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1 MSMC2

MSMC, introduced first in [7] was based on a Hidden Markov Model (HMM) to
model the first coalescence event in any two haplotypes in multiple individuals.
This approach improved resolution in recent time over PSMC, while sacrificing
resolution in ancient times. The newer development MSMC2, first implemented
and used in [4], uses a model that is simpler than the HMM of MSMC, and at
the same time more powerful. The idea is to run a two-haplotype HMM (called
PSMC’) on all pairs in a set of multiple haplotypes. The likelihood of the entire
data is then multiplied as a composite likelihood. The basic PSMC’-HMM uses
only pairs of sequences and hence models only a single coalescence time across
a pair of sequences. PSMC’ is very similar to PSMC ([3]), but more accurately
approximates the coalescent with recombination. More specifically, the SMC’
[5], which underlies PSMC’ is a first-order approximation to the coalescent with
recombination, while the SMC [6], which underlies PSMC, is not.

1.1 PSMC

Here we briefly rederive the central equations of the PSMC [3]. In the following,
we denote the rate of coalescence by λ(t) = (2N(t))−1. The transition proba-
bility is derived from the SMC model by McVean and Cardin [6]. We consider
a given recombination event, which takes place at time u < s in either of the
two branches m = {1, 2}. This recombination event causes a ”floating” branch
which coalesces back onto the other branch at time t. The probability for this
is given by the probability that no coalescence occurred between u and t times
the probability that it coalesces exactly at time t:

q(t|s, u,m) = λ(t) exp

(
−
∫ t

u

λ(ν)dν

)
Θ(t− u) (1)
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where the Heavyside-function is defined as

Θ(t− u) =

{
1 if t > u

0 else
(2)

and reflects the fact that the transition probability to switch to time t is zero
if u > t. We show in the Appendix that this conditional probability is properly
normalized, i.e. that

∫∞
0
q(t|s, u,m) dt = 1 for all given s, u and m.

We need to integrate out the two unknown variables u and m, both with uniform
probability. The probability that no recombination occurred in either of the two
branches of length s is exp(−2rs). Together this yields:

q(t|s) = e−2rsδ(t− s) +
(
1− e−2rs

) 1

2s

∫ s

0

2∑
k=1

q(t|s, u,m)du. (3)

or

q(t|s) = e−2rsδ(t−s)+
(
1− e−2rs

) 1

s

∫ min(s,t)

0

λ(t) exp

(
−
∫ t

u

λ(ν) dν

)
du. (4)

1.2 Including Self-coalescence: PSMC’

Marjoram and Wall [5] realized that there was one particular feature missing
from the original SMC formulation. An important rationale behind equation 1
is that the recombining ”floating” branch will definitely coalesce with the other
of the two branches, therefore definitely changing the tMRCA to the new value
s. However, it is of course possible, that the floating branch will simply coalesce
back onto its own branch, therefore resulting in a recombination event that does
not change the tMRCA.

In order to extend the model to include this self-coalescence, we again consider
the probability that the time switches from s to t, given some recombination
time u. We can distinguish two cases: for t > s, the transition probability is
given by the probability that no coalescence occurred with either of the two
branches < t and no coalescence to the single branch between t and s. For
s < t, the transition probability is given by the probability of coalescing to
the other branch, rather than to the self-branch. Finally, we have a third class
of recombination events which result in t = s, namely if the floating branch
coalesces back onto its own branch before s.

The conditional probability then reads

q(t|s, u,m) = δ(t− s)1

2

(
1− exp

(
−2

∫ t

u

λ(ν) dν

))
+λ(t) exp

(
−
∫ t
u

2λ(ν)dν
)

Θ(t− u) for t ≤ s

λ(t) exp
(
−
∫ s
u

2λ(ν)dν −
∫ t
s
λ(ν) dν

)
for t > s.

