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SUMMARY

The immune composition of the tumor microenviron-
ment influences response and resistance to immuno-
therapies. While numerous studies have identified
somatic correlates of immune infiltration, germline
features that associate with immune infiltrates in
cancers remain incompletely characterized. We
analyze seven million autosomal germline variants
in the TCGA cohort and test for association with es-
tablished immune-related phenotypes that describe
the tumor immune microenvironment. We identify
one SNP associated with the amount of infiltrating
follicular helper T cells; 23 candidate genes, some
of which are involved in cytokine-mediated signaling
and others containing cancer-risk SNPs; and net-
works with genes that are part of the DNA repair
and transcription elongation pathways. In addition,
we find a positive association between polygenic
risk for rheumatoid arthritis and amount of infiltrating
CD8+ T cells. Overall, we identify multiple germline
genetic features associatedwith tumor-immune phe-
notypes and develop a framework for probing in-
herited features that contribute to differences in im-
mune infiltration.
INTRODUCTION

Immune checkpoint blockade (ICB) therapies have emerged as

impactful treatments for a variety of cancers. The discovery of

cytotoxic T-lymphocyte-associated antigen 4 (CTLA-4) and pro-

grammed cell death protein 1 (PD-1) as important modulators of

the adaptive immune system (Tivol et al., 1995; Fife et al., 2009)

led to the development of ICB therapies, which target these spe-

cific pathways. Antagonism of PD-1 and CTLA-4, negative regu-
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lators of T cell activity, stimulates the host immune system to

recognize and kill tumor cells. While these therapeutic strategies

are effective in a wide variety of cancers, they elicit variable clin-

ical response (Ribas and Wolchok, 2018; Keenan et al., 2019).

Tumor-intrinsic features correlated with ICB clinical activity,

such as mutational load and microsatellite instability, have

been characterized extensively (Snyder et al., 2014; Gentles

et al., 2015; Rizvi et al., 2015; Rooney et al., 2015; Van Allen

et al., 2015; Giannakis et al., 2016; Miao and Van Allen, 2016;

Charoentong et al., 2017; Miao et al., 2018; Samstein et al.,

2019). Numerous lines of evidence indicate that selective

response to ICB is also driven by the composition of the tumor

microenvironment (TME), particularly the immune infiltration pat-

terns in the TME (Tumeh et al., 2014; Thorsson et al., 2018). A

study by Thorsson et al. (2018) analyzed the immunogenomic

landscape of over 10,000 tumor samples compiled by The Can-

cer Genome Atlas (TCGA), reported specific driver mutations

correlated with tumor infiltrating leukocyte levels, and demon-

strated the prognostic and therapeutic implications associated

with the TME composition.

Germline determinants of immune infiltration in solid tumors

remain incompletely characterized, although germline features

have been found to be associated with immune traits such as

anti-tumor response, autoimmune diseases, and baseline white

blood cell indices in healthy patients (Orrù et al., 2013; Parkes

et al., 2013; Roederer et al., 2015; Astle et al., 2016; Marty

et al., 2017;Marty Pyke et al., 2018). Marty et al. (2017) andMarty

Pyke et al. (2018) identified germline alleles that affect the anti-

tumor immune response and shape the oncogenic mutational

landscape of tumors, but the studies focused only on the major

histocompatibility complex (MHC). Genome-wide association

studies (GWASs) have identified hundreds of germline variants

associated with immune-mediated diseases (Parkes et al.,

2013). And finally, Astle et al. (2016) found that common

autosomal genotypes explain up to 21% of variance in white

blood cell indices in a GWAS of 170,000 participants. Despite

evidence that germline variants influence the immune system

and its response to pathogens and tumors, there is a lack of
(s).
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Figure 1. Association Study Approach and

GWAS Results

(A) Schematic showing the type and size of data-

set for association studies. Association studies are

conducted at three genomic scales across all 17

phenotypes.

(B) Manhattan plot for GWASmeta-analysis for the

TFH cell phenotype. Positions along the chromo-

somes are on the x axis, and �log10-transformed

p values are on the y axis. Every autosome is

represented, but some are unlabeled for visuali-

zation purposes. The red line indicates genome-

wide significance (p < 5 3 10�8).

See also Figure S1.
genome-wide studies that investigate the effects of germline fea-

tures on shaping the immune composition of the TME.

Recently, Lim et al. (2018) uncovered 103 germline single-

nucleotide polymorphisms (SNPs) associated with immune cell

abundance in the TME. However, the study overlooked potential

confounding effects due to population structure and did not offer

insight into how individual variants interact through genes or

pathways to affect immune infiltration patterns.

