S1 Appendix

Kalman Filter Algorithm

For the calculation of the conditional distribution of the hidden variables $x_{k,t|t-1}$, the prediction, filtering, and smoothing of the Kalman filter are performed by the following formulas:

• Prediction:

$$
x_{k,t|t-1} = Ax_{k,t-1|t-1} + Gz_{k,t},
$$
\n(S-1)

$$
\Sigma_{k,t|t-1} = A\Sigma_{k,t-1|t-1}A' + Q,\tag{S-2}
$$

• Filtering:

$$
\boldsymbol{x}_{k,t|t} = \boldsymbol{x}_{k,t|t-1} + \Sigma_{k,t|t} R^{-1} (\boldsymbol{y}_{k,t} - \boldsymbol{x}_{k,t|t-1}),
$$
\n(S-3)

$$
\Sigma_{k,t|t} = (R^{-1} + \Sigma_{k,t|t-1}^{-1})^{-1},\tag{S-4}
$$

• Smoothing

$$
\boldsymbol{x}_{k,t|T} = \boldsymbol{x}_{k,t|t} + J_{k,t}(\boldsymbol{x}_{k,t+1|T} - \boldsymbol{x}_{k,t+1|t}),
$$
\n(S-5)

$$
\Sigma_{k,t|T} = \Sigma_{k,t|t} + J_{k,t}(\Sigma_{k,t+1|T} - \Sigma_{k,t+1|t})J'_{k,t},
$$
\n(S-6)

$$
\Sigma_{k,t,t-1|T} = \Sigma_{k,t|t} J'_{k,t-1} + J_{k,t} (\Sigma_{k,t+1,t|T} - A\Sigma_{k,t|t}) J'_{k,t-1},
$$
\n(S-7)

$$
J_{k,t} = \sum_{k,t \mid t} A' \sum_{k,t+1 \mid t}^{-1},\tag{S-8}
$$

$$
\Sigma_{k,T,T-1|T} = (I - \Sigma_{k,T|T} R^{-1}) A \Sigma_{k,T-1|T-1},
$$
\n(S-9)

where $\text{Exp}[\boldsymbol{x}_{k,t}]$ given $\boldsymbol{y}_{k,1}, \ldots, \boldsymbol{y}_{k,s}$ is represented by $\boldsymbol{x}_{k,t|s}$, $\text{Var}[\boldsymbol{x}_{k,t}]$ given $\boldsymbol{y}_{k,1}, \ldots, \boldsymbol{y}_{k,s}$ is represented by $\boldsymbol{\Sigma}_{k,t|s}$, and the covariance between $x_{k,t}$ and $x_{k,t-1}$ given $y_{k,1}, \ldots, y_{k,s}$ is represented by $\Sigma_{k,t,t-1|s}$. They are used in the Expectation-step of the Expectation-Maximization (EM) algorithm.

The EM-algorithm for *L***1-regularized SSM**

In the Expectation-step, the conditional expectation of the joint log-likelihood of the complete data set $q(\theta|\theta_i)$ is calculated by

$$
q(\theta|\theta_{l}) = \text{Exp}[\log P(X, Y; \theta)|Y; \theta_{l}]
$$

\n
$$
= -\frac{K}{2}\log |\Sigma_{0}| - \frac{1}{2}\sum_{k=1}^{K} T_{k} \log |Q| - \frac{1}{2}\sum_{k=1}^{K} T_{k} \log |R| - \frac{1}{2}\text{tr}[\sum_{k=1}^{K}\sum_{k,0|T_{k}}^{1} \{(x_{k,0|T_{k}} - \mu_{k,0})(x_{k,0|T_{k}} - \mu_{k,0})' + \Sigma_{k,0|T_{k}}\}]
$$

\n
$$
- \frac{1}{2}\text{tr}\{Q^{-1}(V_{t} - V_{lag}F' - FV'_{lag} + FV_{t-1}F' + FE_{t-1}G' + GE'_{t-1}F' - E_{lag}G' - GE_{lag} + GZG')\}
$$

\n
$$
- \frac{1}{2}\text{tr}[R^{-1}\sum_{k=1}^{K}\sum_{t=1}^{T_{k}}\{(y_{k,t} - Hx_{k,t|T_{k}})(y_{k,t} - Hx_{k,t|T_{k}})' + H\Sigma'_{k,t|T_{k}}H'\}]
$$