(5)
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Again, we show in the Appendix, that this conditional probability is normalized.
The full transition probability then reads

q(t|s) = δ(t−s)
(
e−2rs +

(
1− e−2rs

) 1

2s

∫ t

0

(
1− exp

(
−2

∫ t

u

λ(ν) dν

))
du

)
+

(
1− e−2rs

) 1

s


∫ t

0
λ(t) exp

(
−
∫ t
u

2λ(ν)dν
)
du for t ≤ s∫ s

0
λ(t) exp

(
−
∫ s
u

2λ(ν)dν −
∫ t
s
λ(ν) dν

)
du for t > s.

(6)

The equilibrium probability is

q0(t) = λ(t)L(0; t) (7)

with the integral

L (t1; t2) = exp

(
−
∫ t2

t1

λ(ν) dν

)
. (8)

For later purposes, we introduce some more functions. We rewrite the transition
matrix

q(t|s) = δ(t− s)q1(t) + q2(t|s) (9)

with

q1(t) = e−2rt +
(
1− e−2rt

) 1

2s

∫ t

0

(
1− L(u; t)2

)
du (10)

q2(t|s)|t<s =
(
1− e−2rs

) 1

s
λ(t)

∫ t

0

L(u; t)2du, (11)

q2(t|s)|t>s =
(
1− e−2rs

) 1

s
λ(t)L(s; t)

∫ s

0

L(u; s)2du. (12)

1.2.1 Discrete time intervals

We divide time into a set of nT intervals that span the entire space from 0 to
∞. In practice, as interval boundaries we use the same boundaries as chosen by
PSMC [3], defined as:

Ti = α exp

(
i

NT
log

(
1 +

Tmax

α

)
− 1

)
(13)

Here, α and Tmax are constants that in the case of PSMC were chosen to be
α = 0.1 and tmax = 15. Note that by construction we have T0 = 0 and TNT =
∞.

This patterning sets of with time patterns approximately linearly distributed
through time, and then crosses over to a patterning that is uniformly dis-
tributed in log-space. This ensures higher resolution in recent than in ancient
times.
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For MSMC2, we would like to increase resolution in recent times depending
on the number of individuals, i.e. haplotypes we use. For example, with four
haplotypes, in recent times we have approximately 6 times more recent coales-
cent events to analyse compared to just two haplotypes . This should therefore
allow us to increase resolution in recent times by 6 fold. We generally set the
parameter α in equation 13 to be

α =
0.1

npairs
(14)

where npairs is the number of total haplotype pairs analysed. With phased data,
and nhap haplotypes from the same population, we have

npairs =
nhap(nhap − 1)

2
(15)

but this can be different if multiple populations or unphased data is anlaysed.
For example, if we have four diploid individuals in total, separated evenly into
two populations, then we consider all pairs of haplotypes across the two pop-
ulations, so we have npairs = 16. If eight diploid individuals from the same
population are analysed, and no phasing is available, then we have npairs =
8. In the MSMC2-implementation, this behaviour can be controlled with the
--pairIndices flag (see https://github.com/stschiff/msmc2). The scaling
of α, according to equation 14, is then set automatically by the number of
specified pairs.

1.3 Piecewise constant Population sizes

We then define piecewise constant population sizes which correspond to piece-
wise constant coalescence rates:

λ(t) = λα for Tα ≤ t < Tα+1. (16)

We now can compute the integral L (t1; t2). Let the next lower time boundary
from t1 be β, and the next lower time boundary from t2 be α. We also define
∆α = Tα+1 − Tα:

L (t1; t2) |α6=β = exp

− (Tβ+1 − t1)λβ −
α−1∑
κ=β+1

λκ∆κ − (t2 − Tα)λα

 . (17)

L (t1; t2) |α=β = exp (− (t2 − t1)λα) . (18)

In the following, we denote the next lower index of a given time in the function
parameters, with q0(t;α) meaning that Tα < t < Tα+1:

q0(t;α) = λαL(0; t) (19)

q1(t;α) = e−2rt +
(
1− e−2rt

) 1

2t

∫ t

0

(
1− L(u; t)2

)
du (20)
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For the off-diagonal integrals we first get for t < s:

q2(t;α|s)|t<s =
(
1− e−2rs

) 1

s
λ(t)

∫ t

0

L(u; t)2du (21)

