Supplementary material

Nutrient level determines biofilm characteristics and the subsequent impact on microbial corrosion and biocide effectiveness

Silvia J. Salgar-Chaparro^a, Katerina Lepkova^a, Thunyaluk Pojtanabuntoeng^a, Adam Darwin^b, Laura L. Machuca^{a#}

^a Curtin Corrosion Centre, WA School of Mines: Minerals, Energy and Chemical Engineering, Curtin University, Bentley, WA, Australia
 ^b Woodside Energy Ltd., Perth, WA, Australia

* Correspondence:

Laura L. Machuca <u>l.machuca2@curtin.edu.au</u>

Content

 Table S1. Chemical quantitative analysis of produced water in sampled floating production storage and offloading (FPSO) facilities

Table S2. Culture media composition for microbial growth

Table S3. Minimum inhibitory concentration test results

Table S4. Most probable number (MPN) of planktonic cells exposed to different nutrient conditions

Table S5. Statistical test of the effect of nutrients on microbial activity (adenine nucleotides concentration) and pit depth.

Table S6. Adenosine nucleotides concentration and adenylate energy charge of planktonic communities

 grown under different nutrient conditions.

Table S7. Mean microbial community composition of biofilms grown under different nutrient conditions (%) (n = 2).

Table S8. Alpha diversity indices of biofilms grown under different nutrient conditions

Table S9. Corrosion rate calculated from the mass loss of three carbon steel coupons exposed to each condition.

Figure S1. 3D optical microscope surface image of carbon steel coupon exposed to abiotic conditions.

Figure S2. SEM images from cross-sectioned coupons exposed to different nutrients conditions. [1] resin; [2] Metal; [3] corroded area; [4] top surface layer. C1: Consortium 1, C2: Consortium 2.

Figure S3. Phosphorous and calcium maps of cross-sectioned coupons exposed to Consortium 2 under batch (A) and continuous replenishment of nutrients (B).

Common d / Flowert	Limit of detection	Sample			
Compound / Element	(mg/L)	FPSO 1	FPSO 2		
Calcium	0.1	835	330		
Iron	0.01	2.35	< 0.01		
Potassium	0.1	340	15		
Magnesium	0.1	400	210		
Manganese	0.01	0.43	0.08		
Sodium	0.1	11500	8100		
Nickel	0.01	0.02	< 0.01		
Sulphur	0.05	1	530		
Zinc	0.01	< 0.01	0.02		
Arsenic	0.001	0.005	0.003		
NOx-N	0.01	< 0.01	< 0.01		
Nitrate-N	0.01	< 0.01	< 0.01		
Nitrite-N	0.01	< 0.01	< 0.01		
Ammonia-N	0.02	25.5	34		
Chloride	5	19500	18000		
Sulphate	1	<1	1800		
Thiosulphate	2	6.8	6.9		
Total Organic Carbon	1	2.5	66		
Total Nitrogen	0.2	31.5	96		
Total Phosphorus	0.01	0.16	7.3		
Alkalinity	5	300	770		
Salinity	10	36000	28000		

Table S1. Chemical quantitative analysis of produced water in sampled floating production storage and offloading (FPSO) facilities

Ingredients	g/L
Sulphide producing prokaryotes and methanogens (SPP)	<u> </u>
Ammonium chloride	0.25
Ascorbic Acid	0.1
Bacto-casitone	1
D-Glucose	1.1
Dibasic Potassium Phosphate	0.14
Iron(II) Sulphate Heptahydrate	0.5
Magnesium Sulphate Heptahydrate	4.5
Potassium Chloride	0.34
Sodium Acetate	2
Sodium Bicarbonate	5
Sodium Chloride	5
Sodium Formate	13
Sodium Lactate 50%	10 mL
Sodium Thiosulfate Pentahydrate	1.88
Yeast Extract	2
Di-Water	- 990 mL
Acid producing bacteria	
Beef extract	1
Bacto-casitone	10
D-Glucose	5
Sodium chloride	20
Phenol red	0.018
Di-Water	1000 mL
Iron Oxidizing bacteria	1000 IIIL
Calcium Chloride Dihydrate	0.13
Ammonium Iron Citrate	6
Ammonium Nitrate	0.5
Dipotassium Hydrogen Orthophosphate	0.5
Magnesium Sulphate Hentabydrate	0.5
Sodium Chloride	20
Sodium Nitrate	0.5
Di-Water	1000 mI
Iron Reducing Bacteria	1000 IIIL
Ammonium Chloride	15
Calcium Chloride Dihydrate	0.1
Dipotassium Hydrogen Orthophosphate	0.1
Ferric Citrate	0.40
Magnesium Chloride Hevahydrate	0.703
Magnesium Sulphote Hentshydrate	0.1
Manganaga Chlorida Tatrahuderta	0.1
Manganese Chloride I etranydrate	0.005
Potassium Unioride	0.1
Sodium Acetate	0.7
Sodium Bicarbonate	2.5
Sodium Chloride	5
Sodium Molybdate Dihydrate	0.001
Yeast Extract	0.05
Di-Water	1000 mL