\n
$$
- N(\sum_{k=1}^{K} T_{k} + \frac{1}{2})\log 2\pi - \sum_{i=1}^{p}\sum_{j=1}^{p} \lambda_{i}^{(s)}|A_{i,j}| - \sum_{i=1}^{p}\sum_{j=1}^{m} \lambda_{i}^{(s)}|G_{i,j}| - \sum_{i=1}^{q}\sum_{j=1}^{p} \lambda_{i}^{(o)}|H_{i,j}|,
$$
\n(S-10)

where

$$
V_t = \sum_{k=1}^K \sum_{t \in \mathcal{T}_k} (\Sigma_{k,t|T_k} + \mathbf{x}_{k,t|T_k} \mathbf{x}'_{k,t|T_k}),
$$
\n(S-11)

$$
V_{lag} = \sum_{k=1}^{K} \sum_{t \in \mathcal{T}_k} (\Sigma_{k,t,t-1|T_k} + \boldsymbol{x}_{k,t|T_k} \boldsymbol{x}'_{k,t-1|T_k}),
$$
\n(S-12)

$$
V_{t-1} = \sum_{k=1}^{K} \sum_{t \in \mathcal{T}_k} (\Sigma_{k,t-1|T_k} + \boldsymbol{x}_{k,t-1|T_k} \boldsymbol{x}'_{k,t-1|T_k}),
$$
\n(S-13)

$$
W_t = \sum_{k=1}^{K} \sum_{t \in \mathcal{T}_k} (\mathbf{x}'_{k,t|T_k} \mathbf{y}_{k,t}),
$$
\n(S-14)

$$
s_t = \sum_{k=1}^K \sum_{t \in \mathcal{T}_k} x_{k,t|T_k},\tag{S-15}
$$

$$
s_{t-1} = \sum_{k=1}^{K} \sum_{t \in \mathcal{T}_k} x_{k,t-1|T_k}, \tag{S-16}
$$

$$
E_{lag} = \sum_{k=1}^{K} \sum_{t \in \mathcal{T}_k} x_{k,t|T_k} z'_{k,t-1|T_k},
$$
\n(S-17)

$$
E_{t-1} = \sum_{k=1}^{K} \sum_{t \in \mathcal{T}_k} \boldsymbol{x}_{k,t-1|T_k} \boldsymbol{z}'_{k,t-1|T_k},
$$
\n(S-18)

$$
\boldsymbol{z} = \sum_{k=1}^{K} \sum_{t \in \mathcal{T}_k} \boldsymbol{z}_{k,t-1|T_k},
$$
\n
$$
\sum_{K}
$$
\n(S-19)

$$
Z = \sum_{k=1}^{N} \sum_{t \in \mathcal{T}_k} z_{k,t-1|T_k} z'_{k,t-1|T_k}.
$$
\n(S-20)

In the Maximization-step, θ_l is updated to θ_{l+1} to be $\theta_{l+1} = \arg \max_{\theta} q(\theta | \theta_l)$. Let $v_{t,i}$, $v_{lag,i}$, $v_{t-1,i}$, $e_{t,i}$ and $e_{lag,i}$ set a transpose of ith row vector of V_t , V_{lag} , V_{t-1} , E_{lag} and E_{t-1} , respectively. Further, set $s_{t,i}$ and $s_{t-1,i}$ as an *i*th element of s_t and s_{t-1} , and $v_{t,i,j}$ and $v_{t-1,i,j}$ as an *i*th row *j*th column element of V_t and V_{t-1} , respectively. Then, *θ* is updated as

$$
\mathbf{a}_{i} = \arg \min_{\mathbf{a}_{i}} \ \{ \mathbf{a}_{i}^{\prime} V_{t-1} \mathbf{a}_{i} + 2 \mathbf{v}_{t-1,i}^{\prime} \mathbf{a}_{i} - 2 \mathbf{v}_{lag,i}^{\prime} \mathbf{a}_{i} + 2 \mathbf{g}_{i}^{\prime} E_{t-1}^{\prime} \mathbf{a}_{i} + 2 q_{i} \sum_{j=1}^{p} \lambda_{i}^{(s)} |a_{i,j}| \},
$$
\n(S-21)

s.t.
$$
\mathbf{a}_{i}^{\mathcal{A}_{i}} = V_{t-1}^{\mathcal{A}_{i}^{-1}} (\mathbf{v}_{lag,i}^{\mathcal{A}_{i}} - \mathbf{v}_{t-1,i}^{\mathcal{A}_{i}} - u_{i} \mathbf{s}_{t-1}^{\mathcal{A}_{i}} - E_{t-1}^{\mathcal{A}_{i}} \mathbf{g}_{i}^{\mathcal{A}_{i}} - q_{i} \lambda_{i}^{(s)} sign(\mathbf{a}_{i}^{\mathcal{A}_{i}})),
$$
\n(S-22)