For the case t > s, things depend on the interval in which s lies, denoted by
β:

q2(t;α|s;β)|t>s =
(
1− e−2rs

) 1

s
λ(t)L(s; t)

∫ s

0

L(u; s)2du.,

=
(
1− e−2rs

) 1

s
λαL(s; t)

(
β−1∑
γ=0

∫ Tγ+1

Tγ

L(u; s)2 du+

∫ s

Tβ

L(u; s)2 du

)
(22)

1.4 Integrating over time intervals

For each time interval we now have to integrate t through [Ta;Ta+1]. First the
equilibrium probability:

q0(α) =

∫ Tα+1

Tα

λαL(0; t)dt

=

∫ Tα+1

Tα

λαL (0;Tα) e−(t−Tα)λαdt

= L (0;Tα)
(
1− e−∆αλα

)
(23)

Next, we compute the expected time in interval β:

〈tβ〉 =
1

q0(β)

∫ Tβ+1

Tβ

tq0(t;β)dt =
1

L (0;Tβ) (1− e−∆βλβ )

∫ Tβ+1

Tβ

tλβL(0; t)dt

(24)

This expression for 〈tβ〉 has a numerical instability for λβ . 10−3. We set the
following asymptotic values:

〈tβ〉 =

{
(Tβ + Tβ+1)/ 2 for λβ < 10−3 and Tβ+1 <∞
Tβ + λβ

−1 for λβ < 10−3 and Tβ+1 =∞
(25)

We can now write down equations for the off-diagonal elements of the transition
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matrix, i.e. elements with α 6= β. First the case α < β:

q2(α|β)|α<β =

∫ Tα+1

Tα

q2 (t;α|〈tβ〉;β) |t<sdt

=

∫ Tα+1

Tα

(
1− e−2r〈tβ〉

) 1

〈tβ〉
λα×((

α−1∑
γ=0

L (Tγ+1; t)
2 1

2λγ

(
1− e−2λγ∆γ

))
+

1

2λα

(
1− e−2λα(t−Tα)

))
dt

=
(

1− e−2r〈tβ〉
) 1

〈tβ〉
λα

((
1− e−2∆αλα

) α−1∑
γ=0

(
1

2λγ

(
1− e−2λγ∆γ

)
L (Tγ+1;Tα)

2

)
+

1

2λα

(
∆α −

1

2λα

(
1− e−2∆αλα

)))
(26)

where we have used∫ Tα+1

Tα

e−2(t−Tα)λα dt =
1

2λα

(
1− e−2∆αλα

)
(27)

Analogously we have:

q2(α|β)|α>β =

∫ Tα+1

Tα

q2 (t;α〈tβ〉;β) |t>sdt

=

∫ Tα+1

Tα

(
1− e−2r〈tβ〉

) 1

〈tβ〉
λαL (〈tβ〉; t)×(

β−1∑
γ=0

(
L (Tγ+1; 〈tβ〉)2 1

2λγ

(
1− e−2λγ∆γ

))
+

1

2λβ

(
1− e−2λβ(〈tβ〉−Tβ)

))
dt

=

∫ Tα+1

Tα

L (〈tβ〉; t) dt
(

1− e−2r〈tβ〉
) 1

〈tβ〉
λα×(

β−1∑
γ=0

(
L (Tγ+1; 〈tβ〉)2 1

2λγ

(
1− e−2λγ∆γ

))
+

1

2λβ

(
1− e−2λβ(〈tβ〉−Tβ)

))

= L (〈tβ〉;Tα)
1

λα

(
1− e−∆αλα

) (
1− e−2r〈tβ〉

) 1

〈tβ〉
λα×(

β−1∑
γ=0

(
L (Tγ+1; 〈tβ〉)2 1

2λγ

(
1− e−2λγ∆γ

))
+

1

2λβ

(
1− e−2λβ(〈tβ〉−Tβ)

))
(28)
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where we have used∫ Tα+1

Tα

L(s; t) = L (s;Tα)

∫ Tα+1

Tα

e−(t−Tα)λα dt = L (s;Tα)
1

λα

(
1− e−∆αλα

)
(29)

The complete discrete transition matrix now reads:

q(α|β) = δα,βq1(β) + q2(α|β) (30)

with
q1(β) = 1−

∑
α6=β

q2(α|β) (31)

due to the column normalization of the transition matrix.