 Table S2. Culture media composition for microbial growth

 Table S3. Minimum inhibitory concentration test results

Glutaraldehyde Concentration (ppm)	Microbial concentration (cell/mL)		
0	$(6.1 \pm 0.6) \ge 10^7$		
50	$(1.3 \pm 0.2) \ge 10^7$		
100	$(5.3 \pm 2.3) \ge 10^6$		
200	$(5.1 \pm 2.5) \ge 10^6$		
400	$(2.7 \pm 0.3) \ge 10^6$		
1000	$(1.5 \pm 0.2) \ge 10^{6}$		
2000	$(4.2 \pm 0.1) \ge 10^5$		
2500	BDL*		

Errors represent standard deviation from 3 independent replicates *BDL, below detection limit of the Neubauer counting chamber (1 x 10⁴).

Concertie	Condition	MPN SPP	95% Confic	lence Limit
Consolua	Condition	Cell/mL	Lower	Higher
Consortium 1	Batch	1.10E+08	3.60E+07	4.18E+08
	Continuous	2.40E+04	4.20E+03	2.40E+06
Consortium 2	Batch	1.10E+09	1.80E+08	4.51E+11
	Continuous	3.50E+07	8.70E+06	3.29E+08

Table S4. Most probable number (MPN) of planktonic cells exposed to different nutrient conditions

MPN determined from 3-tube serial dilutions Abbreviations: SPP = sulphide producing prokaryotes

Table S5. Statistical test of the effect of nutrients on microbial activity (adenine nucleotides concentration) and pit depth.

Comontin		ATP		ADP		AMP		Pit depth	
Consorua	Condition	χ²	<i>p</i> -value	χ²	<i>p</i> -value	χ^2	<i>p</i> -value	χ^2	<i>p</i> -value
Consortium 1	Before biocide	9.4	0.012*	8.7	0.012*	7.6	0.031*	1.2	0.33
Consortium 1	After biocide	9.4	0.113	8.7	0.113	7.6	0.089	ND	ND
Consortium 2	Before biocide	9.5	0.017*	9.4	0.009**	10.4	0.041*	29.3	< 0.001 ***
Consortium 2	After biocide	9.5	0.089	9.4	0.141	10.4	0.041*	ND	ND

 χ^2 : Kruskal-Wallis chi-squared values, p-value: pairwise Dunn Test Significance: $p \le 0.001 = ***, p \le 0.01 = **, p \le 0.05 = *, p > 0.05 = not significant$ Abbreviation: ND = not determined

Consortia	Cons	ortium 1	Consortium 2		
Condition	Batch	Continuous	Batch	Continuous	
ATP (pg/mL)	$12,106 \pm 1,616$	$742,608 \pm 15,894$	$8,372 \pm 1,397$	$568,777 \pm 53,533$	
ADP (pg/mL)	$2,830\pm 643$	$14,962 \pm 1,789$	$1,096 \pm 284$	$58,477 \pm 24,961$	
AMP (pg/mL)	$26,983 \pm 4,938$	$443,\!681 \pm 19,\!126$	$8,533 \pm 970$	$396,054 \pm 28,587$	
Total Adenylates (ng/mL)	42 ± 7.1	$1,201 \pm 52$	18 ± 2.6	$1,023 \pm 82$	
AEC	0.32 ± 0.01	0.63 ± 0.01	0.49 ± 0.02	0.58 ± 0.01	
% ATP	29 ± 1.5	63 ± 2.1	46 ± 1.5	56 ± 1.9	
% ADP	7 ± 0.4	1 ± 0.7	6 ± 0.8	6 ± 2.3	
% AMP	64 ± 1.1	38 ± 0.9	48 ± 2.1	39 ± 0.6	

Table S6. Adenosine nucleotides concentration and adenylate energy charge of planktonic communities grown under different nutrient conditions.

