Supporting Information

Inhibition of the *Yersinia pestis* Methylerythritol Phosphate Pathway of Isoprenoid Biosynthesis by α-Phenyl Substituted Reverse Fosmidomycin Analogs

Haley S. Ball^{1,3*}, Misgina Girma¹, Mosufa Zainab¹, Honoria Riley¹, Christoph T. Behrendt², Claudia Lienau², Sarah Konzuch², Leandro A.A. Avelar², Beate Lungerich², Iswarduth Soojhawon³, Schroeder M. Noble³, Thomas Kurz², Robin D. Couch¹

¹Department of Chemistry and Biochemistry, George Mason University, Manassas, Virginia, 20110, United States of America

²Institute of Pharmaceutical and Medicinal Chemistry, Heinrich Heine University Düsseldorf, Universitätsstr. 1, 40225, Düsseldorf, Germany

³Wound Infections Department, Bacterial Diseases Branch, Walter Reed Army Institute of Research, Silver Spring, Maryland, 20910, United States of America

*Corresponding Author

Half-maximal inhibition (IC₅₀) determination

Data was collected at 340 nm using an Agilent 8453 UV-Visible Spectrophotometer equipped with a temperature regulated cuvette holder. Half-maximal inhibition (IC_{50}) of enzyme activity was determined using nonlinear regression of a plot of fractional enzyme activity as a function of inhibitor concentration (sigmoidal dose-response curve) using GraphPad Prism 5.0.

Figure S1. IC₅₀ plots indicating dose-dependent inhibition of YpIspC by 1a-2c. The R^2 value for each plot is indicated. IC₅₀ values were obtained using GraphPad Prism 5.0. Assays were performed in duplicate. The error bars indicate the standard deviation for each data point.

Figure S2. IC₅₀ plots indicating dose-dependent inhibition of YpIspC by 2d-3c. The R^2 value for each plot is indicated. IC₅₀ values were obtained using GraphPad Prism 5.0. Assays were performed in duplicate. The error bars indicate the standard deviation for each data point.

Figure S3. IC₅₀ plots indicating dose-dependent inhibition of YpIspC by 3f-5. The R^2 value for each plot is indicated. IC₅₀ values were obtained using GraphPad Prism 5.0. Assays were performed in duplicate. The error bars indicate the standard deviation for each data point.

Compound characterization

Melting points (M.p.) were taken in open capillaries on a Stuart melting point apparatus SMP11 and are uncorrected. Proton (¹H), carbon (¹³C) and phosphorus (³¹P) NMR spectra were recorded on a Bruker Avance 300, 500 and 600MHz using CDCl₃ and DMSO-d₆ as solvent. Chemical shifts are given in parts per million (ppm), (δ relative to residual solvent peak for ¹H and ¹³C). High-resolution mass spectrometry (HRMS) analysis was performed using a UHR-TOF maXis 4G instrument (Bruker Daltonics, Bremen, Germany). The purity of compounds was determined by Elemental analysis using a Perkin-Elmer PE 2400 CHN elemental analyzer or by highperformance liquid chromatography (HPLC). Instrument: Elite LaChrom system [Hitachi L-2130 (pump) and L-2400 (UV-detector)]; column: Phenomenex Luna C-18(2) 5 µm particle size (250 mm × 4.6 mm), supported by Phenomenex Security Guard Cartridge Kit C18 (4.0 mm × 3.0 mm).

Chemical Formula: C₁₁H₁₆NO₅P

Figure S4. [3-[Hydroxy(methyl)amino]-3-oxo-1-phenyl-propyl] phosphonic acid (1a).¹ Yellow oil (238 mg, 92%); ¹H NMR (500 MHz, DMSO-d₆): δ=7.54-6.68 (m, 5H), 3.40 (ddd, *J* = 21.7, 11.0, 2.6 Hz, 1H), 3.22-3.08 (m, 3H), 2.98 (s, 1H), 2.94-2.82 (m, 1H) ppm; ¹³C NMR (125 MHz, DMSO-d₆): δ=170.6 (d, ³*J*_{*C-P*}=17.7 Hz), 138.4 (d, ²*J*_{*C-P*} = 6.7 Hz), 128.9 (d, ³*J*_{*C-P*} = 6.0 Hz), 127.6, 125.9 (d, ⁴*J*_{*C-P*} = 1.7 Hz),

40.5 (d, ${}^{1}J_{C-P} = 131.4$ Hz), 35.7, 32.5 ppm. Anal. calcd. for C₁₀H₁₄NO₅P: C 46.34, H 5.44, N 5.40, found: C 46.18, H 6.23, N 4.64. HPLC analysis: retention time = 1.880 min; peak area: 97.83%. Eluent A: 5 mM NH₄OAc solution; eluent B: CH₃CN, isocratic (50:50) over 20 min at a flow rate of 1 mL/min.