1.5 Emission Probability

An observation at location i in the genome for a pair of haplotypes (as in a single
diploid genome), Oi, can be either of Oi = {0, 1, 2}, where 0 denotes missing
data in either of the two haplotypes, 1 denotes a site where both haplotypes
have the same allele (i.e. a homozygous genotype in case of a single diploid
genome), 1 denotes a mismatch between the alleles of the two haplotypes (i.e.
a heterozygote genotype in case of a single diploid genome),

The emission probabilities for exact coalescence times are:

e(0|t) = 1 (32)

e(1|t) = e−2µt (33)

e(2|t) = 1− e(1|t) (34)

For discrete time intervals, we need to integrate over the conditional probability
distribution in each time interval:

e(0|α) = 1

e(1|α) =

∫ Tα+1

Tα
q0(t)e−2µtdt∫ Tα+1

Tα
q0(t) dt

=

∫ Tα+1

Tα
λαL(0; t)e−2µtdt

L (0;Tα) (1− e−∆αλα)

=
λα

(1− e−∆αλα)

∫ Tα+1

Tα

L (Tα; t) e−2µtdt

=
λα

(1− e−∆αλα)

∫ Tα+1

Tα

e−(t−Tα)λαe−2µtdt

=
λαe

Tαλα

(1− e−∆αλα)

∫ Tα+1

Tα

e−(2µ+λα)tdt

=
λαe

Tαλα

(1− e−∆αλα)

e−2µTα

2µ+ λα

(
1− e−(2µ+λα)∆α

)

(35)

7



and of course we have as before:

e(2|α) = 1− e(1|α) (36)

There are special forms of these expressions for two cases. First, if Tα+1 = ∞,
then we have ∆α =∞, and so the expression becomes

e(1|α)|Tα+1=∞ = λα
e−2µTα

2µ+ λα
(37)

Second, there is again a numerical instability for λα . 10−3, in which case the
expression becomes

e(1|α)|λα.10−3 =
1

2∆αµ
e−2µTα

(
1− e−(2µ+λα)∆α

)
(38)

1.6 MSMC2 Hidden Markov Model

We can now define a Hidden Markov Model (see [1] for background reading),
based on PSMC’ using the above defined transition and emission probabilities.
For a given sequence of length L, we define the observations as O1 . . . OL. We
define a forward variable f1(α) . . . fL(α) by the recursion relation:

f1(α) = q0(α)e(O1|α) (39)

fn(α) = e(On|α)
∑
β

q(α|β)fn−1(β) for n = 2 . . . L (40)

Analogously, a ”backwards”-vector b1(α) . . . bL(α) is defined as:

bL(α) = 1 (41)

bn(β) =
∑
α

e(On+1|α)q(α|β)bn+1(α) for n = (L− 1) . . . 1 (42)

In practice, we can speed these algorithms up substantially by precomputing
powers of emission-transition matrices in order to quickly skip over long regions
with missing or homozygous data. This is described in [7].

We now recursively run these two variables over all chromosomes and all pairs of
haplotypes. This makes it different from MSMC, which consisted of one HMM
across all haplotypes simultaneously. Here we run separately over all combina-
tions of pairs. So for example, with two diploid phased human genomes from
a single population, we would run the forward-backward algorithm indepen-
dently (and possibly in parallel) over 132 chromosomal pairs of haplotypes: 6
pairs of haplotypes ((1,2), (1,3), (1,4), (2,3), (2,4), (3,4)) on 22 chromosomes
each.
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In order to estimate parameters of our HMM (i.e. the piecewise constant coales-
cence rates λα and the recombination rate r), we use the Baum-Welch algorithm,
similarly to MSMC.

