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Supplemental Figure S1. Genotyping and verification of Mediator mutant lines used in this study. 
(A) Genomic diagrams illustrating the structure of the MED9, MED16, MED18 and CDK8 genes and 
position of the T-DNA insert in the indicated SALK or GABI mutant lines. Protein-coding regions are 
indicated in black and untranslated regions in white, and the small black bars indicate 100 nt. Blue lines 
and arrowheads indicate locations for primers used in RT-qPCR. Dashed blue lines indicate nucleotides 
that are not included in the primer when it includes parts of two exons. (B) Verification of mutant 
genotypes and homozygosity. Genomic DNA was isolated from the wild type and mutant lines, and 
PCR was performed using gene specific Left boarder (LP) and Right boarder (RP) primers for r the 
wild-type allele (~1000 nt) or gene specific Right boarder (RP) together with the LBb3.1 (BP) primer 
specific for the T-DNA insert (~500 nt). “- cont” represents the negative control with water. The LP, 
RP and Lb3.1 are all standard primers from the Salk Institute found at 
signal.salk.edu/tdnaprimers.2.html (C) RT-qPCR verification of transcript depletion in mutant lines. 
RNA was isolated from Col-0 and plants from each mutant line, and RT-qPCR performed using the 
gene-specific primers illustrated in blue. Data shown are the expression levels of each transcript relative 
to the reference gene, actin (AT2G37620), n=3 biological replicates. Sequences of the primers used for 
these analyses are listed in Supplemental Table S10.  

Supplemental Figure S2. Rosette phenotype of Arabidopsis Col-0 and Mediator mutant lines used 
in this study. (A) Photographs of Col-0 and Mediator mutant plants, grown on soil for 35d under (short-
day) greenhouse control conditions. (B) Rosette diameter of Col-0 and Mediator mutant plants during 
growth in short-day conditions. Rosettes were measured at noon, across the widest point. Col-0 wild 
type: black; med9: green; med16: cyan; med18: red; cdk8: orange. (C) Biomass (fresh weight) and (D) 
chlorophyll content of mature rosette plants at 35d. Data shown are the mean ± the standard error from 
at least 20 individual plants. Two or three asterisks, or white or red triangles, indicate a p-value of less 
than 0.05 or 0.01, respectively (calculated in comparison with Col-0). Numbers above bars in (D) 
indicate the chlorophyll a:b ratio.  

Supplemental Figure S3. Verification of abiotic stress conditions and time-point selection by RT-
qPCR. Selected genes were used as markers for the transcriptional response to (A) heat stress, (B) cold 
stress or (C) salt stress. Data shown are the mean expression relative to the expression of a reference 
gene (UBI-L for heat and cold or ACTIN8 for salt stress) and to the expression level in CON or CON_SS 
for each genotype. Error bars indicate the standard error (n = 4). P values are calculated based on the 
∆Ct values a, P ≤ 0.05; b, P ≤ 0.01; c, P ≤ 0.001  (D) Photographs of hydroponic-grown wild type and 
mutant lines before (Control) and at the late (SS24) stage of salt stress treatment. 

Supplemental Figure S4. Enrichment of regulatory cis-elements in the promoters of genes in the 
four common abiotic stress regulons. Enrichment analysis of transcription factor (TF) binding sites 
using TF2Network in EARLY UP (EU), LATE UP (LU), EARLY DOWN (ED) and LATE DOWN 
(LD) regulons. Numbers within rectangles indicate the number of genes containing a binding site for 
the corresponding TF. Darker shades of orange indicate increasing enrichment of TF binding sites.  

Supplemental Figure S5. Enrichment of regulatory cis-elements in the promoters of non-
responsive genes within the EARLY UP common abiotic stress regulon in Mediator mutants. 
Enrichment analysis of transcription factor (TF) binding sites in non-responsive genes in the Mediator 
mutants using TF2Network, as compared to the full set of 281 transcripts in the EARLY UP regulon. 
Numbers within rectangles indicate the number of genes containing a binding site for the corresponding 
TF. Darker shades of orange indicate increasing enrichment of TF binding sites.  

Supplemental Figure S6. Co-expression network visualizing the 20 largest modules at the first 
and second level. Modules significantly enriched for EARLY UP gens are colored beige. 

Supplemental Figure S7. Enrichment of regulatory cis-elements in the promoters of non-
responsive genes of the EARLY UP common abiotic stress regulon which displayed loss of 
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repression in med16. Enrichment analysis of transcription factor (TF) binding sites in non-responsive 
genes displaying loss of repression (LR) prior to stress in the med16 mutant using TF2Network, as 
compared to the full set of 281 transcripts in the EARLY UP regulon. Numbers within rectangles 
indicate the number of genes containing a binding site for the corresponding TF. Darker shades of 
orange indicate increasing enrichment of TF binding sites.  