Chemical Formula: C₁₀H₁₄NO₅PS

Figure S5. (((2-(Hydroxy(methyl)amino)-2-oxoethyl) thio) (phenyl)methyl) phosphonic acid (1b).² White solid; yield 38% (0.111 g, 0.38 mmol). M.p. 112 °C; ¹H NMR (500.13 MHz, DMSO-d₆): δ =9.99 (br. s, OH), 7.47–7.35 (m, 2H), 7.34–7.26 (m, 2H), 7.26–7.18 (m, 1H), 4.25 (d, ²*J*(H,P)=19.0 Hz, 1H, PCH), 3.50 (d, ²*J*(H,H)=14.6 Hz, 1H, SCH₂), 3.23 (d, ²*J*(H,H)=14.6 Hz, 1H, SCH₂), 3.06 (s, 3H, NCH₃); ¹³C NMR (125.76 MHz, DMSO-d₆): δ =168.93 (C=O), 137.36 (d, ²*J*(C,P)=3.8 Hz), 129.23 (d, ³*J*(C,P)=5.8 Hz), 127.86, 126.78, 45.72 (d, ¹*J*(C,P)=139.2 Hz, PC), 35.71 (NCH₃), 31.85 (d, ³*J*(C,P)=6.2 Hz, SCH₂). HRMS (ESI): m/z calculated for C₁₀H₁₄NO₅PS+H⁺ [M+H⁺]: 292.04031; found: 292.03987; HPLC analysis: retention time=1.870 min, peak area: 99.08%, eluent A: NH₄OAc solution (5mM), eluent B: CH₃CN, isocratic (1:1) over 20 min with a flow rate of 1 mL min⁻¹.

Chemical Formula: C₁₀H₁₄NO₆P

Figure S6. ((2-(hydroxy(methyl)amino)-2-oxoethoxy) (phenyl)methyl) phosphonic acid (1c).³ White crystals (330 mg, 85%); M.p. 169 °C. ¹H-NMR(500 MHz, DMSO-d₆) = δ (ppm) 3.07 (s, 3H, NCH₃), 4.20 (d, *J*=16.1 Hz, 1H, OCH₂C=O), 4.34 (d, *J*=16.1 Hz, 1H, OCH₂C=O), 4.68 (d, ₂*J*H,P=14.4 Hz, 1H, PCH), 7.25–7.40 (m, 5H, arom.), 9.86 (s, 1H, OH). 13C-NMR (200 MHz, DMSO-d₆) = δ (ppm) 35.63 (NCH₃) 66.75 (d, ₃*J*C, P=10.8 Hz, OCH2C=O), 78.65 (d, ₁*J*C, P=159.0 Hz, PCH), 127.35, 127.68 (2C), 127.97 (d, *J*C,P=5.4 Hz, 2C), 136.17, 169.49 (*C*=O); Anal. calcd. for C₁₀H₁₄NO₆P: C 43.65, H 5.13, N 5.09, found: C 43.40, H 5.05, N 4.91.

Chemical Formula: C₁₂H₁₈NO₅P

Figure S7. (4-(hydroxy(methyl)amino)-4-oxo-1-(p-tolyl) butyl) phosphonic acid (2a).⁴ Colorless oil (430 mg, 93%), ¹H-NMR: (500 MHz, DMSO-d₆), (ppm):1.86-2.00 (m, 1H, CHC*H*₂), 2.11- 2.23 (m, 3H, CH₂), 2.26 (s, 3H, PhCH₃), 2.73-2.89 (m, 1H, PCH), 3.02 (s, 3H, NCH₃), 6.95-7.10 (m, 2H), 7.18 (dd, J = 8.01, 1.76 Hz, 2H, aromat.), 10.16 (OH). ¹³C-NMR: (125 MHz, DMSO-d₆), (ppm): 20.51 (PhCH₃), 25.14 (CH₂CH₂).29.98 (d, ₂*J*C-P = 15.25 Hz, CHCH₂), 35.54 (NCH₃), 44.26 (d,₁*J*C-P = 133.13 Hz, PCH), 128.43, 128.86 (d, ₃*J*C-P = 6 Hz), 134.85 (d, ₅*J*C-P = 2.86 Hz), 135.34 (d, ₂*J*C-P = 6.24 Hz, aromat.), 172.54 (C=O) ³¹P-NMR: (202,5 MHz, DMSO-d₆), (ppm): 25,07. HPLC analysis: retention time=1.887 min, peak area: 99.6%, eluent A: NH₄OAc solution (5mM), eluent B: CH₃CN, isocratic (1:1) over 20 min with a flow rate of 1 mL min⁻¹.