Here, we analyze germline variants and test for association

with immune infiltration in solid tumors in a pan-cancer meta-

analysis of 30 TCGA cancer cohorts across different genomic

scales. We identify SNPs, genes, and networks correlated

with immune infiltration patterns, as well as an association be-

tween polygenic risk for autoimmune diseases and immune

infiltration.

RESULTS

Overview of Association Analyses
In order to characterize how host genetics affect immune infiltra-

tion in solid tumors, we analyzed the association between

germline variants and 17 phenotypes describing the immune

component of the TME across 30 TCGA cohorts (Figure 1A).

The genotype data consist of 5,788 samples of European

genetic ancestry and 7,070,031 imputed variants. Table S1

describes the 17 molecular phenotypes and sample size per

phenotype.
Cell Re
We conducted GWASs of the 17 phe-

notypes and aggregated SNP-level sig-

nals across genes and pathways with

gene-level and network-level tests of as-

sociation. In addition, we asked whether

polygenic risks of autoimmune diseases

are associated with immune infiltration

measures.

SNP-Level Association with
Follicular Helper T Cell Phenotype
GWASs conducted on 17 immune infiltra-

tion phenotypes reveal two independent

associationsat genome-widesignificance

(p<5310�8). rs3366,a variant in the30 un-
translated region (UTR) of SIK1 (effect
size = 0.155, p = 2.99 3 10�9), is associated with the amount of

follicular helper T (TFH) cells in bulk tumor (Figure 1B). This SNP

currently has nopublished associations in theGWAScatalog (Bu-

niello et al., 2019). Although the biological role of SIK1 in TFH cells

is unknown, there is evidence of differential expression of SIK1 in

this cell type (Newman et al., 2015).

rs4819959 is associated with the T helper 17 (Th17) cell signa-

ture (effect size =�0.168, p = 2.523 10�16). The Th17 cell signa-

ture phenotype is defined by the expression of three genes,

including IL17RA. The significant SNP is a known expression

quantitative trait loci (eQTL) of IL17RA in 31 tissues according

to the Genotype-Tissue Expression (GTEx) database (Carithers

et al., 2015), meaning the observed association is likely a by-

product of the phenotype definition.

Gene-Level Association Studies Reveal 23 Candidate
Genes
We then performed gene-level tests of association with immune

infiltration phenotypes using PEGASUS (Nakka et al., 2016). We

report gene-level associations at p < 2.83 10�6, after Bonferroni

correction for 17,563 autosomal genes. These genes are referred

to as candidate genes. Because of the small size of the dataset

and overlap between genes, we also report suggestive associa-

tions at p < 2.9 3 10�5, after Bonferroni correction for 1,703 in-

dependent haplotype blocks in the autosomes, consistent with

Wojcik et al. (2015) andGorlova et al. (2018), as defined by Berisa

and Pickrell (2016).
ports 30, 2900–2908, March 3, 2020 2901



Figure 2. Summary of Gene-Level Association Results

(A) Gene-level association testing identified 23 unique candidate genes. Four candidate genes contained published GWAS SNPs related to cancer traits; five

candidate genes contained published GWAS SNPs related to immunity or autoimmune traits. Out of the genes with no previously known associations, the Gene

Ontology (GO) term with the most members is shown. Suggestive and candidate genes annotated as casually implicated in cancer by the Cancer Gene Census

are also shown. Genes are colored according to the phenotype category for which they are most significant. Genes associated with multiple phenotypes,

including suggestive associations, are denoted with a colored asterisk. Genes with only suggestive associations are underlined. See also Table S2.

(B) Manhattan plot for gene-level association analysis for the CD8+ T cell phenotype. Each point represents a gene. Positions along the chromosomes are on the x

axis, and �log10-transformed p values are on the y axis. The solid red line indicates gene-level significance (p < 2.8 3 10�6), and the dashed red line indicates

suggestive significance (p < 2.9 3 10�5).
We found 24 candidate gene-phenotype relationships,

composed of 23 unique genes across 16 phenotypes. There

are an additional 54 unique suggestive genes. The results are

summarized in Figure 2A; full annotated results can be found in

Table S2. We annotated the genes based on (1) gene expression

in TCGA bulk tumor and reference immune cell populations

(Schmiedel et al., 2018); (2) previously published GWAS hits in

the GWAS catalog (Buniello et al., 2019), focusing on traits

related to cancer, immunity, or autoimmunity; (3) evidence for

promoting oncogenic transformation (Futreal et al., 2004); and

(4) correlation between gene expression and tumor purity. The

results are summarized in Figure 2A; full results can be found

in Table S2.

All 23 candidate genes were expressed in either bulk tumor or

reference immune cell populations. In addition, the expression of

these genes was either not correlated or only weakly correlated

with tumor purity; the correlation coefficients ranged from�0.22

to 0.21. One of the candidate genes, TRIM34, had a negative

correlation coefficient that was more than two standard devia-

tions away from the mean correlation coefficients for all genes.

