Cell Reports, Volume 30

Supplemental Information

Family-wide Structural and Biophysical

Analysis of Binding Interactions

among Non-clustered δ -Protocadherins

Oliver J. Harrison, Julia Brasch, Phinikoula S. Katsamba, Goran Ahlsen, Alex J. Noble, Hanbin Dan, Rosemary V. Sampogna, Clinton S. Potter, Bridget Carragher, Barry Honig, and Lawrence Shapiro

Figure S1: SPR analysis of interactions between δ and clustered protocadherin *trans-binding* fragments and domain-dependence of homophilic δ pcdh homophilic binding, Related to Figure 1.

(A) Assessment of heterophilic binding of EC1-4 fragments of δ pcdhs-1, -7, -10 and -18 to surfaces tethered with clustered pcdh fragments α 7 EC1-5, β 6 EC1-4, γ A8 EC1-4, γ B2 EC1-5 and γ C4 EC1-4. Each δ protocadherin was tested at three analyte concentrations (27, 9, and 3 μ M). (B) Homophilic binding of the respective clustered pcdhs α 7 EC1-5, β 6 EC1-4, γ A8 EC1-4, γ B2 EC1-5 and γ C4 over surfaces tethered with biotinylated forms of the same proteins. Each clustered pcdh was tested at six concentrations, 24, 8, 2.67, .89, 0.3 and 0.1 μ M. (C) Binding of full ectodomains, deletion fragments, and point mutants of pcdh1 (δ 1) and pcdh10 (δ 2) over the respective full ectodomain surfaces. Analyte concentrations as in panel A.

Figure S2

Figure S2: Analysis of δ protocadherin oligomerization state by SEC-MALS and cell aggregation, Related to Table 1.

Purified extracellular regions of δ protocadherins analyzed using size exclusion chromatography (SEC) with in-line multi-angle light scattering (MALS). (A) Plots showing protein peaks as refractive index changes (RI, relative scale) against elution volume (ml). Each protocadherin migrated as a single peak. Apparent molecular masses calculated from light scattering analysis are plotted in blue at the peak positions; monomeric molecular masses determined by mass-spectrometry are indicated by a dotted line. All samples were loaded at 24µM concentration. Void volume of the SEC column is ~8ml. (B) SEC-MALS analyses of pairwise 1:1 mixtures of membrane-proximal domain fragments of pcdhs-1, -8 and -10 to test potential heterophilic interactions. Loading concentration 100µM for each protein. (C) Aggregation of K562 cells transiently transfected with full-length human pcdh-mCherry constructs or mCherry alone, visualized by fluorescence microscopy.

Figure S3

Figure S3: Variations in overall *trans* dimer structure between δ protocadherin subtypes, Related to Figures 2 and 3.

(A) *Trans* dimer topologies of pcdhs-1, -10, -17, -18 and -19 (left to right) depicted as ribbons with molecular surfaces. Residues with at least 5% of their accessible surface area buried in the dimer are highlighted in magenta. Dashed boxes delimit EC1:4 and EC2:3 interface regions expanded in Figure 3. Arrow indicates regions of lesser contact in pcdh1. Half of each 2-fold symmetric dimer is shown. (B) Ca traces of *trans* dimers superposed over one protomer (background, gray traces) to show differences in orientation of the partner protomer (colored according to legend). (C) Individual protomers of the same set of structures as panel (B), superposed over domain EC2 to show differences in interdomain angles. (D) Molecular surfaces of single protomers (gray) with *trans* dimer interface residues highlighted in cyan (<5% buried) and blue (>5% buried). (E) RMSD values between Ca atoms of superposed whole *trans* dimer structures. Number of aligned Ca atoms indicated in parentheses.