Chemical Formula: C11H16NO5PS

Figure S8. ((3,4-Difluorophenyl) ((2-(hydroxy(methyl)amino)-2-oxoethyl) thio) methyl) phosphonic acid (2b).⁵ White solid; yield 45% (0.15 g, 0.46 mmol). M.p. 137 °C; ¹H NMR (500.13 MHz, DMSO-d₆): δ =10.04 (br. s, OH), 7.51-7.31 (m, 2H), 7.28–7.14 (m, 1H), 4.28 (d, ²*J*(H,P)=19.6 Hz, 0.83H, PCH), 4.21 (d, ²*J*(H,P)=19.2 Hz, 0.17H, PCH), 3.46 (d, ²*J*(H,H)=14.6 Hz, 1H, SCH₂), 3.23 (d, ²*J*(H,H)=14.6 Hz, 1H, SCH₂), 3.09 (s, 0.21H, NCH₃), 3.05 (s, 2.54H, NCH₃), 3.01 ppm (s, 0.25H, NCH₃); ¹³C NMR (125.76 MHz, DMSO-d₆): δ =168.66 (C=O), 148.79 (dd, ¹*J*(C,F)=244.7 Hz, ²*J*(C,F)=11.7 Hz), 148.34 (dd, ¹*J*(C,F)=244.8 Hz, ²*J*(C,F)=12.5 Hz), 135.58, 126.12 (m), 117.80 (dd, ²*J*(C,F)=17.7 Hz, ³*J*(C,F)=³*J*(C,P)=5.6 Hz), 116.77 (d, ²*J*(C,F)=17.0 Hz), 45.01 (d, ¹*J*(C,P)=137.8 Hz, PC), 35.70 (NCH₃), 31.88 ppm (d, ³*J*(C,P)=7.4 Hz, SCH₂); Elemental analysis calculated (%) for C₁₀H₁₂F₂NO₅PS: C 36.70, H 3.70, N 4.28, found: C 36.97, H 4.00, N 3.92.

Chemical Formula: C₁₁H₁₆NO₆P

Figure S9. ((2-(hydroxy(methyl)amino)-2-oxoethoxy) (p-tolyl) methyl) phosphonic acid (**2c)**.³ White crystals (410mg, 65%). M. p. 164 °C. ¹H-NMR(500 MHz, DMSO-d₆) = δ (ppm) 2.29 (s, 1H, CH₃), 3.06 (s, 3H, NCH₃), 4.16 (d, *J*=16.1 Hz, 1H, OCH₂C=O), 4.30 (d, *J*=16.1 Hz, 1H, OCH₂C=O), 4.62 (d, ²*J*H,P=14.3 Hz, 1H, PCH), 7.14 (d, *J*=7.8, 2H, arom.), 7.26 (d, *J*=7.9 Hz, 2H, arom.), 9.84 (s, 1H, OH) ¹³C-NMR(125 MHz, DMSO-d₆) = δ (ppm) 20.64 (CH₃), 35.63 (NCH₃), 66.55 (d, ³*J*C,P=11.1), 78.47 (d, ¹*J*C,P=160.0 Hz, PCH), 128.02 (d, 3*J*C,P=5.4 Hz, 2C), 128.19 (2C), 133.03, 136.59 (d, ⁵*J*P,C=1.3 Hz), 169.53 (*C*=O). Anal. calcd. for C₁₁H₁₆NO₆P: C 45.68, H 5.58, N 4.84, found: C 45.46, H 5.72, N 4.93.