Supplemental Figure S8. Non-responsive genes of the EARLY DOWN common abiotic stress 
regulon in Mediator mutants. (A) Bar graph of the numbers of genes of the EARLY DOWN regulon 
which were non-responsive (not significantly down-regulated) in the Mediator mutants. The dotted line 
indicates the total number of genes in the regulon (349). (B) Enrichment analysis of transcription factor 
(TF) binding sites in non-responsive genes in the Mediator mutants using TF2Network, as compared to 
the full set of 349 transcripts in the EARLY DOWN regulon, summarised to the level of TF-families. 
Numbers within rectangles indicate the number of genes containing a binding site for the corresponding 
TF. (C) Bar plot of salt stress-induced expression changes in selected genes containing TF binding sites 
for TCP2 and MYB98 in Col-0 wild type (black) and the cdk8 mutant (orange). Data shown are the 
mean log2 fold-change in expression for each transcript at SS4 relative to the level at CON_SS ± SD 
(n=4). 
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SUPPLEMENTAL EXPERIMENTAL PRODECURES 

Plant Materials 

All plant lines used in the study were in the Arabidopsis thaliana Columbia (Col-0) background. Seeds of 
the med9 (SALK_029120), med16 (alias sfr6-2; SALK_048091;1 and med18 mutants (SALK_027178;2 
were obtained from the Nottingham Arabidopsis Stock Centre (NASC; Nottingham, UK). The cdk8 
mutant (GABI_564F11) has been described previously 3. All Mediator knock-out lines were verified as 
homozygous for the appropriate T-DNA insertion and transcript levels were quantified by RT-qPCR 
using Roche 454 (Roche, Clifton NJ, USA). The primers used for genotyping and RT-qPCR checks are 
listed in Supplemental Table S10. Biomass was calculated as the fresh weight of aerial parts of at least 20 
individual plants, and chlorophyll content in acetone extracts from leaves of the same plants was 
determined according to 4 and normalized to the fresh weight.  

Growth Conditions and Experimental Treatments 

Seeds of the different Arabidopsis plant lines were surface sterilized and plated on 1×MS medium 
supplemented with 1% (w/v) sucrose and kept for 3 d at 4°C in darkness for stratification of the seeds. 
After 7 d growth on plates under long-day greenhouse conditions (16 h light / 8 h dark photoperiod, 
22°C/18°C day/night temperature and 65% humidity), seedlings were transferred to soil-filled pots and 
grown under short-day greenhouse (control) conditions (22°C/18°C day/night temperature and 65% 
humidity) under standard illumination (cool white light provided by fluorescent tubes (Osram Lumilux 
L18W 840 (Germany); peak wavelength 840 nm) at a photon flux density of 120 µE.m-2.s-1 in an 8 h light 
/ 16 h dark photoperiod) for a further 28 d.  

After totally 35 d growth, rosette plants were exposed to abiotic stress conditions, beginning 2 h into the 
light period. Plants were first photographed and sampled in control conditions (CON). For heat stress 
(HS), plants were transferred to a heat chamber (Stuart Incubator SI60D, Staffordshire, UK) maintained at 
37°C with standard illumination and 65% humidity and sampled after 30 min (HS30) and 120 min 
(HS120). For cold stress (CS), plants were transferred to a cold room maintained at 5°C, with standard 
illumination and 67% humidity, and sampled after 3 h (CS3) and 72 h (CS72). In both cases, temperatures 
were verified and monitored using one internal (system) and one external thermometer. These 
temperatures were chosen as they are known to be non-lethal for Arabidopsis, but enough to induce a 
transcriptional response; the time-points for sampling were empirically determined during protocol 
optimization (with guidance from the literature) to encompass peaks in transcriptional activity (see Fig 
S3).  

For the salt stress (SS) experiment, a second population of Col-0 (wild-type) and mutant plants were 
grown in hydroponic system adapted from 5, and liquid and solid media used in the system were prepared 
as described therein. Seeds were surface sterilized, and 2-3 seeds placed in solid germination media in a 
black Eppendorf tube. These tubes were placed in liquid germination media in a 24-well floating 
microtube rack with hinged lid under standard illumination and short-day greenhouse control conditions. 
After 7 d, seedlings were thinned to one per Eppendorf tube, liquid germination media was changed to 
liquid basal nutrient solution, and lid was replaced with cling-film. After 21 d, plants were transferred 
from boxes to aerated tanks supplied with basal nutrient solution. After 35 d, plants were exposed to salt 
stress by replacing the media with freshly prepared basal nutrient solution supplemented with 200 mM of 
NaCl; for control samples, media was replaced with fresh un-supplemented basal nutrient solution. 
Samples for RNA-seq were collected before (CON_SS) and after 4 h (SS4) and 24 h (SS24) exposure to 
salt, which began 2 h into the light period. 