We first define an objective function

F (θ, θ̄) =
∑
α,β

log(q(α|β; θ̄))Ξ(α|β,On, θ) +
∑
O′,α

log(e(O′|α; θ̄))Γ(O′, α;On, θ)

(43)
with

Ξ(α|β,On, θ) =
∑
n

fn(β)q(α|β)e(On+1|α)bn+1(α), (44)

and
Γ(O′|α, θ) =

∑
n

fn(α)bn(α)e(On|α)I(On = O′) (45)

where On denotes the entire collection of observed data across all chromosomes
and analysed haplotype pairs from all individuals, θ denotes the set of param-
eters used in this iteration of the algorithm, θ̄ denotes free parameters to be
varied in the maximization step of the algorithm (see below). The first term
in equation 43 sums up the evidence from the observed transitions along the
data, and the second sums up the evidence from the observed emissions. Both
evidence matrices depend on the data and on the current set of parameters θ.
Matrix Ξ is a square-matrix with as many rows and columns as there are hidden
states. Matrix Γ has as many rows as there are different symbols in the alphabet
(here 3), and as many columns as there are hidden states.

The fact that all haplotypes pairs from all analysed individuals and chromosomes
are summed up into one objective function corresponds to a composite-likelihood
across all individuals. We essentially ignore correlations of hidden states across
different pairs of haplotypes, which affects the likelihood itself, but turns out in
practice to yield unbiased parameter estimates.

The sum runs in principle over all sites. In practice, we sparsen this sum by
selecting an equally spaced set of sites. By default, the distance between each
counted site is 1000, but this can be controlled via the parameter --hmmStrideWidth.

The maximization step of the Baum-Welch algorithm then re-estimates the pa-
rameters by maximizing the objective function:

θ̂ = arg max
θ̄

F (θ, θ̄) (46)

The Baum-Welch algorithm consists of iterations of i) the forward-backward
algorithm to compute the objective function, and ii) a maximization step to
estimate new parameters. In the next iteration, the forward-backward algorithm
is then run with the new parameters, and so forth.

After about 20 iterations, we find that the likelihood plateaus for most MSMC
runs.
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Note that due to the sparsening using --hmmStrideWidth as explained above,
it can principle happen that the likelihood does not anymore strictly increase
from iteration to iteration. If that is observed, we recommend to decrease the
stride width. But in practice we never observe this within 20 iterations.

1.7 Combining within- and cross-coalescence rates esti-
mates

While MSMC can estimate three coalescence rate functions simultaneously when
run over genomes from two populations, MSMC2 runs over pairs of populations
separately. Each run then uses a slightly different time scaling (due to different
heterozygosity, i.e. allele mismatch, estimates within and across populations).
For MSMC-IM, we however need three estimates of coalescence rates defined
along the same time intervals.

We supply a simple python script, called combineCrossCoal.py, which reads in
three result files from MSMC2, each from one pair of populations, and uses inter-
polation of the resulting piecewise constant coalescence rate estimates to merge
these datasets. Details about this can be found in the accompanying README
of the msmc-tools repository on github.com/stschiff/msmc-tools.

1.8 Appendix: Normalizations

In the following derivations, we define L(t) to be an antiderivative of λ(t), i.e.
L′(t) = λ(t). We will also make use of the substitution rule∫ b

a

g′(x)f(g(x))dx =

∫ g(b)

g(a)

f(z) dz. (47)

1.8.1 PSMC conditional transition probability

We have

q(t|s, u,m) = λ(t) exp

(
−
∫ t

u

λ(v) dv

)
Θ(t− u). (48)
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We need to show that the PSMC conditional probability is normalized:∫ ∞
0

q(t|s, u,m) dt =

∫ ∞
0

λ(t) exp

(
−
∫ t

u

λ(ν) dν

)
Θ(t− u)dt

=

∫ ∞
u

λ(t) exp

(
−
∫ t

u

λ(ν) dν

)
=

∫ ∞
u

λ(t) exp

(
−
∫ t

u

λ(ν) dv

)
=

∫ ∞
u

L′(t)e−(L(t)−L(u) = eL(u)

∫ L(∞)

L(u)

e−z dz = eL(u)
(
e−L(u) − e−L(∞)

)
= 1− exp

(
−
∫ ∞
u

λ(ν) dν

)
= 1 �

(49)

1.8.2 PSMC’ conditional transition probability

We have

q(t|s, u,m) = δ(t− s)1

2

(
1− exp

(
−2

∫ t

u

λ(ν) dν

))
+λ(t) exp

(
−
∫ t
u

2λ(ν)dv
)

Θ(t− u) for t ≤ s

λ(t) exp
(
−
∫ s
u

2λ(ν)dν −
∫ t
s
λ(ν) dν

)
for t > s.