We observed seven genes that contain reported GWAS hits in

a related trait according to the GWAS catalog (Buniello et al.,

2019). Four of the seven genes (COL21A1, GPATCH1, LEKR1,

and SBF2) contain SNPs associated with different cancers,

such as small cell lung carcinoma and breast carcinoma (McKay

et al., 2017; Wang et al., 2017; Michailidou et al., 2017; Wu et al.,

2014; Law et al., 2019). Five of the seven genes (COL21A1,

LEKR1, PXK, RABGAP1L, and SIK1) contain SNPs associated

with immune or autoimmune traits, such as allergies and sys-

temic lupus erythematosus (Bønnelykke et al., 2013; Ahola-Olli

et al., 2017; Alarcón-Riquelme et al., 2016; Kichaev et al.,

2019; Ferreira et al., 2017). We refer to genes with no published

GWAS hits in traits related to cancer, immunity, or autoimmunity
2902 Cell Reports 30, 2900–2908, March 3, 2020
as novel genes. Of the 16 novel candidate genes, the Gene

Ontology (GO) term with the most members is the cytokine-

mediated signaling pathway. Lastly, four suggestive genes and

one candidate gene are annotated by the Cancer Gene Census

as casually implicated in cancer (Figure 2A).

We found evidence of genes associated with multiple pheno-

types. For example, ZFP91 is associated with the Th17 cell

phenotype at gene-level significance and associated with the

lymphocytes and macrophages phenotypes at a suggestive

level. This gene activates the nuclear factor kB (NF-kB) pathway

by stabilizing the NF-kB-inducing kinase, a regulator of the im-

mune system (Jin et al., 2010).

In addition, we identified three candidate genes and four sug-

gestive genes associated with the CD8+ T cell phenotype, an es-

tablished effector cell in the anti-tumor activity of the immune

system (Figure 2B). TCF12 is one of the suggestive genes asso-

ciated with the CD8+ T cell phenotype. It codes for a transcription

factor called HeLa E-box binding protein (HEB), which regulates

lineage-specific transcriptional profiles of CD4+CD8+ thymocytes

(Emmanuel et al., 2018). The relevance of the other associated

genes is not as immediately clear. Two genes, LRRC19 (sugges-

tive association) and IFT74, are related to genes that are involved

in the innate immune system (Ng et al., 2011) and recycling of

T cell antigen receptors (Finetti et al., 2009), respectively.

DCDC2 is aberrantly expressed in prostate tumors (Longoni

et al., 2013), and gain-of-function mutations inMAP3K9 (sugges-

tive association) in lung cancer may activate the extracellular

signal-regulated kinase (ERK) pathway (Fawdar et al., 2013).

Genes in DNA Repair and Transcription Elongation
Pathways Correlated with Leukocyte Fraction
We conducted network propagation analyses (Reyna et al.,

2018) to identify gene subnetworks enriched for genes with low



Figure 3. Altered Subnetworks in Leukocyte Fraction Phenotype

Two statistically significant (p < 0.05) altered subnetworks associated with the leukocyte fraction phenotype in the ReactomeFI 2016 interaction network. Each

rectangle represents a gene and is colored according to the gene-level p value. Two genes are connected if their protein products interact in the ReactomeFI 2016

interaction network. Underlined genes are suggestive genes from gene-level analysis.

(A) Two suggestive genes, ATR and HSPA2, are part of a larger subnetwork involved in DNA repair. Genes involved in DNA repair or metabolism are indicated

by * and x, respectively.
(B) A subnetwork containing important members of the nucleotide excision repair and transcription elongation pathway, indicated by # and y, respectively.
gene-level p values whose protein products are topologically

connected on a protein-protein interaction network. We found

statistically significant subnetworks for the leukocyte fraction

phenotype (p < 10�3) with the ReactomeFI 2016 interaction

network; two of these subnetworks are highlighted in Figure 3.

The second largest connected subnetwork includes two

suggestive genes, ATR and HSPA2 (p < 2.81 3 10�5). ATR has

been previously implicated in cancer pathogenesis (Futreal

et al., 2004). In addition, reported germline ATR variants

predispose an individual to cancer (Tanaka et al., 2012). ATR

and HSPA2 are connected via SYCP2. Although not significant

in our gene-level analysis, somatic mutations in SYCP2 were

previously reported to lower regulatory T cell to CD8+ T cell ratios

in head and neck cancers (Siemers et al., 2017). Other biologi-

cally relevant genes in this subnetwork include FANCM,

RAD51, PRIM1, and TOPBP1, which participate in DNA repair

pathways.