Four biological replicates were collected for each line and time-point (where each biological replicate 
consisted of one rosette leaf each from six individual plants), flash-frozen in liquid N2 and stored at -
80°C. Collection of samples was completed within 5 minutes. In order to verify that our experimental 
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conditions resulted in induction of an appropriate biological stress response, and that we were sampling at 
time-points that would encompass peaks in transcriptional activity, stress-specific marker genes were 
selected for RT-qPCR measurement as described 6 using a BioRad CFX 96 (Hercules, USA) and/or 
Roche 454 (Clifton NJ, USA). For heat stress, these marker genes included DREB2a, MBF1c and ZAT12 
7; for the cold stress, CBF1, COR15a and COR47 6; and for salt stress, ABA3, RD29A and SKIP 8. For the 
heat and cold stress experiments, ubiquitin-like (AT4G36800) was used as the reference gene, while for 
the salt stress we used actin 8 (AT1G49240). The oligonucleotide primer sequences used for these RT-
qPCR analyses are listed in Supplemental Table S10. 

RNA Isolation, RNA-Seq Library Construction and Sequencing 

For RNA isolation, tissue was ground to fine powder using a mortar and pestle cooled in liquid N2 and 
RNA was extracted from ~100 mg tissue using the E.Z.N.A Plant RNA kit (Omega Bio-tek, Norcross, 
USA). To remove DNA contamination, samples were treated with Turbo DNAfree DNAse I (Ambion, 
Foster City, USA) at 37°C for 45 minutes, followed by inactivation as per the manufacturer’s instructions. 
The quantity and integrity of RNA samples were verified using an Agilent BioAnalyzer 2100 with RNA 
Nano 6000 kit (Agilent Technologies, Santa Clara, USA), and only samples with an RNA integrity 
number ≥8 were sent for RNA-seq.  

Verified RNA samples were submitted to the National Genomics Infrastructure (NGI; Uppsala, Sweden) 
for cDNA library construction and sequencing. The Illumina Ribo-Zero rRNA removal kit (Plant Leaf) 
was used to remove rRNA contamination, and cDNA library construction was performed. All samples 
were dual barcoded, multiplexed and loaded onto ten sequencing lanes. Single-ended 50 bp sequencing 
was performed on a HiSeq 2500 High Output V4 platform (Illumina, San Diego, USA), generating 
between 13 and 32 million reads. 

Pre-processing of RNA-Seq data and Identification of Differentially Expressed Genes 

Raw RNA-seq data was pre-processed by NGI Uppsala, according to best practice described in 
https://ngisweden.scilifelab.se/file/New%20RNA-seq%20Bioinformatics%20Best%20Practice. Briefly, 
FastQC (v0.11.4; http://www.bioinformatics.babraham.ac.uk/projects/fastqc/) was used for quality control 
of the raw data. The data were further filtered to remove adapters and trimmed for quality using Trim 
Galore (https://www.bioinformatics.babraham.ac.uk/projects/trim_galore/). Filtered reads went through 
FastQC check again to guarantee that there were no technical artefacts generated. The raw data was 
double-checked by the authors, using a another, previously developed pipeline for quality control, read 
mapping and expression quantification 9,10, following the guidelines described in 
http://www.epigenesys.eu/en/protocols/bio-informatics/1283-guidelines-for-rna-seq-data-analysis. The 
data generated by the two pipelines were in agreement, so we proceeded using the original NGI-generated 
raw data.  

Read counts were obtained using the kallisto R package (v0.43.0, 11) with the parameters quant -b 100 -t -
-rf-stranded and mapped to a custom-made GFF3 file comprising both the coding and non-coding RNA 
(ncRNA) features of the Araport11 Arabidopsis Col-0 reference genome annotation 12. The code was 
executed as follows: kallisto quant -i kallisto/Araport11_all.201606.cdna.inx -b 100 -o 
kallisto/P6960_144_R1_trimmed --rf-stranded -t 8 --rf-stranded 
trim_galore/P6960_144_R1_trimmed.fq.gz -l 250 -s 50. Uniquely-mapping transcripts were counted and 
expressed as transcripts per million. Overviews of our data, including raw read counts, are shown in 
Supplemental Table S9. The kallisto abundance values were imported into R (v3.3.2; R Core Team 2015) 
with the help of the Bioconductor (v3.3; 13) tximport package (v.1.2.0; 14). Beginning with a detected 
population of around 26,000 out of 32,834 annotated features such as genes and ncRNAs, lowly-
expressed transcripts (less than one transcript, in no more than 2 of 4 replicates in any condition) were 
filtered out using a custom feature-select script to produce 24,450, 24,194 and 25,914 genes for the cold, 
heat and salt stress experiments, respectively. Direct comparison of global transcriptomes was achieved 
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with Principal Component Analysis (PCA), performed using the R core package prcomp, or by creating 
heatmaps using custom R scripts. To normalize the data and enable better comparison between highly- 
and lowly-expressed genes, a variance-stabilizing transformation was applied on the raw data using the 
Bioconductor DESeq2 package (v1.14.1; 15). Clustering and scaling of variance-stabilized data was 
performed using Ward’s method of Pearson correlation. Heatmaps, PCA figures, bubble plots and box-
and-whisker plots were generated in R using the ggplot2 package (v2.3.0).  