Chemical Formula: C12H18NO6P

Figure S10. 4-(Hydroxyamino)-1-(4-methoxyphenyl)-4-oxobutylphosphonic acid (2d).⁴ White solid (246 mg, 85 %), Mp: 168 °C; 1H NMR (600.22 MHz, DMSO-d₆): δ = 1.77-1.80 (m, 2H, CH2C*H2*), 1.86-1.92 (m, 1H, CHC*H*₂), 2.19-2.25 (m, 1H, CHC*H*₂), 2.74 (ddd, *J* = 21.7, 11.1, 3.5 Hz, 1H, PC*H*), 3.72 (s, 3H, OC*H*₃), 6.85 (d, *J* = 8.5 Hz), 7.15 (d, *J* = 7.1 Hz), 10.28 (s, 1H) ppm; ¹³C NMR (150.93 MHz, DMSO-d₆): δ = 26.3 (CH₂CH₂), 30.6 (d, ₂*J*C-P = 14.9 Hz, CHCH2), 43.9 (d, ¹*J*C-P = 134.8 Hz, PCH), 54.9 (OCH₃), 113.4, 129.9 (d, ³*J*C-P = 5.8 Hz), 157.6, 168.8 (*C*=O) ppm; HPLC analysis: retention time = 1,87 min; peak area: 95.8%. Eluent A, 5 mM NH4OAc solution; eluent B, CH3CN/isocratic (1:1) over 20 min at a flow rate of 1 mL min-1.

Chemical Formula: C11H14Cl2NO5P

Figure S11. (1-(3,4-Dichlorophenyl)-4-[hydroxy(methyl)amino]-4-oxo-butyl) phosphonic acid (3a).² Orange oil (430mg, 93%). ¹H-NMR: (500 MHz, DMSO-d₆), (ppm): 1.83-2.00 (m, 1H, CHC*H*₂), 2.08-2.34 (m, 3H, CH₂), 2.92-3.01 (m, 1H, PCH), 3.03 (s, 3H, NCH₃), 7.15-7.39 (m, 1H), 7.49 (t, *J* = 1.9 Hz, 1H), 7.57 (d, *J* = 8.3 Hz, 1H, aromat.), 9.68 (s, 1H) 13C-NMR: (125 MHz, DMSO-d₆), (ppm): 25.34 (CH₂CH₂), 30.02 (d, ₂*J*C-P = 14.6 Hz, CHCH₂), 36.01 (NCH₃), 44.12 (d, ¹*J*C-P = 132.6 Hz, PCH), 129.19 (d, 4*J*C-P = 3.6 Hz), 129.92 (d, 3*J*C-P = 6.2 Hz), 130.50, 130.90 (d, 4*J*C-P = 2.5 Hz), 131.21 (d, 3*J*C-P = 6 Hz), 140.25 (d, 2*J*C-P = 6.4 Hz, aromat.), 172.66 (C=O) 31P-NMR: (202,5 MHz, DMSO-*d*6), (ppm): 23,13 HPLC analysis: retention time = 1,967 min; peak area: 99.0%. Eluent A, 5 mM NH4OAc solution; eluent B, CH3CN/isocratic (1:1) over 20 min at a flow rate of 1 mL min-1.

Chemical Formula: C10H12Cl2NO5PS

Figure S12. (((2-(Hydroxy(methyl)amino-2-oxoethyl) thio)(naphthalen-1-

yl)methyl)phosphonic acid (3b).⁶ White solid; yield 55% (0.188 g, 0.55 mmol). M.p. 137 °C;

¹H NMR (500.13 MHz, [D₆]DMSO): δ =9.99 (br. s, OH), 8.20 (d, *J*=6.9 Hz, 1H), 7.92 (d, *J*=7.9 Hz, 1H), 7.88 (s, 1H), 7.83 (d, *J*=8.1 Hz, 1H), 7.59–7.44 (m, 3H), 5.19 (d, ²*J*(H,P)=18.3 Hz, 1H, PCH), 3.74 (d, ²*J*(H,H)=14.2 Hz, 1H, SCH₂), 3.34 (d, ²*J*(H,H)=14.5 Hz, 1H, SCH₂), 3.05 ppm (s, 3H, NCH₃); ¹³C NMR (125.76 MHz DMSO-d₆): δ =169.11 (C=O), 133.55 (m), 133.26 (m), 131.28 (m), 128.46, 127.36, 126.95 (m), 126.00 (m), 125.47, 125.22, 123.61, 38.61 (m, PC), 35.72 (NCH₃), 32.34 ppm (m, SCH₂); HRMS (ESI): m/z calculated for C₁₄H₁₆NO₅PS+H⁺ [M+H⁺]: 342.05596; found: 342.05537; HPLC analysis: retention time=1.860 min, peak area: 99.39%, eluent A: NH₄OAc solution (5mM), eluent B: CH₃CN, isocratic (1:1) over 20 min with a flow rate of 1 mL min⁻¹ and detection at 254 nm; column temperature: RT.