Components of the subnetwork shown in Figure 3B are

involved in the transcription elongation pathway (CCNT2,

CD3EAP, GTF2H4, IWS1, and LEO1) and nucleotide excision

repair pathway (COPS4, COPS5, GTF2H4, and XPC). None of

the genes in this subnetwork had significant gene-level p values,

although they are part of a significant subnetwork in the network

analysis.

Autoimmune Disease Polygenic Risk Associated with
Immune Infiltration Patterns
We investigated if common variants that affect the risk for auto-

immune diseases are correlated with immune infiltration (Fig-

ure 4A). We calculated polygenic risk scores (PRSs) for five

autoimmune disorders: rheumatoid arthritis, inflammatory bowel

disease, celiac disease, systemic lupus erythematosus, and

multiple sclerosis. These diseases were chosen based on avail-

ability of summary statistics in large, well-powered published

GWASs (Dubois et al., 2010; Sawcer et al., 2011; Anderson

et al., 2011; Okada et al., 2014; Bentham et al., 2015).
We identified statistically significant associations (p < 0.0029,

Bonferroni corrected for 17 immune infiltration phenotypes) be-

tween PRS for rheumatoid arthritis and phenotypes: lympho-

cytes, CD8+ T cells, and macrophages (Figure 4B). The effect

sizes are as follows: CD8+ T cells = 0.0088, lymphocytes =

0.0091, and macrophages = �0.0073. It is important to note

that the lymphocytes phenotype is defined as the sum of 12

cell types, one of which is amount of CD8+ T cells. To test

whether the lymphocyte and CD8+ T cell hits were independent,

we subtracted the amount of CD8+ T cells from lymphocytes and

repeated the analysis. We no longer observed a significant asso-

ciation between this phenotype and PRS of rheumatoid arthritis

(p = 0.0092), demonstrating that the association signal of the

lymphocytes phenotype is driven by the CD8+ T cells phenotype.

DISCUSSION

The abundance and composition of immune cell populations in

the TME are known to affect response to ICB therapies. Here,

we presented a pan-cancer germline analysis of immune infiltra-

tion in solid tumors, demonstrating that host genetics are asso-

ciated with phenotypes describing the immune component of

the TME. Through integrative analysis of germline genotype, tu-

mor RNA sequencing (RNA-seq), and tumor DNA methylation

data, we identified features at multiple genomic scales (SNP-

level, gene-level, and pathway-level) that are correlated with

the amount of infiltrating TFH cells and fraction of leukocytes in

bulk tumor, among other phenotypes. The 17 immune pheno-

types were chosen to capture different facets of the TME, from

abundance of particular types of immune cells to gene expres-

sion signatures that describe interferon-g signaling. The

association studies described here are sensitive to the precise

phenotype definitions.

In our analyses, we found evidence for only one SNP-level as-

sociation. The sparsity of results from our GWAS analysis is not

surprising, as the GWAS framework is underpowered to detect
Cell Reports 30, 2900–2908, March 3, 2020 2903



Figure 4. PRS Associations with Immune Infiltration

(A) Workflow for calculating polygenic risk scores (PRSs) of autoimmune disorders based on published GWAS summary statistics, followed by regression of the

17 immune infiltration phenotypes onto PRS.

(B) Bar plot showing the strength of association between the phenotypes and PRS for rheumatoid arthritis. The phenotypes are on the x axis, and �log10-

transformed p values are on the y axis. Each bar is colored according to the phenotype category. The red line indicates the Bonferroni-corrected significance

value (p < 0.0029).
SNP-level associations in complex traits (McClellan and King,

2010; Stranger et al., 2011). The GWAS framework does not ac-

count for the genetic heterogeneity often seen in complex traits

(McClellan and King, 2010). In addition, we do not have adequate

power to detect variants of small effect size because of the small

size of our dataset. Gene-level and network-level tests of asso-

ciation overcome these limitations by reducing the multiple hy-

pothesis burden and aggregating SNP-level signals across bio-

logically functional units (Neale and Sham, 2004; Liu et al.,

2010; Wu et al., 2010; Nakka et al., 2016; Wang et al., 2010;

Reyna et al., 2018).

By combining SNP-level signals and testing for phenotype

associations at the gene and pathway levels, we uncovered

multiple genes and pathways that are associated with immune

infiltration patterns. Out of 23 unique candidate genes, five

were previously identified in GWASs on autoimmune disorders

or immune-related traits; these results suggest host genomic

factors that cause variation or disease in the immune system

may also affect immune infiltration of tumors. We found an

additional four candidate genes containing SNPs significant in

cancer GWASs; these genes may be affecting cancer risk by

altering the anti-tumor immune response. There is already evi-

dence for this relationship fromGWASs of cancer predisposition,

in which cancer-risk SNPs are found to be involved in the im-

mune system (Clifford et al., 2010; Shiels et al., 2012; Peltekova

et al., 2014).

