Supplementary Information for the manuscript:

"Evaluation of Fluid Resuscitation Control Algorithms via a Hardware-in-the-Loop Test Bed"

Authors: Hossein Mirinejad, Margo Ricks, Bahram Parvinian, Yi Zhang, Sandy Weininger, Jin-Oh-Hahn, and Christopher G. Scully

Blood Pressure (BP) Waveform Generator

The BP waveform is generated (Box B in Fig. 1) by adjusting a template BP pulse from a single cardiac cycle. The template pulse is normalized to 1000 samples length and 0 to 1 height. The pulse pressure (PP), diastolic pressure (P_{Dias}), and pulse-pulse interval (PP-Int) can then be set for each beat to scale the pulse to the current values. However, for this work, PP was fixed at 40 mmHg and P_{Dias} was initially set as the first MAP value output from the computational patient model minus one-third PP. MAP of the waveform was set by adjusting the offset of the waveform by the current value output from the computational patient model. P_{Dias} was then set as the previous value. To prevent step changes in the pressure waveform, differences between the previous and current value of P_{Dias} were linearly distributed over the tail of the pressure pulse $[Pulse(n) = Pulse(n) + ((P_{Dias}(M) - P_{Dias}(M-1))/400) \times Pulse(n)$, where n are the pulse shape samples from 601 to 1000 and M is the current pulse]. PP-Int was set from the current heart rate value and the pulse was linearly interpolated to match the length of the current interval.

Individual RMSE values for all three comparisons (i.e., HIL vs. in silico, HIL vs. in vivo, and in silico vs. in vivo)

Table 1 Root mean square of error (RMSE) for hemodynamic measurements between the HIL system and in vivo data for individual subjects

Subject	BV (L)	CO (L/min)	MAP (mmHg)
1	0.07	0.46	9.05
2	0.09	1.41	16.95
3	0.06	0.85	6.68
4	0.06	0.48	5.52
5	0.05	0.47	6.78
6	0.09	0.39	6.02
7	0.07	0.48	9.61
8	0.15	0.56	9.74
9	0.11	0.44	9.31
Mean (SD)	0.08 (0.03)	0.62 (0.33)	8.85 (3.45)
Mean % (SD %)	4.29 % (2.08 %)	16.17 % (6.76 %)	11.57 % (3.69%)

Table 2 Root mean square of error (RMSE) for hemodynamic measurements between the HIL system and in silico data for individual subjects

Subject	BV (L)	CO (L/min)	MAP (mmHg)
1	0.03	0.25	3.57
2	0.06	1.04	12.63
3	0.01	0.13	1.47
4	0.01	0.03	0.12
5	0.03	0.11	0.57
6	0.03	0.11	0.97
7	0.01	0.39	4.33
8	0.06	0.31	4.56
9	0.05	0.21	1.20
Mean (SD)	0.03 (0.02)	0.28 (0.30)	3.27 (3.88)
Mean % (SD %)	1.72 % (1.34 %)	7.36 % (7.1 %)	4.12 % (4.64%)

Table 3 Root mean square of error (RMSE) for hemodynamic measurements between in silico and in vivo data for individual subjects

Subject	BV (L)	CO (L/min)	MAP (mmHg)
1	0.05	0.45	8.72
2	0.07	0.81	10.42
3	0.06	0.85	6.64
4	0.06	0.47	5.48
5	0.05	0.41	6.65
6	0.08	0.42	5.90
7	0.07	0.51	7.02
8	0.10	0.43	7.57
9	0.08	0.29	8.54
Mean (SD)	0.07 (0.02)	0.52 (0.19)	7.44 (1.56)
Mean % (SD %)	3.50 % (1.21 %)	13.51 % (3.22 %)	9.82 % (1.47%)

Total amount of fluid infusion from PID and rule-based controller for each subject

Table 4 Total amount of fluid infused by the controllers for individual subjects

	PID (mL)	Rule-Based (mL)
Subject 1	687	403
Subject 2	384	260
Subject 3	1581	1103
Subject 4	1484	695
Subject 5	1177	842
Subject 6	1410	846
Subject 7	1423	892
Subject 8	889	378
Subject 9	399	261

Six different blood pressure artifact models added to the waveform

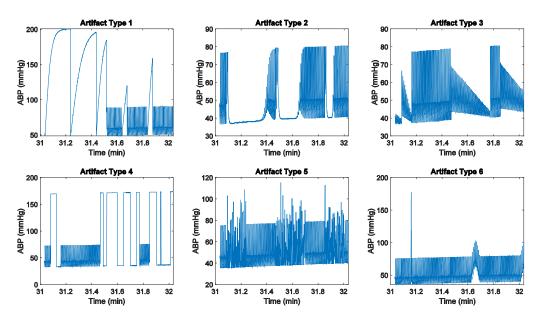


Figure 1 Arterial blood pressure combined with separate artifacts: Type 1: rapid saturation to some maximal BP (ExpBPmax), Type 2: rapid saturation to some BP minimum (ExpBPmin), Type 3: rapid saturation to the current mean BP (LinearAtt), Type 4: high amplitude square wave artifact (Square), Type 5: high frequency noise (HighFreq) and Type 6: highly transient impulse-like artifact (Sinc).

• Infusion and MAP responses for all experiments (in presence of different types of BP artifacts)

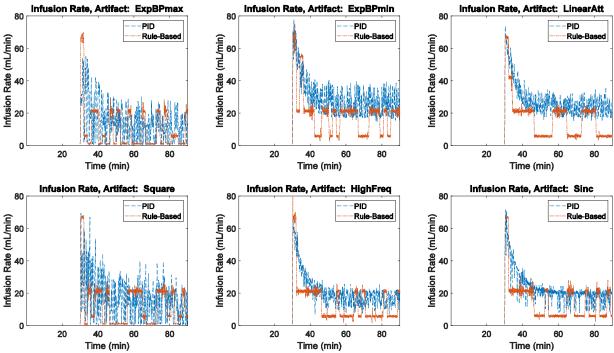


Figure 2 Infusion rate of controllers for different types of BP artifacts: ExpBPmax, ExpBPmin, LinearAtt, Square, HighFreq, and Sinc

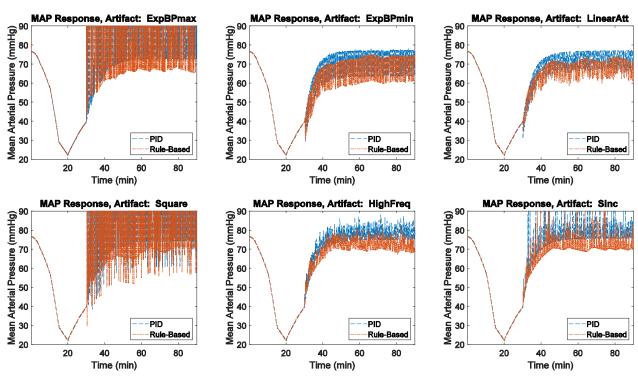


Figure 3 MAP response of controllers for different types of BP artifacts: ExpBPmax, ExpBPmin, LinearAtt, Square, HighFreq, and Sinc