Statistical analysis of gene and transcript differential expression (DE) between conditions was performed 
in R using DESeq2 with the following model: ~genotype*time-point, to account for all the genotypes 
(Col-0 wild type, med9, med16, med18 and cdk8) and all time-points in each stress conditions (CON, 
EARLY and LATE). Global gene expression was assumed to follow a negative-binomial distribution, and 
the thresholds for significant differential expression between genotypes or time-points were set at a 
Benjamini-Hochberg corrected p-value of 0.01 and an absolute log2 fold-change of 0.5 (following the 
recommendations of 16 for DESeq2 with four biological replicates). All the expression results were 
generated in R, using custom scripts.  

Gene Ontology Functional Enrichment Analyses 

Gene ontology (GO) and Kyoto Encylopedia of Genes and Genomes (KEGG) pathway enrichment 
analysis was analyzed using either: the GO function of Thalemine (v1.10.4; 
https://apps.araport.org/thalemine/bag.do), with the appropriate background of 24,454 genes and a 
Benjamini-Hochberg corrected p-value cut-off of 0.05 to account for multiple hypothesis testing; or the 
integrated Enrichment function of AtGenie (www.atgenie.org) 10. Lists of enriched GO functional 
categories were reduced and redundant categories removed using REVIGO (http://revigo.irb.hr/; 17) with 
default settings but for the database that was set to “Arabidopsis thaliana”. Complete sets of associated 
Gene IDs for each GO functional category were obtained from AmiGO 
(http://amigo.geneontology.org/amigo/) and manually curated. Overlaps between gene sets were 
determined using Venny (v2.1; 18.  

Transcription Factor Binding Site Enrichment Analysis 

 Enrichment of transcription factor (TF) binding sites in the four stress regulons was analyzed using 
TF2Network 19. A p-value of < 0.01 was set as the threshold for significance. The output file from 
TF2Network generally contained multiple binding sites for the same TF. To increase interpretability in 
figures, data were collapsed to the level of TFs or TF-families, which we defined according to the 
Arabidopsis specific file from PlantTFDB 20. To test for enrichment of any of TF binding sites in the 
subgroup of the stress regulon genes which did not respond to stress in the mutants (‘non-responsive’), 
the number of targets (genes with TF binding site) in the subgroup ‘non-responsive’ was compared to the 
total number of targets in the respective stress regulon. For this, a permutation test using 10,000 
permutations and a significance level of p <0.05 was used.   

Accession Numbers and Data Access 

The sequencing data has been deposited at the European Nucleotide Archive (ENA, www.ebi.ac.uk/ena) 
under accession number PRJEB33339.  

  

http://www.ebi.ac.uk/ena
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SUPPLEMENTAL TABLE LEGENDS 
 
Supplemental Table S1. Differentially expressed genes (DEGs) in Mediator mutants compared to Col-
0 wild type.  
Supplemental Table S2. Clusters of co-expressed transcripts in the response of Col-0 wild type to 
abiotic stress. 
Supplemental Table S3. DEGs in the response of Col-0 wild type to abiotic stress. 
Supplemental Table S4. Partitioned gene co-expression network file in .ftree format, and a key to 
translate Araport GeneIDs into network nodes (for more information see 
https://www.mapequation.org/). 
Supplemental Table S5. Modules in the gene co-expression network that are significantly enriched for 
a gene-set of interest. A corrected p-value of 1E-05 and a module size of above 50 were used as cut-
offs. 
Supplemental Table S6. DEGs in the common abiotic stress regulons and their expression in Col-0 
wild type during abiotic stress. 
Supplemental Table S7. Responses in Mediator mutants for each of the DEGs in the four common Col-
0 stress regulons.  
Supplemental Table S8. Output from TF2network analysis of all 390 genes in co-expression network 
module M1:7. 
Supplemental Table S9. Raw read counts from RNA-sequencing for the Col-0 wild type and Mediator 
mutants during abiotic stress. 
Supplemental Table S10. Oligonucleotide primers used in this study. 
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