We also identified several subnetworks associated with the

leukocyte fraction. ATR, a suggestive association from gene-
2904 Cell Reports 30, 2900–2908, March 3, 2020
level analysis, and interacting genes were among one of the

subnetworks. Germline and somatic mutations in ATR have

been reported to play a role in tumorigenesis (Tanaka et al.,

2012; Forbes et al., 2017). Somatic ATR mutations have also

been shown tomodulate the TME inmelanomas, recruiting mac-

rophages and blocking T cell recruitment (Chen et al., 2017).

Other significant subnetworks contain genes involved in DNA

repair and transcription elongation pathways. Somatic muta-

tions in genes involved in DNA repair can increase the neoanti-

gen load in the TME and affect the response to ICB (Mouw

et al., 2017; Knijnenburg et al., 2018). In addition, defective tran-

scription elongation is known to confer resistance to immuno-

therapy despite increased levels of infiltrating T cells (Modur

et al., 2018). We note that these significantly altered subnet-

works were found using the ReactomeFI interaction network,

and the results using other tested interaction networks were

not statistically significant. These results are likely due to differ-

ences in network topology, with ReactomeFI being the densest

out of the three interaction networks used.

Finally, we showed that the PRS for rheumatoid arthritis is

correlated with amount of CD8+ T cells, which may suggest a

shared genetic etiology between rheumatoid arthritis and cyto-

toxic immune response to solid tumors. In the synovial compart-

ment of rheumatic joints, 40% of T cells are CD8+ T cells

(McInnes, 2003). Past studies have found associations between

rheumatoid arthritis and MHC class I polymorphisms (Ray-

chaudhuri et al., 2012) as well as between amount of CD8+

T cells in synovial fluid and disease activity (Cho et al., 2012),



suggesting a potential role for CD8+ T cells in the development

and progression of rheumatoid arthritis.

While we applied many quality-control filters to the genotype

and phenotype data to remove confounders in our analyses,

replication is necessary. However, replication studies are

currently not feasible due to a lack of a large, independent,

pan-cancer cohort with matched germline and RNA-seq data.

The TCGA dataset provided a unique opportunity to conduct

integrative association analyses that leverage germline data.

The TCGA germline data have been largely underappreciated,

besides investigation of predisposition germline variants in can-

cer (Kim et al., 2013; Palles et al., 2013; Huang et al., 2018).

Future studies with larger, integrative datasets are needed to in-

crease statistical power and take advantage of other existing

tools to conduct multi-trait GWAS analyses and heritability

estimates.

We note that the studied phenotypes were calculated based

on sections of tumor tissue at one point in time and therefore

do not capture the whole extent of the heterogeneity of the

TME. In addition, 16 out of 17 phenotypes were based on bulk

RNA-seq data, and 6 of those 16 were derived using a deconvo-

lution method CIBERSORT (Newman et al., 2015). CIBERSORT

has several limitations, including reliance on the fidelity of a refer-

ence expression panel for deconvolution (Newman et al., 2015).

More generally, bulk RNA deconvolution methods have limits to

interpretation, as they cannot be used to tease apart the source

of gene expression (i.e., if candidate gene is expressed by tumor

cell or immune cells). Ideally, future studies will integrate germ-

line and somatic variation with orthogonal measures of immune

infiltration patterns (such as single-cell RNA-seq profiling) at

different time points, but such study design does not currently

exist to validate the reported results.

Follow-up studies incorporating other immune cell popula-

tions known to affect response to immunotherapy (such as frac-

tion of infiltrating neutrophils or CD4+ T cells) and joint analysis of

germline variants, somatic mutations, and environmental factors

will further our understanding of predictors of response to ICB

therapies. Ultimately, experimental investigations are also

needed to determine the biological mechanisms driving the re-

ported associations.

In conclusion, we report germline variation in SNPs, genes,

and pathways associated with immune infiltration patterns.

