Supplemental Material

The cell wall integrity pathway contributes to the early stages of *Aspergillus fumigatus* asexual development

Marina Campos Rocha^a, João Henrique Tadini Marilhano Fabri^a, Isabelle Taira Simões^a, Rafael Silva-Rocha^b, Daisuke Hagiwara^c, Anderson Ferreira da Cunha^a, Gustavo Henrique Goldman^d, David Cánovas^e, Iran Malavazi^{a#}

^aDepartamento de Genética e Evolução, Centro de Ciências Biológicas e da Saúde, Universidade Federal de São Carlos, São Carlos, São Paulo, Brazil.

^bDepartamento de Biologia Celular e Molecular, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, São Paulo, Brazil.

^cFaculty of Life and Environmental Sciences, University of Tsukuba, Ibaraki, Japan.

^dDepartamento de Ciências Farmacêuticas, Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, São Paulo, Brazil.

^eDepartment of Genetics, University of Sevilla, Sevilla, Spain.

FIG S1 The $\Delta rlmA$ mutant presents lower number of conidia and a fluffy-like phenotype. (A) Radial growth of the wild-type, $\Delta rlmA$ and $\Delta rlmA$.:: $rlmA^+$ strains on complete solid medium at 30°C. 1×10⁵ conidia from each strain was inoculated onto the center of a solid YG plate and incubated for five days. Arrows indicate undifferentiated aerial hyphae (fluffy phenotype). (B) The conidia were collected by sampling four 0.5 cm² agar in 0.01% Tween 20 and counted in a Neubauer chamber. The results are the average ± SD (n = 4; *p ≤ 0.001).

FIG S2 The Δ*rImA* mutant presents defective conidiation during synchronized asexual differentiation. (A) Scheme of the conditions used to induce synchronized asexual differentiation. Vegetative mycelia grown for 18 hours in liquid MM supplemented with 0.1% yeast extract (37°C) were spread onto solid media and incubated under air-exposed conditions for the required number of hours in each experiment at 30°C or 37°C (green

arrows). The whole cells undergoing asexual differentiation were harvested from the plates at designated time points after transfer and used in the experiments. Vegetative mycelia (hyphal state) served as control. Created with BioRender.com. (B) Delayed conidiation of the CWI pathway mutants. The time (hours) indicates the growth at each temperature after the mycelium was transferred from the liquid-submerged synchronized culture to the air interface onto solid medium.

FIG S3 Conidiophore morphology of the wild-type, $pkcA^{G579R}$, $\Delta rlmA$ and $\Delta mpkA$ mutant strains was analyzed after 48 and 72 hours of cultivation on solid YG medium. Coverslips containing the adhered conidiophores were stained with lactophenol cotton blue and inspected under bright field microscope (100× magnification).

FIG S4 Asexual differentiation is accompanied by up-regulation of the CWIP genes. Total RNA was isolated from the strains subjected to synchronized asexual differentiation at 30°C (A) and 37°C (B). cDNA was obtained and used in RT-qPCR. The fold increase in each strain represents the normalized mRNA abundance relative to the wild-type strain. The data represent the average value of at least three independent experiments (with 2 technical repetitions each). * $p \le 0.05$ (One-Way ANOVA).

FIG S5 Chitin detection during growth on solid media. Strains were grown on solid media for 18-30 hours at 37°C and CFW was used to quantify chitin by fluorescence detection. The data shown are the slope of the plot of CFW fluorescence against biomass (measured as absorbance at 600 nm). The results are the average \pm SE (n = 4, **p* ≤ 0.02 or ***p* ≤ 0.002 *t*-test).

FIG S7 CWIP genes are required for the expression of *flbB* and *flbC*. Total RNA was isolated from the strains subjected to synchronized asexual differentiation at 30°C (A) or 37°C (B). cDNA was obtained and used in RT-qPCR. The fold increase in each strain represents the normalized mRNA abundance relative to the wild-type strain. The data represent the average value of at least three independent experiments (with 2 technical repetitions each). * $p \le 0.05$ (One-Way ANOVA).

FIG S8 RImA is required for the expression of genes involved in glucan and chitin metabolism. Total RNA was isolated from the wild-type and $\Delta rlmA$ strains subjected to synchronized asexual differentiation at 37°C. cDNA was obtained and used in RT-qPCR. The fold increase in each strain represents the normalized mRNA abundance relative to the wild-type strain. The data represent the average value of at least three independent experiments (with 2 technical repetitions each). **p* ≤ 0.05 (One-Way ANOVA).