3c

Chemical Formula: C10H12F2NO6P

Figure S13. ((3,4-Dichlorphenyl) (2-(hydroxy(methyl)amino)-2-oxoethoxy) methyl) phosphonic acid (3c).³ Colorless crystals (400 mg, 21%). M. p. 154 °C. 1H-NMR(500 MHz, DMSO-d6) = δ (ppm) 3.07 (s, 3H, NC*H*3), 4.20 (d, *J*=16.0 Hz, 1H, OC*H*2C=O), 4.37 (d, *J*=16.2 Hz, 1H, OC*H*2C=O), 4.74 (d, 2*J*H,P=14.2 Hz, 1H, PC*H*), 7.36 (dt, *J*=8.2, 1.7 Hz, 1H, arom.), 7.59 (t, *J*=1.9 Hz, 1H, arom.), 7.62 (d, *J*=8.3 Hz, 1H, arom.), 9.87 (br. s, 1H, O*H*). ¹³C-NMR(125 MHz, DMSO-d6) = δ (ppm) 35.63 (NCH3), 67.30 (d, 3*J*C,P=9.3 Hz, OCH2C=O), 77.45 (d, 1*J*C,P=157.4 Hz, PCH), 128.10 (d, 3*J*C,P=5.1 Hz, C6H3Cl2: C6), 129.48 (d, 3*J*C,P=5.1 Hz, C6H3Cl2: C2), 129.85 (m, 2C), 130.36 (d, *J*C,P=1.9 Hz), 138.01, 169.19 (*C*=O). Anal. calcd. for C₁₁H₁₆NO₆P: C 45.68, H 5.58, N 4.84, found: C 45.46, H 5.72, N 4.93.

Chemical Formula: C₁₁H₁₄F₂NO₅P

Figure S14. (1-(3,4-Difluorophenyl)-4-[hydroxy(methyl)amino]-4-oxo-butyl) phosphonic acid (3d).² Colorless solid (400 mg, 84%). M.p. 116 °C. ¹H-NMR: (500 MHz, DMSO-d₆), (ppm): 1.82-1.98 (m, 1H, CHC*H*₂), 2.20 (s, 3H, CH₂), 2.97 (dd, *J* = 21.7, 9.6 Hz, 1H, PCH), 3.02 (s, 3H, NCH₃), 6.86-7.18 (m, 1H), 7.22-7.30 (m, 1H), 7.35 (dd, *J* = 19.0, 8.91 Hz, 1H, aromat.), 9.67 (s, 1H, OH) ¹³C-NMR: (125 MHz, DMSO-d₆), (ppm): 25.00 (CH2*C*H2), 29.69 (d, 2*J*C-P = 15.1 Hz, CH*C*H₂), 35.54 (NCH₃), 43.61 (d, ¹*J*C-P = 133.4 Hz, PCH), 116.77 (d, ²*J*C-F = 16.6 Hz, ³*J*C-F = 1.5 Hz), 117.54 (dd, ²*J*C-F = 16.9 Hz, 3*J*C-F = 5.8 Hz), 125.82, 136.13, 148.96 (dd, ¹*J*C-F = 250.6 Hz, 2*J*C-F = 13.9 Hz), 149.76 (dd, ¹*J*C-F = 242.9 Hz, ²*J*C-F = 10.8 Hz, aromat.), 172.20 (C=O) ³¹P-NMR: (202,5 MHz, DMSO-*d*6), (ppm): 23,84. Anal. calcd. for C₁₁H₁₄NF₂O₅P: C 42.73, H 4.56, N 4.53, found: C 43.00, H 4.77, N 4.50.

