Supporting Information

Active instrument engagement combined with a real-time database search for improved performance of sample multiplexing workflows

Brian K. Erickson¹, Julian Mintseris¹, Devin K. Schweppe¹, José Navarrete-Perea¹, Alison R.

Erickson¹, David P. Nusinow¹, Joao A. Paulo¹, Steven P. Gygi^{*1}

¹Department of Cell Biology, Harvard Medical School, Boston, Massachusetts, 02115, USA

^{*}Correspondence: S.P.G (<u>Steven_Gygi@hms.harvard.edu</u>)

Table of contents

Supporting Table S1: Comprehensive proteome characterization retains only a portion of the acquired data after filtering.

Supporting Figure 1: Graphical user interface of the RTS client application

Supporting Figure 2: Distribution of time (seconds) between acquisition of RTS triggered MS³ and preceding parent MS².

Supporting Figure 3: Selection of identified fragment ions improves MS³ accuracy and precision.

Supporting Figure 4: RTS-MS³ improves the quantitative performance of lower abundance peptides.

Supporting Table S2: Two-proteome model of interference quantitative protein data*

Supporting Table S3: Quantitative protein data for kinase characterization*

Supporting Table S4: Quantitative protein data for deep-proteome comparison*

* provided in a separate Excel file

	12 fractions x 3 hours per fraction (10-plex)				
	Total	Filtered	% spectra retained		
MS2 spectra	391,927	120,413	31%		
MS3 spectra	391,916	101,041	26%		

Supporting Table S1 - Comprehensive proteome characterization retains only a portion of the acquired data after filtering. A 10-plex sample of human cancer cell lines was analyzed for 36 hours (12 fractions, 3 hours per fraction). Filtering to a false-discovery rate of 1% at the peptide and protein level resulted in the retention of 31% of the acquired MS² spectral data. Additional filtering for quantitative robustness resulted in the omission of nearly 75% of the acquired MS³ spectra.

RTS-MS3 - v0.1.7				-		×
1) Start Online Access Spectra 2) Load Parameters Monitor MS2 After acq Dispose Number of MS3s	Scans Arrived	RTS-MS3 Status Organism Human Mouse Yeast Human-Yeast(trigger yeast) Human-Wouse(trigger human) Custom peptide DB:	RTS parameters Binom. cutoff 55 Min. # AA residues 7 Gene Close-out Close-out (y/n) Close-out (y/n) Search tolerance (NYI) I Search tolerance (NYI) FTMS2 (Th) 0.6 FTMS2 (PPM) 15	MS3 Parameters MS2 Iso. width MS3 AGC MS3 Max Inject. (ms) MS3 HCD CE MS3 OT Res. SPS ion cutoff (% of BP)	1.2 200000 150 555 50000 5	
		Trigger list (1 protein ID per line) [Specify protein inclusion (only p	eptides from specified proteins wil	Bitrigger MS3s):	rowse	

Supporting Figure 1: Graphical user interface of the RTS client application. The interface allows for the selection of parameters related to the real-time search and for controlling the scan specific parameters of the triggered MS³.

Supporting Figure 2: Distribution of time (seconds) between acquisition of RTS triggered MS³ and preceding parent MS². On average, the time between the receipt of an MS² from the instrument and the acquisition of a quantitative MS³ is less than one second (mean = 0.96 s, median = 0.69 s).

and y-type fragment ions with RTS-MS³. A DDA-MS³ approach utilizes the top n (where n = 1 – 20) most abundant fragment ions. In many cases, fragment ions from co-isolated peptides can be included, resulting in a reduction of quantitative accuracy and precision. Alternatively, following confident peptide identification by the RTS-MS³ algorithm, an MS³ spectra with SPS ions chosen only from identified fragments ions is acquired on the instrument. For the peptide 'SFLESVIR', quantified both by DDA-MS³ and RTS-MS³ analyses, the resulting quantification differs substantially. The DDA-MS³ acquired MS3 exhibits measurable interference in the interference-only channel (IOC) and ratio compression due to the inclusion of unassigned ions. However, the RTS-MS³ acquired data, using only precursor specific fragment ions, resulted in an MS³ with nearly zero interference and accurate ratios.

Supporting Figure 4: RTS-MS³ improves the quantitative performance of lower abundance peptides. Analysis of the two-proteome model of interference indicates that lower purity precursors are more routinely interrogated during RTS-MS³ acquistion. For DDA-MS³ analysis, as the purity of the precursors decrease, the amount of interference measured in the interference-only channels (IOC) increases. However, during RTS-MS³ acquisition, the amount of interference remains nearly constant. Furthermore, for all summed signal-to-noise bins, the amount of observed interference was determined to be lower for RTS-MS³ analysis.