Figure S4: Divergent pcdh17 dimer and variations in interface loop conformations, Related to Figures 2 and 3. (A) Ribbon view of two putative *trans* dimers of pcdh17 EC1-4 in the crystallographic asymmetric unit. Asterisk indicates a close non-*trans* dimer lattice contact between EC4 domains. Spheres: calcium ions. (B) Residue-level view of pcdh17 *trans* dimer interface regions EC1:EC4 (top) and EC2:EC3 (bottom). Side chains of interfacial residues (>5% buried) are shown as sticks; those conserved among δ 2 pcdhs are highlighted gold. Leu359 (magenta, equivalent to Leu359 in pcdh10) is solvent exposed. Spheres: calcium ions. (C) Carbon α traces of superposed EC domains from *trans* dimer structures of pcdhs -1, -10, -17, -18, and -19. Partner protomer in a representative dimer structure (pcdh10) is shown as a molecular surface (green). (D) Superpositions of domains EC2 (left panel) or EC3 (right panel) of monomer and dimer crystal forms of pcdh10, depicted as in panel C. Dashed lines indicate representative shifts.

Figure S5

				А	В	D-E loop	E	G	linker
				121	133				214 215
	Pcdh1	¹⁰⁴⁻ I N D N T	PNFASP	VITLAIP	ENTNIGSLF PIP-LAS	165-A E D Q E - E K	QPQLI	209-L R V T V	L D
	Pcdh7	106-I N D N T	PTFPSP	VLTLTVE	ENRPVGTLYLLP-TAT	219-A D T P D G E K	QPQLI	264-L R V L I	T D
	Pcdh9	112-T N D N A	PMFPSP	VINISIP	ENTLINSRFPIP-SAT ·	170-V E T P E G E K	W P Q L I …	215-L Q V T V	S D
	Pcdh11	109-I N D N A	PLFPAT	VINISIP	ENSAINSKY <mark>T</mark> LP-AAV	167-IETPEGDK	MPQLI	212-L Q V S V	T D
ECO	Pcdh20	142-I N D N A	PQFPVS	QISVWVP	ENAPVNTRLAIEHPAV	201-EENENGER	TPYLI	246-L T I G I	S D
EUZ				115	1117 1122 1123 1124 1124 1127 1128	157 161	163 165		225
EUZ	Pcdh10	98-INDNP	PSFPEP	DLTVEI <mark>S</mark>	а г р д <mark>153 113</mark> а 154 155 113 а 154 а т р д т т р д т т а 13 а 154 а т р д т т а 13 а 154 а т р д т т а 13 а 154 а т р д т т а 13 а 154 а т р д т т а 13 а 154 а т р д т т а 13 а 154 а т р д т а 157 а т а 158	155-Q T Q G D G N R	E A E L V	219-L T I R V	п 225
ECZ	Pcdh10 Pcdh8	98-INDNP 99-VNDHA	P S F P E P P R F P R A	DLTVEIS QIPVEVS	A F A F A F A F A F A F A F A F A F A F	1 55-Q T Q G D G N R 159-Q T R A D G A Q	FAELV FAELV	219-L T I R V 202-L S V R V	с 1 225
ECZ	Pcdh10 Pcdh8 Pcdh12	98-INDNP 99-VNDHA 99-INDHQ	P S F P E P P R F P R A P R F P K G	D L T V E I S Q I P V E V S E Q E L E I S	E S A S L R T R I P L D - R A S L R T R S A S L R T R I P L D - R A S L R T R I P L D - R A S L R T R I P L D - R A S L R T R I P L D - R A S L R T R I P L D - R A S L R T R I P L D - R A S L R T R I P L D - R A S L R T R I P L D - R A S L R T R I P L D - R A S L R T R I P L D - R A S L R T R I P L D - R A S L R T R I P L D - R A S L R T R I P L D - R A S L R T R I P L D - R A S L R T R I P L D - R A S L R T R I P L D - R A S L R T R I P L D - R A S L R T R I P L D - R A S L R T R I P L D - R A S L R T R T R T R T R T R T R T R T R T R	1 55-Q T Q G D G N R 159-Q T R A D G A Q 156-I V <u>G</u> P D E T K	HAELI ADLV FAELV	219-L T I R V 202-L S V R V 201-V K V N V	D D 225
ECZ	Pcdh10 Pcdh8 Pcdh12 Pcdh17	98-I N D N P 99-V N D H A 99-I N D H Q 108-I N D N A	P S F P E P P R F P R A P R F P K G P S F S S D	D L T V E I S Q I P V E V S E Q E L E I S Q I E M D I S	E S A S L S T T R S A F C S A	L55-Q T Q G D G N R 159-Q T R A D G A Q 159-Q T R A D G A Q 159-T R A D G R K 167-K S R G D G T K	F A E L V C A D L V H A E L I F P E L V	219-L T I R V 202-L S V R V 201-V K V N V 212-I N V K V	D D 225
ECZ	Pcdh10 Pcdh8 Pcdh12 Pcdh17 Pcdh18	98-I N D N P 99-V N D H A 99-I N D H Q 108-I N D N A 103-I N D N S	P S F P E P P R F P R A P R F P K G P S F S S D P Q F S R S	D L T V E I S Q I P V E V S E Q E L E I S Q I E M D I S L I P I E I S	E S A A V G T R I P L D - S A F E S A A V G T R F P L D - S A F E S A A V G T R F P L D - S A F	LC C C C C C C C C C C C C C C C C C C	X X	219-L T I R V 202-L S V R V 201-V K V N V 212-I N V K V 205-L K I S I	L D 1 232 1 J 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