Chemical Formula: C₁₁H₁₄F₂NO₅P

Figure S15. ((3,4-Difluorophenyl) ((2-(hydroxy(methyl)amino)-2-oxoethyl) thio) methyl) phosphonic acid (3e): White solid; yield 45% (0.15 g, 0.46 mmol). M.p. 137 °C; ¹H NMR (500.13 MHz, DMSO-d₆): δ =10.04 (br. s, OH), 7.51-7.31 (m, 2H), 7.28–7.14 (m, 1H), 4.28 (d, ²*J*(H,P)=19.6 Hz, 0.83H, PCH), 4.21 (d, ²*J*(H,P)=19.2 Hz, 0.17H, PCH), 3.46 (d, ²*J*(H,H)=14.6 Hz, 1H, SCH₂), 3.23 (d, ²*J*(H,H)=14.6 Hz, 1H, SCH₂), 3.09 (s, 0.21H, NCH₃), 3.05 (s, 2.54H, NCH₃), 3.01 ppm (s, 0.25H, NCH₃); ¹³C NMR (125.76 MHz, DMSO-d₆): δ =168.66 (C=O), 148.79 (dd, ¹*J*(C,F)=244.7 Hz, ²*J*(C,F)=11.7 Hz), 148.34 (dd, ¹*J*(C,F)=244.8 Hz, ²*J*(C,F)=12.5 Hz), 135.58, 126.12 (m), 117.80 (dd, ²*J*(C,F)=17.7 Hz, ³*J*(C,F)=³*J*(C,P)=5.6 Hz), 116.77 (d, ²*J*(C,F)=17.0 Hz), 45.01 (d, ¹*J*(C,P)=137.8 Hz, PC), 35.70 (NCH₃), 31.88 ppm (d, ³*J*(C,P)=7.4 Hz, SCH₂); Analysis calculated (%) for C₁₀H₁₂F₂NO₅PS: C 36.70, H 3.70, N 4.28, found: C 36.97, H 4.00, N 3.92.

Chemical Formula: C₁₀H₁₂F₂NO₆P

Figure S16. (3,4-Difluorphenyl) (2-(hydroxy(methyl)amino)-2-oxoethoxy) methyl) phosphonic acid (3f).⁶ Colorless crystal (230mg, 55%). M. p. 160°C. ¹H-NMR(500 MHz, DMSO-d₆) = δ (ppm) 3.07 (s, 3H, NCH₃), 4.26 (d, *J*=16.1 Hz, 1H, OCH₂C=O), 4.36 (d, *J*=16.1 Hz, 1H, OCH₂C=O), 4.72 (d, ²*J*H,P=14.1 Hz, 1H, PCH), 7.19–7.25 (m, 1H, C₆H₃F₂), 7.34–7.46 (m, 2H, C₆H₃F₂), 9.88 (br. s, 1H, OH) ¹³C-NMR(125 MHz, DMSO-d₆) = δ (ppm) 35.65 (NCH₃), 67.14 (d, ₃*J*C,P=8.5 Hz, OCH₂C=O), 77.51 (d, ¹*J*C,P=158.7 Hz, PCH), 116.63 (m, C₆H₃F₂): C2, C5), 124.68 (m, C₆H₃F₂): C6), 134.42 (m, C₆H₃F₂): C1), 148.73 (ddd, ¹*J*C,F=244.2 Hz, ²*J*C,F=12.6 Hz, 5*J*C,P=2.6 Hz, C₆H₃F₂): C3), 148.89 (ddd, ¹*J*C,F=244.9 Hz, ²*J*C,F=12.6 Hz, ⁴*J*C,P=2.1 Hz, *C*₆H₃F₂: C4), 169.27 (C=O) Anal. calcd. for C₁₀H₁₂NF₂NO₅P: C 38.36, H 3.89, N 4.50, found: C 38.85, H 4.08, N 4.58.

Chemical Formula: C13H20NO7P

Figure S17. 1-(3,4-Dimethoxyphenyl)-4-[hydroxy(methyl)amino]-4-oxobutylphosphonic acid (3g).⁴ White solid (290 mg, 87 %) mp: 70 °C; ¹H NMR (500.13 MHz, DMSO-d₆): δ = 1.89-1.99 (m, 1H, CH₂), 2.19 (s, 3H, CH₂), 2.77-2.84 (m, 1H, PCH), 3.03 (s, 3H, NCH₃), 3.71 (s, 3H, OCH₃), 3.72 (s, 3H, OCH₃), 6.74-6.76 (m, 1H), 6.85-6.87 (m, 2H), 9.68 (br s, 1H, OH) ppm; ¹³C NMR (125.76 MHz, DMSO-d₆): δ = 25.3 (CH₂CH₂), 30.1 (d, ²J_{C-P} = 15.2 Hz, CHCH₂), 35.6 (NCH₃), 44.1 (d, ¹J_{C-P} = 136.8 Hz, PCH), 55.3 (OCH₃), 55.45 (OCH₃), 111.6, 112.8 (d, ³J_{C-P} = 5.6 Hz), 121.3 (d, ²J_{C-P} = 7.2 Hz), 130.5 (d, ³J_{C-P} = 6.5 Hz), 147.3, 148.3, 172.7 (C=O) ppm; Anal. calcd. for C₁₃H₂₀NO₇P: C 46.85, H 6.05, N 4.20, found: C 46.61, H 6.05, N 4.06.