(50)

We again need to compute the integral
∫∞

0
q(t|s, u,m) dt. We divide the integral
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into three parts:∫ ∞
0

q(t|s, u,m) dt =

∫ ∞
0

δ(t− s)1

2

(
1− exp

(
−2

∫ t

u

λ(v) dv

))
dt+∫ s

u

λ(t) exp

(
−
∫ t

u

2λ(v)dv

)
dt+∫ ∞

s

λ(t) exp

(
−
∫ s

u

2λ(v)dv −
∫ t

s

λ(v) dv

)
dt

=
1

2

(
1− e−2(L(s)−L(u))

)
+

∫ s

u

L′(t)e−2(L(t)−L(u))dt+

e−2(L(s)−L(u))

∫ ∞
s

L′(t)e−(L(t)−L(s))dt

=
1

2

(
1− e−2(L(s)−L(u))

)
+ e2L(u)

∫ L(s)

L(u)

e−2z dz+

e−2(L(s)−L(u))eL(s)

∫ L(∞)

L(s)

e−z dz

=
1

2

(
1− e−2(L(s)−L(u))

)
+ e2L(u) 1

2

(
e−2L(u) − e−2L(s)

)
+

e−2(L(s)−L(u))eL(s)
(
e−L(s) − e−L(∞)

)
=

1

2

(
1− e−2(L(s)−L(u))

)
+

1

2

(
1− e2(L(u)−L(s))

)
+ e−2(L(s)−L(u))

(
1− eL(s)−L(∞)

)
= 1− e−2(L(s)−L(u)) + e−2(L(s)−L(u))

= 1 �
(51)

2 MSMC-IM model

2.1 Continuous IM model

Our model is based on Hobolth et al. 2011 [2], which demonstrates that the
time to the most recent common ancestor (tMRCA) of two lineages sampled
from a pair of populations can be exactly computed from a matrix exponential.
Hobolth et al. 2011 [2] formulate the IM model as a continuous time Markov
chain.

Here we build on that work and define a two-island model by time-dependent
population sizes N1(t) and N2(t) and a time-dependent continuous symmetric
migration rate m(t) between the two populations, discarding the clean split
concept in Hobolth et al. but describe the population separation as a continuous
process.

The state space of our Markov chain matches the state space from the model in
Hobolth et al. for times more recent than the split time. There are five possible
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states of uncoalesced and coalesced lineages: S11 denotes two uncoalesced lin-
eages residing in population 1; S12 denotes the state where one lineage resides in
population 1 and the other in population 2; S22 denotes both lineages residing
in population 2; S1 describes the state where the two lineages have coalesced,
and the single remaining lineage resides in population 1; S2 similarly, where the
single remaining lineage resides in population 2.

The state of the two lineages composes a series of states in a Markov chain.
At time t = 0 (the present-day generation), the state of two randomly sampled
uncoalesced lineages starts from either of the following three states S11, S12,
S22, and at any later time end up in any of five states S11, S12, S22, S1 or
S2.

We describe this evolution of the state space via a probability vector xn(t)
denoting the state probability to be in state n at time t, with time counting
backwards in time. We summarise that vector in bold font as x(t).

