
Predicting Intracranial Pressure and Brain Tissue Oxygen Crises in 
Patients with Severe Traumatic Brain Injury 
 
SUPPLEMENTAL MATERIAL 

Differences in patient cohorts 

 Our single-center 6-month mortality for the 3 cohorts, study, model and 

validation were 28%, 24%, and 14% respectively. These numbers compare 

favorably with results from recent randomized controlled multi-center trials in 

severe TBI (EUROTHERM3235 and BEST-TRIP) where mortality among control 

and intervention groups ranged from 26% to 44%. Our groups are well matched 

in terms of age, gender and admission Glasgow Coma Scores. We made no 

attempt and had no intention to create strictly matched groups (that would require 

propensity score matching) since our primary aim was an ICP/PbtO2 prediction 

algorithm and not clinical outcome comparisons between groups. Nevertheless, 

potential explanations for the mortality difference may relate to variability in 

baseline characteristics (as a cause of trauma more assaults and less 

transportation related accidents in the older cohort), and to an overall 

advancement of care leading to decreasing mortality in the more contemporary 

cohort. Interquartile ranges for number and duration of elevated ICP episodes 

are comparable among groups and representative of severe TBI populations.  

 

Constructing epochs 

 Since multiple monitoring devices were sampled, we often had more than 

one value for a given signal at a given time. Consequently, the first step in 

preparing our data was to exclude physiologically impossible values and keep 



only the first non-excluded data value for each time stamp. We retained values 

as follows: ICP: 0 - 80; EtCO2: 15 - 80; MAP: 20-160; PbtO2: 0-60; SaO2: 40-100.  

 Crises periods were determined by sweeping through the real time data 

chronologically and tagging periods of time that meet the crisis criteria (ICP or 

PbtO2 values above or below the crisis threshold for the specified time duration). 

These periods of time were excluded from the data used to predict crises. To 

generate the epochs for prediction, we again swept through the data, this time 

working backwards, starting N minutes before the start of each crisis (to ensure 

we have some epochs N minutes from crises), extracting all successive 30-

minute epochs with at least 25 data points, with no more than 0.05 hours (1.5 

minutes) between any two points. 

 We pre-process each epoch by interpolating any missing points to obtain 

points at every 0.01 hour (36 seconds), since that was our typical sample 

frequency. We then downsample the data to every 0.02 hours and smooth the 

points using a first order Savitzky-Golay filter with window size 3. 

 We then determined whether the epoch is a precursor to a crisis or not by 

looking N (15, 30, 60, etc.) minutes in the future and determining if the patient is 

in a period of time that meets the crisis definition. If so, the epoch is considered 

pre-crisis, if not, then it is tagged as a non-pre-crisis epoch. If there was a gap in 

the patient data at the prediction time, the epoch was excluded from 

consideration for that value of N. All epochs with known status N minutes in the 

future were used in the AR-OR and logistic regression models for predicting N 

minutes in the future. The time since last crisis (going back to the start of the 



patient stay, if needed) was also used in the AR-OR and some of the logistic 

regression models. 

 

Tables S1 and S2 show the statistics for the epochs used to predict 30 minutes 

in the future for the ICP and PbtO2 crises, respectively. 

 

Study Cohort 

Model Selection 

Cohort Validation Cohort 

Number of epochs 43,353 23,751 38,349 

Number of pre-

crisis epochs 5,979 3,506 4,025 

% of pre-crisis 

epochs 14% 15% 10% 

 

Table S1: Epoch counts for ICP crises predictions.  
 

 

Study Cohort 

Model Selection 

Cohort Validation Cohort 

Number of epochs 7,716 3,303 9,681 

Number of pre-

crisis epochs 80 30 142 

% of pre-crisis 

epochs 1% 1% 1% 

 

Table S2: Epoch counts for PbtO2 crises predictions.  



 

 

Tables S3 - S6 show the confusion matrix values for the model selection and 

validation cohorts. These values are the true positive, false positive, false 

negative and true negative values for predicting pre-crisis epochs. The values in 

the tables are based on the "best", non cross-fold validation models as 

determined by the highest F2-score. The different F2-score values were 

calculated by slowly moving the threshold that divides the pre-crisis label from 

the non-crisis label and computing the F2-score after each shift. Using different 

criteria for "best" will yield different results. For example, if the goal is not to  miss 

any pre-crisis epochs or to minimize false alarms, the threshold selected and the 

confusion matrix contents would be very different. 

  Predicted 

  Pre-crisis Non-crisis 

Actual 
Pre-crisis 3,015 491 

Non-crisis 6,382 13,863 

Table S3: Confusion matrix for ICP model selection cohort best "AR-OR model + 
time since last crisis + last 2 ICP values" model (as determined by F2-score).  
 

  Predicted 

  Pre-crisis Non-crisis 

Actual 
Pre-crisis 3,331 694 

Non-crisis 8,327 25,997 

Table S4: Confusion matrix for ICP validation cohort best "AR-OR model + time 
since last crisis + last 2 ICP values" model (as determined by F2-score).  