Chemical Formula: C12H18NO7PS

Figure S18. (((2-(Hydroxy(methyl)amino)-2-oxoethyl)thio)(4-

(methylthio)phenyl)methyl)phosphonic acid (4a).⁵ white solid; yield: 80%. M. p. 134 °C; ¹H

NMR (600.22 MHz, DMSO-d₆): δ =10.00 (br. s, OH), 7.33 (dd, ³*J*(H,H)=8.3 Hz, ⁴*J*(H,H)=1.6 Hz, 2H, H_{arom}), 7.20 (d, ³*J*(H,H)=8.3 Hz, 2H, H_{arom}), 4.23 (d, ²*J*(H,P)=19.2 Hz, 1H, PCH), 3.48 (d, ²*J*(H,H)=14.6 Hz, 1H, SCH₂), 3.21 (d, ²*J*(H,H)=14.6 Hz, 1H, SCH₂), 3.06 (s, 3H, NCH₃), 2.46 ppm (s, 3H, SCH₃); ¹³C NMR (150.93 MHz, DMSO-d₆): δ =168.90 (C=O), 136.49 (C_{arom}), 133.93 (d, ²*J*(C,P)=4.1 Hz, C_{arom}), 129.79 (d, ³*J*(C,P)=5.8 Hz, C_{arom}), 125.49 (C_{arom}), 45.32 (d, ¹*J*(C,P)=139.5 Hz, PC), 35.73 (NCH₃), 31.76 (d, ³*J*(C,P)=6.5 Hz, SCH₂), 14.65 ppm (SCH₃); HPLC analysis: retention time=2.011 min, peak area: 98.90%, eluent A: NH₄OAc solution (5 mM), eluent B: CH₃CN, isocratic (1:1) over 30 min with a flow rate of 1 mL min⁻¹ and detection at 254 nm.

4b

Chemical Formula: C₁₀H₁₂F₂NO₅PS

Figure S19. ((3,5-Difluorophenyl) ((2-(hydroxy(methyl)amino)-2-oxoethyl) thio) methyl) phosphonic acid (4b).⁵ White solid; yield: 60%. M. p. 135 °C; ¹H NMR (500.13 MHz, DMSO-d₆): δ =10.01 (br. s, OH), 7.17-7.12 (m, 1H, H_{arom}), 7.09 (d, ³*J*(H,H)=8.3 Hz, 2H, H_{arom}), 4.33 (d, ²*J*(H,P)=19.8 Hz, 0.87H, PCH), 4.25 (d, ²*J*(H,P)=19.8 Hz, 0.13H, PCH), 3.48 (d, ²*J*(H,H)=14.6 Hz, 1H, SCH₂), 3.28 (d, ²*J*(H,H)=14.7 Hz, 1H, SCH₂), 3.09 (s, 0.31H, NCH₃), 3.05 (s, 2.53H, NCH₃), 3.01 ppm (s, 0.16H, NCH₃); ¹³C NMR (125.76 MHz, DMSO-d₆): δ =168.54 (C=O), 161.78 (dd, ¹*J*(C,F)=246.8 Hz, ³*J*(C,F)=13.0 Hz, C_{arom}), 142.47-142.26 (m, C_{arom}), 112.27 (dd, ²*J*(C,F)=25.7 Hz, ⁴*J*(C,F)=³*J*(C,P)=5.7 Hz, C_{arom}), 102.69-102.16 (m, C_{arom}), 45.39 (d, ¹*J*(C,P)=137.5 Hz, PC), 35.69 (NCH₃), 32.04 ppm (d, ³*J*(C,P)=7.8 Hz, SCH₂); HPLC analysis: retention time=1.870 min, peak area: 99.41%, eluent A: NH_4OAc solution (5 mM), eluent B: CH_3CN , isocratic (1:1) over 20 min with a flow rate of 1 mL min⁻¹ and detection at 254 nm.