Figure S5: Multiple sequence alignment of human δ protocadherin adhesive domains EC1-4, Related to Figure 3.

Aligned amino acid sequences are separated into $\delta 1$ and $\delta 2$ subfamilies (top and bottom); secondary structure derives from the pcdh1 structure. Interfacial residue positions from *trans* dimer structures of pcdh1 ($\delta 1$) or pcdh10 ($\delta 2$) are shaded in all sequences according to amino acid type (gray:nonpolar/aromatic, green:polar, blue:basic, red:acidic, unshaded:glycine) and numbered in gold (conserved in character within subfamily) or purple (non-conserved). Interface numbering refers to pcdh1(top) and pcdh10 (bottom). Interface residues that coordinate Calcium are numbered in green. Pcdh8, which may dimerize weakly, was excluded from $\delta 2$ conservation determination. Omitted non-interface regions are indicated by "..." in alignment and by "-//-" in secondary structure.

Figure S6: Sequence Logo plot of aligned putative cis dimerization regions, Related to Figure 5.

Amino acid sequences of EC5-6 regions of mouse β , γA , and γB clustered protocadherins; EC5-6 regions of human $\delta 2$ protocadherins; and EC6-7 regions of human $\delta 1$ protocadherins were each aligned to produce Logo plots showing conservation at each residue position. Residue numbering on x axis is based on mouse pcdh $\gamma B7$ (top plots), human pcdh10 (middle plots), and human pcdh1 (bottom plots); y axis shows estimated information content in bits. Alignments for each domain are displayed separately. Residues whose side chains are buried (>20% ASA) in the *cis* dimer interface of $\gamma B7$ (PDB:5v5x) and the equivalent positions in δ protocadherins are highlighted with arrows and yellow shading. Calcium co-ordinating residues, which are highly conserved, are marked with green circles above the plots.

