300 MHz, CDCl₃) spectra for compound 10d.

Supplementary Figure 195. ¹H NMR (300 MHz, CDCl₃) spectra for compound 10e.

Supplementary Figure 197. ¹H NMR (300 MHz, CDCl₃) spectra for compound 10f.

Supplementary Figure 199. ¹H NMR (300 MHz, CDCl₃) spectra for compound 10g.

Supplementary Figure 200. ¹³C NMR (75 MHz, CDCl₃) spectra for compound 10g.

Supplementary Figure 201. ¹H NMR (300 MHz, CDCl₃) spectra for compound 10h.

Supplementary Figure 203. ¹H NMR (300 MHz, CDCl₃) spectra for compound 10i.

Supplementary Figure 204. ¹⁹F NMR (282 MHz, CDCl₃) spectra for compound 10i.

Supplementary Figure 205. ¹³C NMR (75 MHz, CDCl₃) spectra for compound 10i.

Supplementary Figure 206. ¹H NMR (300 MHz, CDCl₃) spectra for compound 10j.

Supplementary Figure 207. ¹³C NMR (75 MHz, CDCl₃) spectra for compound 10j.

Supplementary Figure 208. $^1\mathrm{H}$ NMR (300 MHz, CDCl₃) spectra for compound 10k.

Supplementary Figure 209. ¹³C NMR (75 MHz, CDCl₃) spectra for compound 10k.

Supplementary Figure 210. ¹H NMR (300 MHz, CDCl₃) spectra for compound 101.

Supplementary Figure 211. ¹³C NMR (75 MHz, CDCl₃) spectra for compound 101.

Supplementary Figure 212. ¹H NMR (300 MHz, CDCl₃) spectra for compound 10m.

Supplementary Figure 213. ¹³C NMR (75 MHz, CDCl₃) spectra for compound 10m.

Supplementary Figure 214. ¹H NMR (300 MHz, CDCl₃) spectra for compound 10n.

Supplementary Figure 215. ¹³C NMR (75 MHz, CDCl₃) spectra for compound 10n.

Supplementary Figure 216. ¹H NMR (300 MHz, CDCl₃) spectra for compound 11a.

Supplementary Figure 217. ¹³C NMR (75 MHz, CDCl₃) spectra for compound 11a.

Supplementary Figure 218. ¹H NMR (300 MHz, CDCl₃) spectra for compound 11b.

Supplementary Figure 219. ¹³C NMR (75 MHz, CDCl₃) spectra for compound 11b.

Supplementary Figure 220. ¹H NMR (300 MHz, CDCl₃) spectra for compound 12a.

Supplementary Figure 221. ¹³C NMR (75 MHz, CDCl₃) spectra for compound 12a.

Supplementary Figure 222. ¹H NMR (300 MHz, CDCl₃) spectra for compound 12b.

Supplementary Figure 223. ¹³C NMR (75 MHz, CDCl₃) spectra for compound 12b.

Supplementary Figure 224. ¹H NMR (300 MHz, CDCl₃) spectra for compound 12c.

Supplementary Figure 225. ¹³C NMR (75 MHz, CDCl₃) spectra for compound 12c.

Supplementary Figure 227. $^{13}\mathrm{C}$ NMR (75 MHz, CDCl₃) spectra for compound 12d.

Supplementary Figure 229. ¹³C NMR (75 MHz, CDCl₃) spectra for compound 3f'.

Supplementary Figure 231. ¹³C NMR (75 MHz, CDCl₃) spectra for compound 4s'.

Supplementary Figure 232. ¹H NMR (300 MHz, CDCl₃) spectra for compound 10b'.

Supplementary Figure 233. ¹³C NMR (75 MHz, CDCl₃) spectra for compound 10b'.

Supplementary Figure 234. 1 H NMR (300 MHz, CDCl₃) spectra for compound 13.

Supplementary Figure 235. ¹³C NMR (75 MHz, CDCl₃) spectra for compound 13.

Supplementary Figure 236. ¹H NMR (300 MHz, CDCl₃) spectra for compound 16.

Supplementary Figure 237. ¹³C NMR (75 MHz, CDCl₃) spectra for compound 16.

Supplementary Figure 238. ¹H NMR (300 MHz, CDCl₃) spectra for compound 17.

Supplementary Figure 239. ¹³C NMR (75 MHz, CDCl₃) spectra for compound 17.

Supplementary Figure 240. ¹H NMR (300 MHz, CDCl₃) spectra for compound 14.

Supplementary Figure 241. ¹³C NMR (75 MHz, CDCl₃) spectra for compound 14.

Supplementary Figure 242. ¹H NMR (300 MHz, CDCl₃) spectra for compound 18.

Supplementary Figure 243. ¹³C NMR (75 MHz, CDCl₃) spectra for compound 18.

Supplementary References.

1. Groendyke, B. J., AbuSalim, D. I. & Cook, S. P. Iron-catalyzed, fluoroamide-directed C–H fluorination. *J. Am. Chem. Soc.* **138**, 12771-12774 (2016).

2. Xie, J., Yu, J., Rudolph, Rominger, M., F. & Hashmi, A. S. K. Monofluoroalkenylation of dimethylamino compounds through radical-radical cross-coupling. *Angew. Chem. Int. Ed.* **55**, 9416 –9421 (2016).

3. Chen, W., Liu, Z., Tian, J., Li, J., Ma, J., Cheng, X. & Li, G. Building congested ketone: substituted Hantzsch ester and nitrile as alkylation reagents in photoredox catalysis. *J. Am. Chem. Soc.* **138**, 12312-12315 (2016).

4. Kim, H. & Chang, S. Iridium-catalyzed direct C-H amination with alkylamines: facile oxidative insertion of amino group into iridacycle. ACS Catal. 5, 6665–6669 (2015).

5. Li, S., Wang, B., Dong, G., Li, C. & Liu, H. Cobalt-catalyzed C(sp³)–H/C(sp²)–H oxidative coupling between alkanes and benzamides. *RSC Adv.* **8**, 13454–13458 (2018).

6. Zhao, Y., Huang, B., Yang, C., Li, B., Gou, B., & Xia, W. Photocatalytic cross-dehydrogenative amination reactions between phenols and diarylamines. *ACS Catal.* **7**, 2446–2451 (2017).

7. Jin, J. & MacMillan, D. W. C. Alcohols as alkylating agents in heteroarene C–H functionalization. *Nature*, **525**, 87-90 (2015).

8. Lowry, M. S., Goldsmith, J. I., Slinker, J. D., Rohl, R., Pascal, R. A., Malliaras, G. G. & Bernhard, S. Singlelayer electroluminescent devices and photoinduced hydrogen production from an ionic iridium(III) complex. *Chem. Mater.* **17**, 5712–5719 (2005).

9. Slinker, J. D., Gorodetsky, A. A., Lowry, M. S., Wang, J., Parker, S., Rohl, R., Bernhard, S. & Malliaras, G. G. Efficient yellow electroluminescence from a single layer of a cyclometalated iridium complex. *J. Am. Chem. Soc.* **126**, 2763–2767 (2004).