$$
\boldsymbol{g}_{i} = \arg \min_{\boldsymbol{g}_{i}} \ \{ \boldsymbol{g}_{i}^{\prime} Z \boldsymbol{g}_{i} + 2 \boldsymbol{f}_{i}^{\prime} E_{t-1} \boldsymbol{g}_{i} - 2 \boldsymbol{e}_{lag,i}^{\prime} \boldsymbol{g}_{i} + 2 q_{i} \sum_{j=1}^{m} \lambda_{i}^{(s)} |g_{i,j}| \},
$$
\n(S-23)

$$
s.t. \quad \boldsymbol{g}_i^{\mathcal{G}_i} = Z^{\mathcal{G}_i^{-1}} (\boldsymbol{e}_{lag,i}^{\mathcal{G}_i} - E_{t-1}^{\mathcal{G}'_i} \boldsymbol{f}_i^{\mathcal{G}_i} - u_i \boldsymbol{z}^{\mathcal{G}_i} - q_i \lambda_i^{(s)} sign(\boldsymbol{g}_i^{\mathcal{G}_i})), \tag{S-24}
$$

$$
\boldsymbol{h}_i = \arg\min_{\boldsymbol{h}_i} \ \{ \boldsymbol{h}'_i V_t \boldsymbol{h}_i - 2 \boldsymbol{w}'_{t,i} \boldsymbol{h}_i + 2 r_i \sum_{j=1}^p \lambda_i^{(o)} |h_{i,j}|\},\tag{S-25}
$$

$$
s.t. \quad \boldsymbol{h}_i^{\mathcal{H}_i} = V_t^{\mathcal{H}_i^{-1}}(\boldsymbol{w}_{t,i}^{\mathcal{H}_i} - r_i \lambda_i^{(o)} sign(\boldsymbol{h}_i^{\mathcal{H}_i})), \tag{S-26}
$$

$$
Q = \frac{1}{\sum_{k=1}^{K} T_k} (V_t - V_{lag} F' - F V_{lag}' + F V_t F' + F E_{lag} G' + G E_{lag}' F' - E_t G' - G E_t + G Z G'),
$$
\n(S-27)

$$
R = \frac{1}{\sum_{k=1}^{K} T_k} \sum_{t \in \mathcal{T}_{k,obs}} \{ (\mathbf{y}_{k,t} - \mathbf{x}_{k,t|T_k})(\mathbf{y}_{k,t} - \mathbf{x}_{k,t|T_k})' + \sum_{k,t|T_k} \},
$$
\n(S-28)

$$
\mu_{k,0} = x_{k,0|T_k} \quad (k = 1, \dots, K),
$$
\n(S-29)

where $\mathcal{A}_i, \mathcal{G}_i,$ and \mathcal{H}_i be active sets of elements for $\boldsymbol{a}_i, \boldsymbol{g}_i,$ and $\boldsymbol{h}_i,$ $i.e., \forall \{a_{i,j} \neq 0\} \in \mathcal{A}_i$ for $i = 1, \ldots, p, \forall \{g_{i,j} \neq 0\} \in \mathcal{G}_i$ for $i = 1, \ldots, p$, and $\forall \{h_{i,j} \neq 0\} \in \mathcal{H}_i$ for $i = 1, \ldots, q$, respectively, and *sign* means a sign vector consisting positive (+1) or negative (-1) values. The descriptions of A_i , G_i , and H_i stand for an $|A_i| \times |A_i|$ matrix or an $|A_i|$ dimensional vector, a $|\mathcal{G}_i| \times |\mathcal{G}_i|$ matrix or a $|\mathcal{G}_i|$ dimensional vector, and a $|\mathcal{H}_i| \times |\mathcal{H}_i|$ matrix or an $|\mathcal{H}_i|$ dimensional vector, respectively. We describe $\mathcal{A} = \{A_1, \ldots, A_i\}, \mathcal{G} = \{G_1, \ldots, G_i\},$ and $\mathcal{H} = \{\mathcal{H}_1, \ldots, \mathcal{H}_i\}.$

Here, we have to evaluate all plausible active sets A_i , G_i , and H_i to obtain Eqs.(S-22)-(S-26). However, through the proposed parameter optimization algorithm, the regularization parameters $\lambda_i^{(s)}$ and $\lambda_i^{(o)}$ are gradually changed

and A_i, G_i , and H_i are almost the same as the previously obtained active sets. Thus, we only evaluate active sets that are generated from the previously obtained ones by adding and removing at most two elements. For example, if we have $A_i = \{0, 1, 4\}$ and $p = 4$, we only evaluate $A_i = \{0\}$, $\{1\}$, $\{4\}$, $\{0, 1\}$, $\{0, 4\}$, $\{1, 4\}$, $\{0, 1, 4\}$, $\{1, 2, 4\}$, $\{1,3,4\}, \{0,2,4\}, \{0,3,4\}, \{0,1,2\}, \{0,1,3\}, \{0,1,2,4\}, \{0,1,3,4\}, \{0,1,2,3,4\}.$ This can dramatically reduce the computational cost with keeping the performance like Least Absolute Shrinkage and Selection Operator (LASSO).