	Pedh1 EC1-4 human	Pcdh10 EC1-4 <i>Monomer form</i> human	Pcdh10 EC1-4 <i>Dimer form</i> human	Pcdh17 EC1-4 human	Pcdh18 EC1-4 human	Pcdh19 EC1-4 human	Pedh8 EC5-6 human	Pcdh8.1 EC1-6 Xenopus		Pcdh10 EC1-6 human		
DATA COLLECTION												
Space group	P6122	P2 ₁ 2 ₁ 2 ₁	3	3	C2	P3221	P21	P21		P41212		
Cell dimensions: a, b, c (Å)	148.6, 148.6, 149.9	26.4, 78.9, 238.9	346.6, 73.2, 246.33	214.6, 105.8, 101.4	127.0, 177.0, 71.9	109.0, 109.0, 309.7	41.7, 29.5, 92.4	146.7, 42.4, 167.5		84.1, 84.1, 543	6	
α, β, γ (°)	90, 90, 120	90, 90, 90	90, 132.1, 90	90, 101.0, 90	90, 101.4, 90	90, 90, 120	90, 98.5, 90	90, 110.6, 90		90, 90, 90		
								Cinhawical ²	Ellinsoidal	Subarical		llincoic
Resolution (Å)	40-3.2 (3.42-3.20)	40-2.3 (2.38-2.30)	40-3.6 (3.71-3.60)	40-3.7 (4.0-3.7)	40-2.8 (2.92-2.80)	40-3.5 (3.71-3.5)	40-2.9 (3.07-2.9)	40-2.0 (2.03-2.00)	40-3/3/2 (2.14-2.00)	40-3.3 (3.48-3	30) 40-4.2/4	2/3.3 (
Russie	0.12 (1.685)	0.10 (0.89)	0.123 (4.649)	0.211 (0.735)	0.083 (1.24)	0.14 (2.5)	0.13 (0.57)	0.13 (5.28)	0.77 (0.56)	0.139 (2	475) 0.093	
Rucas	0.12 (1.73)	0.11 (1.00)	0.146 (5.476)	0.248 (0.866)	0.094 (1.41)	0.15 (2.6)	0.16 (0.72)	0.153 (6.03)	0.87 (0.62)	0.145 (2.	570) 0.097	
Reim	0.028 (0.394)	0.044 (0.44)	0.077 (2.871)	0.128 (0.451)	0.042 (0.64)	0.047 (0.814)	0.08 (0.44)	0.071 (2.87)	0.04 (0.27)	0.040 (0.	687) 0.028	
CC1/2	1.0 (0.81)	1.0 (0.83)	1.0 (0.29)	1.0 (0.71)	1.0 (0.83)	1.0 (0.72)	(17.0) 0.99	1.00 (0.37)	1.00 (0.88)	1.0 ((1.95) 1.00	
I/6I	15.9 (2.1)	11.0 (1.6)	5.4 (0.4)	5.4 (1.6)	10.2 (1.4)	9.4 (1.1)	8.2 (1.7)	5.8 (0.3)	12.5 (3.0)	10.7	(1.6) 16.5	
Unique reflections	16 684 (2 938)	23 366 (2 283)	52 814 (4 543)	22 957 (4 468)	38 201 (4 506)	27770 (4378)	5 168 (803)	128 295 (6 132)	59 482 (2 974)	30 910 (4	386) 20 058	
Multiplicity	18.3 (19.1)	6.1 (4.7)	3.4 (3.6)	3.5 (3.4)	4.8 (4.6)	9.8 (10.4)	3.3 (2.3)	4.4 (4.1)	4.5 (4.9)	12.9	3.7) 12.4	
Completeness (%)	100.0 (100.0)	(98.8) 7.66	98.2 (98.3)	96.7 (92.1)	97.2 (91.4)	(6.66) (6.69)	(1.69) 0.99.6	97.5 (95.1)	45.1 (12.3)	5) 2.66	9.5) 64.7	
Ellipsoid completeness (%)	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	89.4 (88.8)	n/a	92.1	
REFINEMENT												
Resolution (Å)	20-3.2	20-2.3	20-3.6	20-3.7	20-2.8	20-3.5	20-2.9		20-3.0/3.0/2.0 ³		20-4.2/4	2/3.3 ³
Unique reflections	16 561	23 218	50 085	23 284	37 912	27510	5 138		59 447		19771	
Molecules per a.s.u.	1	1	5	4	2	3	1		2		1	
Rwark Rfree	0.2255/0.2659	0.1943/0.2333	0.2737/0.2899	0.2508/0.2948	0.2480/0.2692	0.2581/0.2874	0.2250/0.2571		0.253/0.297		0.2410/0	2899
No. atoms												
Protein	3 365	3 282	16 399	12 832	6 742	9 7 6 3	1 670		9 847		5006	
Ligand/ion	63	57	510	499	262	172	75		184		137	
Water	15	105	23	9	50	11	5		138		17	
B-Jactors												
Protein	134.22	57.7	233.3	119.6	110.5	174.0	47.8		69.0		94.3	
Ligand/ion	181.13	64.6	245.0	152.9	142.0	229.8	62.3		73.2		117.5	
Water	104.53	50.51	225.1	89.3	98.9	130.0	42.0		37.8		36.9	
R.m.s deviations												
Bond lengths (Å)	0.0086	0.0130	0.0131	0.0079	0.0160	0.0046	0.0064		0.0057		0.0102	
Bond angles (°)	0.552	0.866	0.789	0.818	0.767	0.798	0.811		0.814		0.617	
Ramachandran												
Favored (%)	96.8	96.2	96.7	93.5	94.6	94.8	97.3		95.9		95.3	
Allowed (%)	3.2	3.8	3.3	6.5	5.4	5.2	2.7		4.1		4.7	
Outliers (%)	0	0	0	0	0	0	0		0		0	
PDB Accession	6VFP	6VFQ	6VFW	6VFT	6VFR	6VFU	6VFV		eVGI		6VG4	