These results highlight the important yet previously overlooked

role that inherited variants play in influencing the immune

composition of the TME, a crucial step toward understanding

predictors of response to ICB therapies.
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KEY RESOURCES TABLE
REAGENT or RESOURCE SOURCE IDENTIFIER

Deposited Data

Raw germline data NCI Genomic Data

Commons

https://portal.gdc.cancer.gov/

Haplotype Reference Consortium McCarthy et al., 2016 http://www.haplotype-reference-consortium.org/

1000 Genomes Project Auton et al., 2015 https://www.internationalgenome.org/

Immune cellular fraction estimates and immune gene

expression signatures

Thorsson et al., 2018 https://gdc.cancer.gov/about-data/publications/

panimmune

Cytolytic activity calculation Rooney et al., 2015 PMID: 25594174

Celiac disease GWAS summary statistics Dubois et al., 2010 PMID: 20190752

Multiple sclerosis GWAS summary statistics Sawcer et al., 2011 PMID: 21833088

Rheumatoid arthritis GWAS summary statistics Okada et al., 2014 PMID: 24390342

Systemic lupus erythematosus GWAS summary statistics Bentham et al., 2015 PMID: 26502338

Ulcerative colitis GWAS summary statistics Anderson et al., 2011 PMID: 21297633

HINT Das and Yu, 2012 http://hint.yulab.org/

HI Rolland et al., 2014 http://www.interactome-atlas.org/download

iRefIndex Razick et al., 2008 https://irefindex.vib.be/download/irefindex/data/

archive/release_15.0/psi_mitab/MITAB2.6/9606.

mitab.22012018.txt.zip

ReactomeFI 2016 Fabregat et al., 2018 https://reactome.org/

Software and Algorithms

Admixture Alexander et al., 2009 http://software.genetics.ucla.edu/admixture/

Birdseed Korn et al., 2008 https://www.broadinstitute.org/birdsuite/

birdsuite-analysis

Hierarchical HotNet Reyna et al., 2018 https://github.com/raphael-group/

hierarchical-hotnet

METAL Willer et al., 2010 https://genome.sph.umich.edu/wiki/METAL

Michigan Imputation Server Das et al., 2016 http://imputationserver.sph.umich.edu/index.html

PEGASUS Nakka et al., 2016 https://github.com/ramachandran-lab/PEGASUS

plink Chang et al., 2015 https://www.cog-genomics.org/plink2/

PRSice Euesden et al., 2015 http://www.prsice.info/
LEAD CONTACT AND MATERIALS AVAILABILITY

Further information and requests for resources should be directed to and will be fulfilled by the Lead Contact, Sohini Ramachandran

(sramachandran@brown.edu). This study did not generate new unique reagents.

METHOD DETAILS

Subject Details
The Cancer Genome Atlas (TCGA) dataset consists of tumor and matched normal samples from over 11,000 patients. The

Genomic Data Commons (GDC) legacy archive contains germline data for 11,440 samples from 10,776 unique participants. Samples

with the following TCGA project IDs: DLBC, LAML, LCML, MISC, and THYM were excluded as they represent unidentified cancer

or cancers derived from immune cells. Samples indicated as problematic by either GDC-issued or TCGA-issued annotations

were removed. The reasons for exclusion ranged from mismatched genotypes in tumor and normal samples to incorrect barcodes

on aliquots.
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Raw Germline Variant Data
Germline variants were derived from the Affymetrix SNP6.0 microarray. Raw CEL files for the TCGA cohort were downloaded from

FireCloud (https://software.broadinstitute.org/firecloud/) and the GDC legacy archive (https://portal.gdc.cancer.gov/

legacy-archive). Probesets with non-unique mapping in the genome or not mapping to the location provided by Affymetrix (NetAffx

Annotation Release 35) were removed.

Germline Variant Calling
Genotype calls from the CEL files were made using Birdseed (Korn et al., 2008) in batches; samples from the same TCGA batch were

included in the same run. Because Birdseed recommends more than 50 samples in each run, batches with less than 50 samples were

combinedwithsamples fromtemporallyadjacentbatches.GenotypecallswithBirdseedconfidencescoresmore than0.1were removed.

Samples with autosomal SNP missingness > 2% or unexpected sex chromosome genotypes (males with missing Y chromosome

calls or females with Y chromosome calls) were removed. Participants with more than two replicate samples were removed. Partic-

ipants with replicate samples with > 1% discordance among genotype calls were removed. Among these samples, SNPs with miss-

ingness > 5%, sex effect (Fisher’s exact p < 10�20) or batch effect (each batch versus all others, Fisher’s exact p < 10�12) were

removed. Several participants had two replicate samples remaining after the filtering process. SNPswith > 2% replicate discordance

were removed. For each participant, the sample with the higher genotypemissingnesswas removed, and discordant genotypeswere

excluded.

We imputed genotypes with the Michigan Imputation Server (Das et al., 2016), using data from the Haplotype Reference Con-

sortium (McCarthy et al., 2016) as the reference panel. Loci with imputation quality R2 < 0.8 were excluded.

To prepare the genotype data for association studies, the following additional quality control steps were taken using plink (Chang

et al., 2015):

1. SNPs with minor allele frequency < 1% were removed.

2. SNPs not in Hardy Weinberg equilibrium (p < 10�6) were removed.

3. Related individuals (IBD bp > 0.185) were removed.

4. Samples with missing GDC demographic data (sex and birth year) were removed.

The final genotype data consists of 7,070,031 variants and 5788 samples.