FIG S9 Graphical representation of the substituted loci for the *A. fumigatus* C-terminal GFP, 3×HA and 3×FLAG tagged strains. The genes of interest and their flanking regions are

shown in blue and grey boxes, respectively. (A) Gene replacement strategy for the *rlmA::*3×FLAG strain construction. The *rlmA* genomic sequence without stop codon was cloned in-frame with the 3×FLAG in a C-terminal fusion separated by a (GA)₅ linker. The pyrG gene was used as a prototrophy marker. The rlmA::3×FLAG cassette was transformed into the A. fumigatus wild-type strain. (B) Transformants were validated by PCR with primer set rImA 600 ups and pyrG 200 REV to confirm the rImA locus replacement by the amplification of the 4.726 kb band in the mutant strain. (C, E, G, I) Gene replacement strategy for flbB::GFP mpkA::3×HA, flbC::GFP mpkA::3×HA, rasB::GFP mpkA::3×HA and brlA::GFP mpkA::3×HA strains construction. Fragments spanning 0.8 kb of 3' region of flbB, flbC, rasB and brlA genomic sequences (without stop codon) were individually cloned inframe with the green fluorescent protein (GFP) gene in a C-terminal fusion separated by a Gly-Thr-Arg-Gly linker. Each cassette was transformed into the A. fumigatus wild-type strain. (D, F, H, J). Transformants were validated by PCR with primer set flbB, flbC, rasB, brlA, (located 500 bp upstream from the start of substitution cassette) and pyrG REV to confirm each locus replacement (blue lines). (K) The mpkA::3×HA::ptrA cassette was amplified form the plasmid pUC19-mpkA::3×HA and used to transform each GFP fused strain described in C-J. (L) The pyrithiamine-resistant transformants were selected and validated by PCR with primers mpkA 5F and prtA 3R to confirm the mpkA locus replacement by the amplification of the 5.954 kb band in the double tagged strains.

FIG S10 Growth phenotype of the double-tagged strains. 1×10⁵ conidia were inoculated on YG medium and incubated at the indicated temperature for three days and photographed.

TABLE S1 Primers used in this study for strains construction

Primer*	Sequence (5'→3')	Systematic name	
Afu3g08520 5F	gtaacgccagggttttcccagtcacgacgCTTGCTTGCTTGCTTGCTT		
Afu3g08520 5R	GCATCAGTGCCTCCTCTCAGACAGAATTCC ACCACG'	Afu3g08520	
pyrG FW	GGAATTCTGTCTGAGAGGAGGC	Af. 0 = 00000	
pyrG REV	GATATCGAATTCGCCTCAAAC	Atu2g08360	
Afu3g08520 3F	AAGAGCATTGTTTGAGGCGAATTCGATATC GATGG	Afu3a08520	
Afu3g08520 3R	gcggataacaatttcacacaggaaacagcTCAGCGTCCGGTAAGTTG		
rlmA ST 5F	gtaacgccagggttttcccagtcacgacgATGGGTCGAAGAAAGATCGA		
rImA ORF REV	AGTTCTTCTCCTTTACTCATTCCCCGTGTTCCCCGTCTTGGATTTCTTC GCC	Afu3g08520	
rlmA 600 ups	GAATGAGAAGAAAGGAGGAATGA		
MpkA_5'_FW	CTCATTCCTTGTTCTGATGCG		
MpkA_3'_REV	GACTGTCGCAGAAATCCGCTT	Afu4g13720	
mpkA 600 ups	GAGCCCTGACTTCACTGCA		
flbC 500 ups	TCAACACACTTGAACCGTGG		
flbC 800 FW	gtaacgccagggttttccccagtCACGACGACTTATGCGCCGATCAGCTA		
flbC ORF REV	AGTTCTTCTCCTTTACTCATTCCCCGTGTTCC AGATA	Afu2g13770	
flbC 3F	AAGAGCATTGTTTGAGGCGAATTCGATATCAAAGCCCGTTCTCTACT CTG		
flbC 3R	gcggataacaatttcacacaGGAAACAGCCAAGATGACTCCAGACATTC		
flbB 500 ups	TGAAAACCCCCACTTCAATG		
flbB 800 FW	gtaacgccagggttttcccagtCACGACGCAGGCGCCGGCAGCACTAGC		
flbB ORF REV	AGTTCTTCTCCTTTACTCATTCCCCGTGTTCCCGAGTACATCGTATC GTCGC	Afu2g14680	
flbB 3F	AAGAGCATT <u>GTTTGAGGCGAATTCGATATC</u> TGTGATATCGGATACTT CTT		
flbB 3R	gcggataacaatttcacacaGGAAACAGCGTTTTCTATTAAAGGCTTAA		
rasB 500 ups	ATCGACGAGCTTATACTGCG		
rasB 800 FW	gtaacgccagggttttccccagtCACGACGATGACGTTGTACAAATTGGT		
rasB ORF REV	AGTTCTTCTCCTTTACTCATTCCCCGTGTTCCCAGGATGACGCACTT GATGC	Afu2g07760	
rasB 3F	AAGAGCATT <u>GTTTGAGGCGAATTCGATATC</u> GGAACACATTAGCATTC GCA		
rasB 3R	gcggataacaatttcacacaGGAAACAGCAGGACTCGCAAGAACCGGGT		
brlA 500 ups	TGAACTAGAAGATACAGAGG		
brlA 800 FW	gtaacgccagggttttcccagtCACGACGCTCCGTATTTCCCTGAATCGG	Afu1g16590	