4b

Chemical Formula: C₁₀H₁₂F₂NO₆P

Figure S20. ((2,4-Difluorphenyl) (2-(hydroxy(methyl)amino)-2-oxoethoxy) methyl) phosphonic acid (5).³ Colorless crystals (740mg, 47%). M. p. 155°C. 1H-NMR(500 MHz, DMSO-d6) = δ (ppm) 3.06 (s, 3H, NCH3), 4.22 (d, *J*=16.1 Hz, 1H, OCH2C=O), 4.35 (d, *J*=16.0 Hz, 1H, OCH2C=O), 4.93 (d, 2*J*H,P=13.5 Hz, 1H, PC*H*), 7.12 (dt, 3*J*H,F=8.6 Hz, 5*J*H,P=2.2 Hz, 1H, C6H3F2: H3), 7.19 (dt, 3*J*H,H=3*J*H,F=9.8 Hz, 5*J*H,P=2.1 Hz, 1H, C6H3F2: H5), 7.54 (ddt, 3*J*H,H=4*J*H,F=8.4 Hz, 4*J*H,F'=6.8 Hz, 4*J*H,P=1.6 Hz, 1H, C6H3F2: H6), 9.82 (s, 1H, OH) 13C-NMR(125 MHz, DMSO-d6) = δ (ppm) 35.58 (NCH3), 66.77 (d, 3*J*C,P=8.8 Hz, OCH2C=O), 70.93 (d, 1*J*C,P=162.9 Hz, PCH), 103.18 (t, 2*J*C,F=2*J*C,F'=26.5 Hz, C6H3F2: C3), 111.20 (d, 2*J*C,F=21.2 Hz, C6H3F2: C5) 120.23 (dd, 2*J*C,F=14.8 Hz, 2*J*C,P=2.5 Hz, C6H3F2: C1), 130.76 (m, C6H3F2: C6), 159.94 (ddd, 1*J*C,F=248.2 Hz, 3*J*C,F=12.5 Hz, 3*J*C,P=6.5 Hz, C6H3F2: C2), 161.14 (ddd, 1*J*C,F=245.3 Hz, 3*J*C,F=12.4 Hz, 5*J*C,P=2.7 Hz, C6H3F2: C4), 169.02 (C=O)Anal. calcd. for C₁₀H₁₂F₂NO₆P: C 38.60, H 3.89, N 4.50, found: C 38.83, H 3.79, N 4.40

References

- Behrendt, C. T.; Kunfermann, A.; Illarionova, V.; Matheeussen, A.; Gräwert, T.; Groll, M.; Rohdich, F.; Bacher, A.; Eisenreich, W.; Fischer, M.; et al. Synthesis and Antiplasmodial Activity of Highly Active Reverse Analogues of the Antimalarial Drug Candidate Fosmidomycin. *ChemMedChem* 2010, 5 (10), 1673–1676.
- Behrendt, C. T.; Kunfermann, A.; Illarionova, V.; Matheeussen, A.; Pein, M. K.; Gräwert, T.; Kaiser, J.; Bacher, A.; Eisenreich, W.; Illarionov, B.; et al. Reverse Fosmidomycin Derivatives against the Antimalarial Drug Target IspC (Dxr). *J. Med. Chem.* 2011, *54* (19), 6796–6802.
- Brücher, K.; Illarionov, B.; Held, J.; Tschan, S.; Kunfermann, A.; Pein, M. K.; Bacher, A.; Gräwert, T.; Maes, L.; Mordmüller, B.; et al. α-Substituted β-Oxa Isosteres of Fosmidomycin: Synthesis and Biological Evaluation. *J. Med. Chem.* 2012, *55* (14), 6566–6575.
- Konzuch, S.; Umeda, T.; Held, J.; Hähn, S.; Brücher, K.; Lienau, C.; Behrendt, C. T.;
 Gräwert, T.; Bacher, A.; Illarionov, B.; et al. Binding Modes of Reverse Fosmidomycin
 Analogs toward the Antimalarial Target IspC. *J. Med. Chem.* 2014, *57* (21), 8827–8838.
- (5) Lienau, C.; Gräwert, T.; Alves Avelar, L. A.; Illarionov, B.; Held, J.; Knaab, T. C.; Lungerich, B.; van Geelen, L.; Meier, D.; Geissler, S.; et al. Novel Reverse Thia-Analogs of Fosmidomycin: Synthesis and Antiplasmodial Activity. *Eur. J. Med. Chem.* 2019, 181.
- Kunfermann, A.; Lienau, C.; Illarionov, B.; Held, J.; Gräwert, T.; Behrendt, C. T.;
 Werner, P.; Hähn, S.; Eisenreich, W.; Riederer, U.; et al. IspC as Target for Antiinfective Drug Discovery: Synthesis, Enantiomeric Separation, and Structural Biology of Fosmidomycin Thia Isosters. *J. Med. Chem.* 2013, *56* (20), 8151–8162.