
S1 Appendix

Kalman Filter Algorithm

For the calculation of the conditional distribution of the hidden variables xk,t|t−1, the prediction, filtering, and smooth-
ing of the Kalman filter are performed by the following formulas:

• Prediction:

xk,t|t−1 = Axk,t−1|t−1 +Gzk,t, (S-1)

Σk,t|t−1 = AΣk,t−1|t−1A
′ +Q, (S-2)

• Filtering:

xk,t|t = xk,t|t−1 +Σk,t|tR
−1(yk,t − xk,t|t−1), (S-3)

Σk,t|t = (R−1 +Σ−1
k,t|t−1)

−1, (S-4)

• Smoothing

xk,t|T = xk,t|t + Jk,t(xk,t+1|T − xk,t+1|t), (S-5)

Σk,t|T = Σk,t|t + Jk,t(Σk,t+1|T − Σk,t+1|t)J
′
k,t, (S-6)

Σk,t,t−1|T = Σk,t|tJ
′
k,t−1 + Jk,t(Σk,t+1,t|T −AΣk,t|t)J

′
k,t−1, (S-7)

Jk,t = Σk,t|tA
′Σ−1

k,t+1|t, (S-8)

Σk,T,T−1|T = (I − Σk,T |TR
−1)AΣk,T−1|T−1, (S-9)

where Exp[xk,t] given yk,1, . . ., yk,s is represented by xk,t|s, Var[xk,t] given yk,1, . . ., yk,s is represented by Σk,t|s,
and the covariance between xk,t and xk,t−1 given yk,1, . . ., yk,s is represented by Σk,t,t−1|s. They are used in the
Expectation-step of the Expectation-Maximization (EM) algorithm.

The EM-algorithm for L1-regularized SSM

In the Expectation-step, the conditional expectation of the joint log-likelihood of the complete data set q(θ|θl) is
calculated by

q(θ|θl) = Exp[logP (X,Y ;θ)|Y ;θl]

= −K

2
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where

Vt =

K∑
k=1

∑
t∈Tk

(Σk,t|Tk
+ xk,t|Tk

x′
k,t|Tk

), (S-11)

Vlag =

K∑
k=1

∑
t∈Tk

(Σk,t,t−1|Tk
+ xk,t|Tk

x′
k,t−1|Tk

), (S-12)
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x′
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Wt =
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∑
t∈Tk

(x′
k,t|Tk

yk,t), (S-14)

st =

K∑
k=1

∑
t∈Tk

xk,t|Tk
, (S-15)

st−1 =
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t∈Tk

xk,t−1|Tk
, (S-16)

Elag =
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t∈Tk

xk,t|Tk
z′
k,t−1|Tk

, (S-17)

Et−1 =

K∑
k=1

∑
t∈Tk

xk,t−1|Tk
z′
k,t−1|Tk

, (S-18)
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In the Maximization-step, θl is updated to θl+1 to be θl+1 = argmaxθ q(θ|θl). Let vt,i, vlag,i, vt−1,i, et,i and
elag,i set a transpose of ith row vector of Vt, Vlag, Vt−1, Elag and Et−1, respectively. Further, set st,i and st−1,i as
an ith element of st and st−1, and vt,i,j and vt−1,i,j as an ith row jth column element of Vt and Vt−1, respectively.
Then, θ is updated as

ai = argmin
ai

{a′
iVt−1ai + 2v′

t−1,iai − 2v′
lag,iai + 2g′

iE
′
t−1ai + 2qi
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(s)
i |ai,j |}, (S-21)
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gi

{g′
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λ
(s)
i |gi,j |}, (S-23)
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hi = argmin
hi

{h′
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(Vt − VlagF
′ − FV ′

lag + FVtF
′ + FElagG

′ +GE′
lagF

′ − EtG
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1∑K
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{(yk,t − xk,t|Tk
)(yk,t − xk,t|Tk

)′ +Σk,t|Tk
}, (S-28)

µk,0 = xk,0|Tk
(k = 1, . . . ,K), (S-29)

where Ai, Gi, andHi be active sets of elements for ai, gi, and hi, i.e., ∀{ai,j ̸= 0} ∈ Ai for i = 1, . . . , p, ∀{gi,j ̸= 0} ∈ Gi
for i = 1, . . . , p, and ∀{hi,j ̸= 0} ∈ Hi for i = 1, . . . , q, respectively, and sign means a sign vector consisting
positive (+1) or negative (-1) values. The descriptions of Ai , Gi , and Hi stand for an |Ai| × |Ai| matrix or an |Ai|
dimensional vector, a |Gi| × |Gi| matrix or a |Gi| dimensional vector, and a |Hi| × |Hi| matrix or an |Hi| dimensional
vector, respectively. We describe A = {A1, . . . ,Ai}, G = {G1, . . . ,Gi}, and H = {H1, . . . ,Hi}.