We summarise the transition rate between states by a matrix Q(t), where rows
indicating the state at some time t, and columns the state one generation later.
Then the matrix Q can be expressed in terms of a symmetric migration rate
and effective population sizes (very similar to [2]):

Q =

S11 S12 S22 S1 S2


S11 · 2m(t) 0 1
2N1(t) 0

S12 m(t) · m(t) 0 0
S22 0 2m(t) · 0 1

2N2(t)

S1 0 0 0 · m(t)
S2 0 0 0 m(t) ·

where N1(t), N2(t) and m(t) are all time-dependent. Diagonal elements are
set such that rows sum up to zero. The state probability vector in the next
generation is then the product of x(t) and Q:

x(t+ 1) = x(t) · (1 + Q), (52)

where 1 is a diagonal unit matrix. For n generations, we get

x(t+ n) = x(t) · (1 + Q)n. (53)

We now switch to continuous time, and note that for a small time interval ∆t
we can write:

x(t0 + ∆t) = x(t0) · (1 + ∆tQ) (54)

Longer time segments t can then be divided into n small time intervals, and we
assume Q is constant in each interval and independent from matrices in other
intervals.

x(t0 + t) = x(t0) ·
(
1 +

t

n
Q

)n
(55)
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In the limit of n→∞, the equation above becomes a matrix exponential:

x(t0 + t) = x(t0) · eQt (56)

When t0 = 0, we then have:

x(t) = x(0) · eQt (57)

We can use this general state propagation equation to compute the conditional
probability of ending up in a specific final state sf after time t given a specific
starting state s0. For example, the probability to end in state sf = S11 when
starting in state s0 = S12 would be:

G(sf = S11, t|s0 = S12) =




0
1
0
0
0

 · eQt

S11

(58)

where we have followed the convention introduced above that the order of states
in vector notation is S11, S12, S22, S1, S2.

We can now use this to write down the probability of a coalescence event of the
two lineages at time t, starting in on of the starting states s0 ∈ {S11, S12, S22}:

PIM(t|s0, N1, N2,m) = G(S11, t|s0) · 1/2N1 +G(S22, t|s0) · 1/2N2 (59)

because in order for a coalescence event to occur exactly at time t, we require
that i) no coalescence has occurred before (so we exclude final states S1 and
S2), ii) both lineages are in the same population (so we exclude S12).

2.2 Comparing with MSMC outputs

MSMC (here as a term used independently from a specific implementation like
MSMC or MSMC2) estimates time-dependent effective coalescent rates λij be-
tween a pair of lineages i and j. From these rates, we can compute the proba-
bility density for coalescence events:

PMSMC(t|s0 = Sij) = λij(t) · e−
∫ t
0
λij(t

′)dt′ (60)

The basic idea behind MSMC-IM is to fit the model from equation 59 to the
observed distribution from equation 60 to estimate parameters N1(t), N2(t) and
m(t).
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2.3 Model Fitting

So far we haven’t specified the form of the time-dependent parameters N1(t),
N2(t) and m(t). Since MSMC uses piecewise constant functions for the coa-
lescence rates, we decided to use exactly the same method in MSMC-IM, and
impose a piece-wise constant structure on our model parameters with the same
time patterning as in MSMC.

We denote the time boundaries by ti, with i = 0 . . . nT , where nT is the number
of time segments, and t0 = 0 is the left-most time-boundary, and tnT = ∞ is
the rightmost time segment. Note that in practice we set tnT = 4tnT−1. We
can then define the following χ2-statistic across all time-segments to measure
the fit deviation between the coalescent distributions from MSMC and the IM
model:

χ̃2 =

nT∑
i=0

∑
x0∈{S11,S12,S22}

(PIM (ti|s0)−PMSMC(ti|s0))2

PMSMC(ti|s0)
(61)

For brevity we omit the dependency on model parameters N1(t), N2(t) and
m(t) here. Minimization of this χ2-statistic is numerically implemented via
Powell’s method (using the function minimize(method=’Powell’) from the
scipy-package in python (www.scipy.org)).