Errors represent standard deviation from 3 independent replicates

Table S7. Mean microbial community composition of biofilms grown under different nutrient conditions (%) (n = 2).

		Total	(DNA)			Active	e (RNA)	
Microorganism	Consor	tium 1	Conso	rtium 2	Conso	rtium 1	Conso	ortium 2
	В	С	В	С	В	С	В	С
Methanobacterium (Archaea)	6.20	0.10			12.77	0.01		
Methanothermobacter (Archaea)	0.02	0.05						
Methanoculleus (Archaea)	0.19	0.20			6.23	0.48		
Micrococcus (Bacteria)					0.02			
Proteiniphilum (Bacteria)	0.07	0.32	0.02	0.10	0.16	0.14	0.23	0.55
Anaerophaga (Bacteria)	0.54	3.34	0.13	4.47	0.53	9.92	0.53	2.59
Uncultured Prolixibacteraceae (Bacteria)	0.30	0.02			1.71	0.02		
Bergeyella (Bacteria)					< 0.01			
Bacillus (Bacteria)	0.08	0.01	13.66	18.83	0.06		0.13	0.10
Lactobacillus (Bacteria)							0.13	
Thermoanaerobacter (Bacteria)				0.14				
Uncultured Limnochordales (Bacteria)	0.02	0.01						
Halocella (Bacteria)				< 0.01				
Paracoccus (Bacteria)					< 0.01		< 0.01	
Sphingomonas (Bacteria)		0.01		0.15				
Desulfocarbo (Bacteria)	0.21	0.23			7.61	0.52		
Desulfovibrio (Bacteria)	79.96	63.22	74.89	67.22	20.07	36.36	73.96	62.05
Pelobacter (Bacteria)	0.01	0.11		0.01	0.09	1.00		0.54
Geoalkalibacter (Bacteria)	0.01				0.13			
Marinobacter (Bacteria)	0.25	0.00			0.38	0.01	0.04	
Shewanella (Bacteria)							< 0.01	
Pseudomonas (Bacteria)	3.70	3.59	0.21	0.48	3.09	0.22	0.90	0.77
Thioalbus (Bacteria)	1.10	0.04			36.16	0.23	0.01	0.01
Acetomicrobium (Bacteria)	4.86	17.22	7.95	1.08	7.51	28.53	16.16	4.80
Uncultured Synergistaceae (Bacteria)					0.03			
Thermovirga (Bacteria)	1.82	8.73	2.52	4.09	1.06	4.46	5.34	4.78
Mesotoga (Bacteria)	0.28	0.03			1.46	0.04	0.01	
Kosmotoga (Bacteria)	0.05	0.17			0.16	0.07		
Petrotoga (Bacteria)	0.33	2.60	0.61	3.42	0.76	18.00	2.56	23.81

Abbreviation: B = Batch; C = Continuous

Consortia	Condition	Simpson index	Shannon index
Consortium 1	Batch	0.4 ± 0.06	1.3 ± 0.16
Consortium 1	Continuous	0.6 ± 0.04	1.9 ± 0.22
Consortium 2	Batch	0.5 ± 0.10	1.8 ± 0.33
Consortium 2	Continuous	0.6 ± 0.03	2.1 ± 0.10

Table S8. Alpha diversity indices of biofilms grown under different nutrient conditions

Errors represent standard deviation from 2 independent replicates

Table S9. Corrosion rate calculated from the mass loss of three carbon steel coupons exposed to each condition.

	Corrosion rate (mm y ⁻¹)			
Consortia	Batch	Continuous		
Consortium 1	0.04 ± 0.02	0.03 ± 0.01		
Consortium 2	0.13 ± 0.01	0.41 ± 0.10		

Errors represent standard deviation from 3 independent replicates

Figure S1. 3D optical microscope surface image of carbon steel coupon exposed to abiotic conditions.

Figure S2. SEM images from cross-sectioned coupons exposed to different nutrients conditions. [1] resin; [2] Metal; [3] corroded area; [4] top surface layer. C1: Consortium 1, C2: Consortium 2.

Figure S3. Phosphorous and calcium maps of cross-sectioned coupons exposed to Consortium 2 under batch (A) and continuous replenishment of nutrients (B).