brlA ORF REV	AGTTCTTCTCCTTTACTCA CTGA	
brlA 3F	AAGAGCATT <u>GTTTGAGGCGAATTCGATATC</u> AAAAAAAAAAAGACGAAAA	
brIA 3R	AAG	
	gcggataacaatttcacacaGGAAACAGCGCGATTCGTCCGTGTCATTT	
Spacer GFP FW	GGAACACGGGGA <u>ATGAGTAAAGGAGAAGAACT</u> TTTCA	-
GFP REV pyrG	<u>GCATCAGTGCCTCCTCAGACAGAATTCC</u> TTATTTGTATAGTTCAT CCATGCCATG	-
GA5 3×FLAG pyrG FW	GGAGCTGGTGCAGGCGCTGGAGCCGGTGCCGATTACAAGGATGAC GACGATAAGGATTACAAGGATGACGACGATAAGGATTACAAGGATG ACGACGATAAGTAAGGAATTCTGTCTGAGAGGAGGC	-
linker_3×HA_trpC_pyrG FW	GGAGGTGGTAGCGGTGGT	
linker_3×HA_trpC_pyrG REV	CTGTCTGAGAGGAGGCACTGA	-

* For primers location on each construction refer to Fig. S9.

Small letters indicate homology to the plasmid pRS426 flanking sequence for *in vivo* recombination in *S. cerevisiae*.

Underlined letters indicate homology to a fragment in the cassette.

Bold letters indicate the Gly-Thr-Arg-Gly linker separating *flbB*, *flbC*, *brlA* and *rasB* C-terminus and GFP start codon.

Red letters indicate the (GA)⁵ linker and blue letters indicate the 3×FLAG peptide sequence followed by a stop codon (TAA) in bold.