Genetic Ancestry Calculation
Strict ancestry filtering was applied to samples using two techniques: (1) project TCGA samples onto a ten-dimensional principal

component (PC)-space derived from principal component analysis (PCA) of all individuals in the 1000 Genomes Project (Auton

et al., 2015), and retain only TCGA samples whose five nearest 1000 Genomes neighbors were labeled as ‘‘European’’ and whose

mean distance to those neighbors was < 0.1. (2) Run supervised Admixture (Alexander et al., 2009) with K = 3— using the Utah Res-

idents with Northern and Western European Ancestry (CEU), Yoruba in Ibadan, Nigeria (YRI), and Han Chinese in Beijing, China

(CHB) + Japanese in Tokyo, Japan (JPT) populations as reference data— and keep TCGA samples with greater than 90%member-

ship in the CEU cluster.

Phenotype Data
CIBERSORT-derived fraction of 22 types of immune cells (Newman et al., 2015), immune gene expression signatures (Beck et al.,

2009; Bindea et al., 2013; Calabrò et al., 2009; Chang et al., 2004; Teschendorff et al., 2010; Wolf et al., 2014), and leukocyte fraction

frommethylation analysis were downloaded from Thorsson et al. (2018). Cytolytic activity immune signature was added fromRooney

et al. (2015). Twenty phenotypes with more than 10% zero values were excluded, with 17 phenotypes remaining. Within each cancer

cohort, a rank-based inverse normal transformation was applied to each phenotype. The transformed value of phenotype j for the ith

subject in cohort k is:

Yijk =F�1 rijk � 0:5

Njk

� �

where rijk is the rank of the ith case in non null observations of phenotype j in cohort k, Njk is the number of non null observations of

phenotype j in cohort k, and F�1 is the probit function.

SNP-Level and Gene-Level Association Studies
Genome-wide association studies (GWASs) were conducted for 17 phenotypes within each cancer- specific cohort using plink

(Chang et al., 2015). The first ten genetic PCs, age, and sex were included in the regression analysis as covariates. We then used

METAL (Willer et al., 2010) with a sample size weighting scheme to perform a pan-cancer meta-analysis for each phenotype.

SNPs with a calculated p value in all cohort-specific GWASs and a meta-analysis p value less than 5 3 10�8 were reported as sig-

nificant SNPs.Whenmultiple SNPs in the same haplotype block (r2 > 0.1) were significant, the SNPwith the lowest p value is reported.

The effect sizes of significant SNPs were calculated using an inverse-variance weighting scheme.
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The meta-analysis SNP-level summary statistics were then used as input to the gene-level association test method PEGASUS

(Nakka et al., 2016). Gene-level p values are reported for genes with at least one SNP in the gene boundary ± 50kb window

(17,563 autosomal genes). Genes with p values less than 2.8 3 10�6 (Bonferroni corrected for 17,563 autosomal genes) were re-

ported as significant. Genes with p values less than 2.9 3 10�5 (Bonferroni corrected for number of independent haplotype blocks

in the autosomes, 1703 (Berisa and Pickrell, 2016)) were reported as suggestive.

Candidate Gene Annotation
The candidate genes from the gene-level association studies were annotated using the following methodology:

1. Mean gene expression (TPM) in each TCGA cohort: RNA-seq data was downloaded for each TCGA cohort from http://

firebrowse.org. The patients were subsampled to those included in this study. For each patient, the primary tumor sample

was used in these calculations, when available. Otherwise, metastatic tumor samples were used. The TPMvalueswere derived

from multiplying the columns labeled ‘‘scaled estimates’’ from files labeled ‘‘illuminahiseq rnaseqv2-RSEM genes’’ by 106.

2. Mean gene expression (TPM) in immune cells: The mean expression values were downloaded from the DICE database

(Schmiedel et al., 2018) for all cell types (https://dice-database.org/download/mean_tpm_merged.csv).

3. GWAS catalog annotation: Reported associations were downloaded from the GWASCatalog (http://www.ebi.ac.uk/gwas/) on

December 28, 2018. The GWAS traits were recorded from the ‘‘MAPPED TRAIT’’ column, and categorized into immune, auto-

immune, or cancer related traits.

4. Cancer Gene Census annotation: Genes in the Cancer Gene Census were downloaded from https://cancer.sanger.ac.uk/

census. In this database, genes are designated as tier 1 or tier 2 depending on the available literature evidence.

5. Correlation between gene expression and tumor purity: The gene expression (TPM) was calculated for every gene and every

sample. See (1) for source of gene expression data. The tumor purity data for each sample was calculated using ABSOLUTE

and downloaded from https://api.gdc.cancer.gov/data/4f277128-f793-4354-a13d-30cc7fe9f6b5. The Pearson correlation co-

efficient per gene was calculated between gene expression and tumor purity across samples.