Table S1: Crystallographic data collection and refinement statistics, Related to Figures 2 and 5

-i ci m

Values in parentheses refer to the highest resolution shell Data for pcdh8.1 and pcdh 10 EC1-6 were processed using truncation (Staraniso server) to exclude weak reflections due to diffraction anisotropy; additional values for spherical processing are shown Ellipsoidally truncated data were used in refinement

Table S1

Table S2: Dimer buried surface areas (BSA), Related to Figure 2

	BSA dimer (Ų)	Hydrophobic BSA	BSA _{EC1:4}	BSA _{EC2:3}	BSA _{EC1 FG} loop:EC2
Pcdh-1	2986	1859 (62%) ²	2238 (75%)	652 (22%)	96 (3%)
Pcdh-10	3458 (A:C) ¹	2334 (68%)	1325 (38%)	2133 (62%)	0 (0%)
	3297 (B:D)	2236 (68%)	1137 (34%)	2161 (66%)	0 (0%)
	3529 (E:E)	2307 (65%)	1479 (42%)	2050 (58%)	0 (0%)
Pcdh-17	2024 (A:D)	1227 (61%)	932 (46%)	1011 (50%)	81 (4%)
	2071 (B:C)	1288 (62%)	937 (45%)	979 (47%)	155 (8%)
Pcdh-18	3719	2518 (69%)	2136 (57%)	1534 (42%)	49 (1%)
Pcdh-19	4176 (A:C)	3071 (74%)	1994 (48%)	2120 (51%)	62 (1%)
	4169 (B:B)	2933 (70%)	1918 (46%)	2252 (54%)	0 (0%)

Values for dimers in crystallographic asymmetric unit are listed separately, indicated by chain IDs
 Percentage of total dimer BSA

Tomogram	Tilt range	Nominal Defocus [µm]	Pixel size [Å]	EMDB	Description of biological content
Pcdh1 #1	-39.9-42.9°	-4.02	2.7975	21188	δ1 Pcdh1 EC1-7 ectodomains accumulate
Pcdh1 #2	-30.8-52.8°	-4.00	1.83586	21189	aggregated liposomes. Note apparent midlines and irregular distribution in top
Pcdh1 #3	-46.2-44.0°	-4.00	1.83586	21190	views (between vertically stacked liposomes).
Pcdh10 #1	-46.0-54.0°	-3.54	1.83586	21191	δ2 Pcdh10 EC1-6 ectodomains accumulate
Pcdh10 #2	-46.0-58.0°	-3.45	1.83586	21192	at flattened junctional regions between aggregated liposomes. Note irregular distribution in top views and apparent
Pcdh10 #3	-52.0-50.0°	-3.44	1.83586	21193	disorder in junction side views

Table S3: Tomography data collection and deposition information, Related to Figure 6.