TABLE S2 RT-qPCR primers used in this study

Primer name	Sequence (5'→3')	Systematic name
pkcA_FW pkcA_REV	CCGAAGTTCTGTTGGCTCTC CAGAGACCGTAATCGGCAAT	Afu5g11970
tubA FW	TTCCCAACAACATCCAGACC CGACGGAACATAGCAGTGAA	Afu1g10910
rlmA FW	GACGCCGATCTCTGCTCTAC	Afu3g08520
mpkA FW	GGCCATCAAGAAGGTTACCA	Afu4g13720
abaA FW	GCACGACCTGTTGCATCAAA	Afu1g04830
brlA FW	TGCAAAGAACCTGGCTGCAA AACCCAGCAGACATGAGGCTT	Afu1g16590
wetA FW	CGAGATTCCCATGAGCGTAAA	Afu4g13230
flbB FW	TCCCCCACGCACGAAT	Afu2g14680
flbC FW	TGGACTTCTGCACACACGTCTT	Afu2g13770
rasB FW	TGTCGTTCGCATGCTCCGACA	Afu2g07770
chiB1 REV	GAATCGCTGCCTTATCTCTT	Afu8g01410
Afu3g07160 FW		Afu3g07160
Afu3g11280 FW	CGTCTATCACTGTCCTTGCT	Afu3g11280
nagA FW nagA REV	ATCCGCTGCCTCATCTTCCA GACCCCTTTTCCAACGCTTG	Afu8g05020
chi5 FW chi5 REV	AAGGGGCCGCTTGTATATTA AGGTGCCAACCTTGGCAAAA	Afu3g07160
chi4 FW chi4 REV	CGATTCTGGGCGGCTGCACT GGAAAGAATCAATGACAACT	Afu5g03530
chi5 FW chi5 REV	GGACTCCGTAGGTATCTGGC GAATACAATACCGAACCAGT	Afu3g07110
eng3 FW eng3 REV	GACCCCTTTTCCAACGCTTG ACAGCGGCTTGGATCAATCA	Afu1g05290
eng4 FW eng4 REV	TATATGCTGGCTGCTGTGCC ATGCCTCATCAGCGCTTGGG	Afu5g02280
Afu6g08080 FW Afu6g08080 REV	TAGAACCCAGCGAATTTTTC AGAAGTCCAATGAACGCACC	Afu6g08080

Primers	Sequence (5'→3')	Systematic name	
flbB FW	CTCTTATTCTTTGTGGCCCTCTCT	A (0 4 4000	
flbB REV	GAGCTCAAGGAACGAGATTATTTTTAA	Afu2g14680	
flbC FW	CAAGATGAAAGAAGAAAAAGAAGCAGTT	Afu2g13770	
flbC REV	CCTTTCGATTACTGTGTGCAAGTT		
abaA FW	GCTGGAACTCGTTATACATGAATGTG	A ful ~04020	
abaA REV	GACACCAAGTCGCTCGGCCACCGAAG	Afu1g04830	
<i>brlA</i> FW	AAATGCTCCGAAGACAAGAAAC	A.f 4 4 0 5 0 0	
brlA REV	CTCTTTTCTTTTTGATTTAATTCCTT	Afu1g16590	
rasB FW	CGAGCTTATACTGCGACCGG	۸ fu2a07770	
rasB REV	AGAGACATGACATACCTTTG	Afu2g07770	
<i>chiB</i> 1 FW	GAATCGCTGCCTTATCTCTT	Afu8g01410	
chiB1 REV	AGCGTCGCTCCCTGGTCAAG		
Afu3g07160 FW	CTTCAAAATATAACTAGCTC	Afu2a07160	
Afu3g07160 REV	AAGACCGACGGCTCTGAGGT	Alusgorio	
Afu3g11280 FW	CGTCTATCACTGTCCTTGCT	Afu3g11280	
Afu3g11280 REV	AGATAGGATGAAAGAGACT		
<i>nagA</i> FW	CGATTCTGGGCGGCTGCACT	Afu8g05020	
nagA REV	GGAAAGAATCAATGACAACT		
<i>chi5</i> FW	AAGGGGCCGCTTGTATATTA	Afu3g07160	
chi5 REV	AGGTGCCAACCTTGGCAAAA		
<i>chi4</i> FW	ATTCCGTTACATAAAATATG	Afu5g03530	
chi4 REV	AGTGCTCTACATATTGTCAG		
<i>chi5</i> FW	CCGCGAGTTCGTCAAGCTAC	Δfu3a07110	
chi5 REV	ATCCGCTGCCTCATCTTCCA	Alusyon no	
eng3 FW	GACCCCTTTTCCAACGCTTG	Δfu1a05290	
eng3 REV	ACAGCGGCTTGGATCAATCA	Alu 1900280	
<i>eng4</i> FW	GTATGAAATTCATCCAGTGT	۸fu5a02280	
eng4 REV	AGCAATGGATGTACTGTGTG	Alubyozzou	
Afu6g08080 FW	TAGAACCCAGCGAATTTTTC	Afu6g08080	
Afu6g08080 REV	AGAAGTCCAATGAACGCACC		
<i>prxB</i> FW	CTCTACTGCCCCTGACTTCG	Afu5g15070	
<i>prxB</i> REV	GGGTGGGAGAAGAGGATAGC		

TABLE S3 ChIP-qPCR primers used in this study