Network Propagation Analysis
We performed network propagation analysis with Hierarchical HotNet (Reyna et al., 2018) on the �log10-transformed p values from

gene-level association testing to identify significantly altered subnetworks. For our analysis, we used the following interaction net-

works, which were the most recent versions available as of February 23, 2018.

d HINT+HI (Das and Yu, 2012; Rolland et al., 2014): HINT binary + HINT co-complex + HuRI HI

d iRefIndex 15.0 (Razick et al., 2008)

d ReactomeFI 2016 (Fabregat et al., 2018)

For the ReactomeFI network, we considered the set of interactions with a confidence score of 0.75 (out of 1) or larger. For each

network, we restricted our attention to the largest connected subgraph of the network.

To reduce the influence of genes for which we have low confidence of association with a phenotype, we assigned p values of 1 to

genes with p values of p > 0.1 and ran Hierarchical HotNet (103 permutations) on these thresholded gene scores. This provides

sparser, more interpretable, and higher confidence networks. Similar p value thresholds were applied in similar network analyses

(Nakka et al., 2016).

Polygenic Risk Score Analysis
Wedownloaded the summary statistics fromGWASs of five autoimmune traits: celiac disease (Dubois et al., 2010); multiple sclerosis

(Sawcer et al., 2011); ulcerative colitis (Anderson et al., 2011); rheumatoid arthritis (Okada et al., 2014); and systemic lupus erythe-

matosus (Bentham et al., 2015). Records with missing odds ratio, p values, and risk alleles were excluded from analysis. For each

autoimmune disease, we extracted SNPs at various p value thresholds (p = 1, 10�1, 10�2, 10�3, 10�4, 10�5, 10�6, 10�7, 5 3 10�8)

that overlapped with our genotype data, excluding ambiguous and mismatched variants. At each threshold, the SNPs were filtered

via linkage disequilibrium (LD) clumping, with a 250kbwindow and an r2 threshold of 0.1 (Table S3). PRSice (Euesden et al., 2015) was

used to calculate the polygenic risk score (PRS) for each autoimmune trait for each sample by summing over the log odds ratio of the

selected SNPs, weighted by allele dosage of risk alleles.

The PRS for each disease was regressed against each of the 17 immune infiltration phenotypes within each cancer cohort, using

the first 10 PCs, birth year, and sex as covariates. The reported results are from a sample size based meta-analysis of all cancer co-

horts. Effect sizes of significant associations (Bonferroni corrected for number of immune infiltration phenotypes tested) were calcu-

lated using an inverse-variance weighted analysis.

QUANTIFICATION AND STATISTICAL ANALYSIS

The statistical details of all analyses are reported in the Results, figure legends, and Method Details.
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DATA AND CODE AVAILABILITY

The raw germline data is available from FireCloud (https://software.broadinstitute.org/firecloud/) and GDC legacy archive (https://

portal.gdc.cancer.gov/legacy-archive). The phenotype data is available from the original published sources Rooney et al. (2015)

and Thorsson et al. (2018). The software used for the analyses are referenced in the Method Details subsections and Key Resources

Table.
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Figure S1. Zoomed-in Manhattan plot for GWAS meta-analysis for the follicular helper T cell 
phenotype. Related to Figure 1B. Positions along chromosome 21 are on the x-axis, and −log10- 
transformed p-values are on the y-axis. The red line indicates genome-wide significance (p < 5 x 
10−8). Two significant SNPs are annotated with ids. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



Table S3. Final number of SNPs included in the calculation of PRS for each of the five 
diseases at nine p-value thresholds. Related to Figure 4. Summary statistics from the five studies 
were downloaded. SNPs were excluded based on the following criteria: absence from our genotyped 
data; missing odds ratios, risk alleles, or p-values; and ambiguous or mismatched variants. SNPs 
were further filtered via LD-clumping, with a 250kb window and an r2 threshold of 0.1. 
 

p-value 
threshold 

Rheumatoid 
arthritis 

Ulcerative 
colitis 

Celiac 
disease 

Systemic lupus 
erythematosus 

Multiple 
sclerosis 

1.00E+00 206221 112262 87547 236909 85271 
1.00E-01 44291 33294 21999 63842 20171 
1.00E-02 6860 7313 3824 12430 3499 
1.00E-03 1480 1829 659 2401 760 
1.00E-04 564 607 158 616 266 
1.00E-05 386 322 59 277 159 
1.00E-06 310 212 29 173 116 
1.00E-07 260 152 16 132 82 
5.00E-08 251 143 13 119 88 
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