2.3.1 Regularisation

We need to estimate N1, N2 and m for each time interval, which for the de-
fault MSMC time patterning means 96 parameters in total. It turns out that
this model is overspecified for times at which the two populations have almost
completely merged (as for example reflected by M(t) approaching 1, see main
text). To avoid over-fitting, we add two regularisation terms to the above χ2-
statistic:

χ̃2 =

nT∑
i=1

∑
s0∈{S11,S12,S22}

(PIM (ti|s0)−PMSMC(ti|s0))2

PMSMC(ti|s0)

+ β1

∫ ∞
0

m(t)dt+ β2

nT∑
i=0

(
N1(ti)−N2(ti)

N1(ti) +N2(ti)

)2

(62)

The regularization terms β1 and β2 are tunable, and in practice we set β1 to
1e-8 and β2 to 1e-6 by default. This β1 value was chosen to be low enough to
not affect migration rate estimates but avoid over-estimation, and the β2 value
was chosen to be low enough to not affect population size estimates at time
substantially before the split time, but strong enough to ”pull together” the
two population sizes for times very deep in the past, where all lineages have
effectively merged into one population.
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2.3.2 Hazard function for estimating coalescence rates from IM model

While the primary variable to use for comparison between model and data is the
probability density function of pairwise coalescence times (eqs. 60 and 59), we
can also compute the Hazard function from the model, to be directly compared
to the pairwise coalescence rates output by MSMC: as following equation:

λIMij (t) =
P(t|s0 = Sij , N1, N2,m)

1−
∫ t

0
P(t|s0 = Sij , N1, N2,m)

(63)

This expression becomes numerically unstable for very ancient times, for which
the denominator becomes too small.

2.3.3 Internal auto-Correction and parameter constraints

In some cases, MSMC coalescence rate estimates in the most ancient few time
intervals are noisy, which can affect migration rate estimates in these windows
and lead to artifacts. We therefore implemented an automatic check of the
rate estimates in the most ancient time intervals before fitting with MSMC-
IM, and auto-correct these values. Specifically, we check in all time segments
that correspond to the last two free parameters (with the default patterning
of 1*2+25*1+1*2+1*3, as in MSMC2, the last five time intervals would be
checked). In these intervals, since we do not genuinely expect estimates to
fluctuate much at this end of the analysis time window, we require estimates
to fall within a range of [a/1.5, a × 1.5], where a is the value of the third-last
free parameter in MSMC, so the time segment just before the segments that
are checked. If this condition is not fulfilled, we correct the estimates in the
checked time intervals to a. This autocorrection is independently performed for
each pair of haplotypes analysed (so for example we independently check λ11,
λ12 and λ22 independently).

We also constrain parameters N1(t) and N2(t) to be below 107 and migration
rates to be below 100, to avoid overflow issues during the fit. Furthermore, in
MSMC-IM’s automatic output report, we do not report estimated migration
rates for times more ancient than after M(t) has reached 0.999, because of the
very little data that is left to infer migration rates when all but 0.1% of lineages
have effectively already merged in one ancestral population.

2.3.4 Interpreting Population size estimates

In MSMC-IM, we have two populations that never merge into one ancestral
population. Instead, continuous migration is used to model movement of lin-
eages across population boundaries, and hence also coalescence events between
lineages sampled across populations.

The degree to which lineages get mixed, looking back in time, can be quantified
by the cumulative migration density, as defined in Methods as

M(t) = 1− e−
∫ t
0
m(t′)dt′ (64)
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In recent times, where M(t)� 1, population sizes parameters N1(t) and N2(t)
correspond closely to the inverse coalescence rates 1/λ11(t) and 1/λ11(t) esti-
mated by MSMC. However, as M(t) approaches 1, the interpretation of these
parameters differs from what one would normally call an ”ancestral population
size” in a clean-split model: In our model, we maintain two separate popula-
tions, so that with probability 1/2, two lineages will be in separate populations
and cannot coalesce. Therefore, the effective coalescence rates in MSMC-IM for
times at which M(t)→ 1, is half the rate expected for an ancestral population
with size N1(t) or N2(t).

Therefore, for M(t) → 1, a meaningful estimate for the effective ”ancestral”
population size would be 2N1(t) ≈ 2N2(t). We therefore found it useful to
report ”corrected” population size estimates defined as

N′1(t) = (1−M(t))N1(t) +M(t)2N1(t)

N′2(t) = (1−M(t))N2(t) +M(t)2N2(t)
(65)
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