Parameter Optimization Algorithm with *L***1 Regularization**

Let $\mathcal{A}_i, \mathcal{G}_i,$ and \mathcal{H}_i be active sets of elements for $\bm{a}_i, \bm{g}_i,$ and $\bm{h}_i,$ $i.e., \forall \{a_{i,j} \neq 0\} \in \mathcal{A}_i$ for $i=1,\ldots,p, \forall \{g_{i,j} \neq 0\} \in \mathcal{G}_i$ for $i = 1, \ldots, p$, and $\forall \{h_{i,j} \neq 0\} \in \mathcal{H}_i$ for $i = 1, \ldots, q$, respectively. Because of the combination of the regularization terms and a state space representation, updating an element of $\mathbf{\lambda}^{(s)} = (\lambda_1^{(s)}, \dots, \lambda_p^{(s)})'$ and $\mathbf{\lambda}^{(o)} = (\lambda_1^{(o)}, \dots, \lambda_q^{(o)})'$ influences the other active sets. Thus, it is difficult to select the optimal active sets of A_i , G_i , and H_i , and the values of θ , $\lambda^{(s)}$, and $\lambda^{(o)}$, at the same time. Therefore, we propose a novel algorithm to separately update them in each row. In this algorithm, we introduce auxiliary sets \tilde{A}_i , \tilde{G}_i , and $\tilde{\mathcal{H}}_i$, and constraint that the active sets A_i , G_i , and \mathcal{H}_i are selected from the auxiliary sets, *i.e.*, $A_i \subseteq \tilde{A}_i$, $\mathcal{G}_i \subseteq \tilde{\mathcal{G}}_i$, and $\mathcal{H}_i \subseteq \tilde{\mathcal{H}}_i$.

Algorithm

- 1. Set $\lambda^{(s)} = 0$ and $\lambda^{(o)} = 0$, and $\tilde{\mathcal{A}}_i$, $\tilde{\mathcal{G}}_i$, and $\tilde{\mathcal{H}}_i$ to be full. Then, recursively update θ using the EM algorithm until convergence is attained. In this step, active sets \mathcal{A}_i ($i = 1, \ldots, p$), \mathcal{G}_i ($i = 1, \ldots, p$), and \mathcal{H}_i ($i = 1, \ldots, q$) consist of all elements, *i.e.*, *A*, *G*, and *H* become dense matrices, since the regularization terms can be neglected.
- 2. Set the current iteration L_{cur} to be 0 and the maximum number of iterations to be L_{max} .
- 3. For $i_{upd} = 1, ..., p$
	- a). Set $\tilde{\mathcal{A}}_{i_{upd}}$ and $\tilde{\mathcal{G}}_{i_{upd}}$ full and $\lambda_{i_{upd}}^{(s)} = 0$ to allow $a_{i_{upd}}$ and $g_{i_{upd}}$ to become dense vectors. Through the following steps, with fixing $\lambda_i^{(s)}$ $(i \neq i_{upd})$ and $\lambda_i^{(o)}$, $\lambda_{i_{upd}}^{(s)}$ is gradually increased to find an optimum $\lambda_{i_{upd}}^{(s)}$ for which the BIC score is minimized.
	- b). Calculate conditional expectations using the Kalman filter.
	- c). Update A, G, H , and θ by the algorithm described in the supplemental materials. Here, A_i, G_i and H_i can be constructed from \tilde{A}_i , $\tilde{\mathcal{H}}_i$ and $\tilde{\mathcal{G}}_i$, respectively.
	- d). Calculate the BIC score and increase $\lambda_{i_{upd}^{(s)}}$ if the regularized log-likelihood is converged. Then, repeat from step (b) until $A_{i_{upd}}$ and $G_{i_{upd}}$ become null matrices.
	- e). Set $\{\lambda^{(s)}, \lambda^{(o)}, \mathcal{A}, \mathcal{G}, \mathcal{H}, \theta\}$ as the value with the lowest BIC score obtained through the above described steps. Furthermore, set $\mathcal{A}_{i_{upd}} \leftarrow \mathcal{A}_{i_{upd}}$ and $\mathcal{G}_{i_{upd}} \leftarrow \mathcal{G}_{i_{upd}}$.
- 4. For $i_{upd} = 1, \ldots, q$ and H , the same procedure as A and G in step 3 is proceeded.
- 5. Set $L_{cur} \rightarrow L_{cur} + 1$ and repeat from step 3 until L_{cur} becomes L_{max} .