Here, we have to evaluate all plausible active sets Ai, Gi, and Hi to obtain Eqs.(S-22)-(S-26). However, through

the proposed parameter optimization algorithm, the regularization parameters λ
(s)
i and λ

(o)
i are gradually changed
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and Ai, Gi, and Hi are almost the same as the previously obtained active sets. Thus, we only evaluate active sets
that are generated from the previously obtained ones by adding and removing at most two elements. For example,
if we have Ai = {0, 1, 4} and p = 4, we only evaluate Ai = {0}, {1}, {4}, {0, 1}, {0, 4}, {1, 4}, {0, 1, 4}, {1, 2, 4},
{1, 3, 4}, {0, 2, 4}, {0, 3, 4}, {0, 1, 2}, {0, 1, 3}, {0, 1, 2, 4}, {0, 1, 3, 4}, {0, 1, 2, 3, 4}. This can dramatically reduce the
computational cost with keeping the performance like Least Absolute Shrinkage and Selection Operator (LASSO).

Parameter Optimization Algorithm with L1 Regularization

LetAi, Gi, andHi be active sets of elements for ai, gi, and hi, i.e., ∀{ai,j ̸= 0} ∈ Ai for i = 1, . . . , p, ∀{gi,j ̸= 0} ∈ Gi for
i = 1, . . . , p, and ∀{hi,j ̸= 0} ∈ Hi for i = 1, . . . , q, respectively. Because of the combination of the regularization terms

and a state space representation, updating an element of λ(s) = (λ
(s)
1 , . . . , λ

(s)
p )′ and λ(o) = (λ

(o)
1 , . . . , λ

(o)
q )′influences

the other active sets. Thus, it is difficult to select the optimal active sets of Ai, Gi, and Hi, and the values of θ, λ(s),
and λ(o), at the same time. Therefore, we propose a novel algorithm to separately update them in each row. In this
algorithm, we introduce auxiliary sets Ãi, G̃i, and H̃i, and constraint that the active sets Ai, Gi, and Hi are selected
from the auxiliary sets, i.e., Ai ⫅ Ãi, Gi ⫅ G̃i, and Hi ⫅ H̃i.

Algorithm

1. Set λ(s) = 0 and λ(o) = 0, and Ãi, G̃i, and H̃i to be full. Then, recursively update θ using the EM algorithm
until convergence is attained. In this step, active sets Ai (i = 1, . . . , p), Gi (i = 1, . . . , p), and Hi (i = 1, . . . , q)
consist of all elements, i.e., A, G, and H become dense matrices, since the regularization terms can be neglected.

2. Set the current iteration Lcur to be 0 and the maximum number of iterations to be Lmax.

3. For iupd = 1, . . . , p

a). Set Ãiupd
and G̃iupd

full and λ
(s)
iupd

= 0 to allow aiupd
and giupd

to become dense vectors. Through the

following steps, with fixing λ
(s)
i (i ̸= iupd) and λ

(o)
i , λ

(s)
iupd

is gradually increased to find an optimum λ
(s)
iupd

for which the BIC score is minimized.

b). Calculate conditional expectations using the Kalman filter.

c). Update A, G, H, and θ by the algorithm described in the supplemental materials. Here, Ai, Gi and Hi can
be constructed from Ãi, H̃i and G̃i, respectively.

d). Calculate the BIC score and increase λ
i
(s)
upd

if the regularized log-likelihood is converged. Then, repeat from

step (b) until Aiupd
and Giupd

become null matrices.

e). Set {λ(s),λ(o),A,G,H,θ} as the value with the lowest BIC score obtained through the above described
steps. Furthermore, set Ãiupd

← Aiupd
and G̃iupd

← Giupd
.

4. For iupd = 1, . . . , q and H, the same procedure as A and G in step 3 is proceeded.

5. Set Lcur → Lcur + 1 and repeat from step 3 until Lcur becomes Lmax.
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