 

 

  Predicted 

  Pre-crisis Non-crisis 

Actual 
Pre-crisis 15 15 

Non-crisis 54 3,219 

Table S5: Confusion matrix for PbtO2 model selection cohort best "AR-OR model 
+ time since last crisis + last 2 PbtO2 values" model (as determined by F2-score).  
 

  Predicted 

  Pre-crisis Non-crisis 

Actual 
Pre-crisis 100 42 

Non-crisis 293 9,246 

Table S6: Confusion matrix for PbtO2 validation cohort best "AR-OR model + 
time since last crisis + last 2 PbtO2 values" model (as determined by F2-score).  
 

  



Additional Model Performance Parameters 
 
Since false positive and false negative values are specific to a model and 
classification threshold, we provide these values for the optimal model for 
predicting 30 minutes in the future. We define the optimal model as the model 
with the highest F2-score for the rare class. (See the corresponding confusion 
matrices in Figures S3-S6). Since the prevalence is small for rare class 
problems, positive and negative likelihood ratios are usually used to measure 
performance. They are more informative than positive and negative predictive 
values, where the overall prevalence of the outcomes has a very large impact. 
 
The likelihood ratios and predictive values for the models are provided in the 
table below. As can be seen, the positive likelihood ratios are well above 1 for the 
all of the models, indicating that the model prediction provides substantial 
improvement to the post-test probability of a detection of a crisis, with little 
change in the post-test probability of no-crisis determination (negative likelihood 
ratio < 1).   
 
Model Cohort Positive 

Likelihood 
Ratio 

Negative 
Likelihood 
Ratio 

Positive 
Predictive 
Value 

Negative 
Predictive 
Value 

ICP 
(S3) 

Model 
Selection 

2.73 0.20 0.32 0.97 

ICP 
(S4) 

Validation 3.41 0.23 0.29 0.97 

PbtO2 
(S5) 

Model 
Selection 

30.31 0.51 0.22 1.00 

PbtO2 
(S6) 

Validation 22.93  0.31 0.25 1.00 

	
Table S7: Positive and Negative Likelihood Ratios and Predictive Values for the 
best models.   
 



A number of our predictive models utilize a set of features that describe how long 

it has been since the patient's last crisis.  

 

Figure S1: Probability of a second ICP (left) or PbtO2 (right) crisis as a 
function of time since last crisis. 

 
Figure S2: (Left) Histogram of time since last ICP crisis.  (Right) Histogram 
of time since last PbtO2 crisis for training data sets. 

 
Rather than encoding how long it is has been since a crisis using a single 

number (for example, recording the minutes since last crisis), we bin the different 
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values into eight categories: (1) ≤ 15 minutes since the last crisis; (2) at least 15 

minutes, but ≤ 30 minutes since the last crisis; (3) at least 30 minutes, but ≤ 60 

minutes since the last crisis; (4) at least 60 minutes, but ≤ 90 minutes since the 

last crisis; (5) at least 90 minutes, but ≤ 180 minutes since the last crisis; (6) at 

least 180 minutes, but ≤ 360 minutes since the last crisis; (7) more than 360 

minutes since the last crisis and (8) no prior crisis. We then represent the time 

since the last crisis with a vector of eight values. Each patient will have a single 

non-zero value in the vector, with a one indicating which category the patient falls 

in. Using the different bins as features allows us to model a non-linear 

relationship with the time since last crisis. If there is no information about the 

patient crisis state at that time, that is, we have a discontinuity in our data, we 

exclude that epoch of time from the particular experiment. For reference, Figure 

S1 shows the likelihood of a second crisis event occurring as a function of time 

from the first crisis event. Figure S2 depicts a histogram of the time since last 

crises for all of the 30-minute epochs in the ICP and PbtO2 data sets. In our 

training data set there were 16,501 epochs without any prior crisis and 7,004 

training PbtO2 epochs without any prior crises. 

 
  



Additional Model Performance Findings (ROC Area): 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Table S8: ROC area for predicting ICP crises for different models and 
forecasting times.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Table S9: ROC area for predicting PbtO2 crises for different models and 
forecasting times.  
 
 
 
  



Confidence Intervals 
 
Model	 Time	to	Predict	 AUC	 CI	
ICPx10	 15	 .92	 0.91				0.92	
ICPx10	 30	 .86	 0.85				0.86	
ICPx10	 60	 .83	 0.83				0.84	
1CPx10	 120	 .81	 0.80				0.81	
ICPx10	 180	 .78	 0.78				0.79	
ICPx10	 360	 .76	 0.75				0.76	
ICP	 15	 .89	 0.88				0.89	
ICP	 30	 .83	 0.83				0.84	
ICP	 60	 .81	 0.80				0.82	
ICP	 120	 .79	 0.78				0.79	
ICP	 180	 .77	 0.77				0.78	
ICP	 360	 .75	 0.75				0.76	

PbtO2x10	 15	 .90	 0.87				0.92	
PbtO2x10	 30	 .91	 0.89				0.89	
PbtO2x10	 60	 .83	 0.80				0.86	
PbtO2x10	 120	 .81	 0.78				0.83	
PbtO2x10	 180	 .78	 0.75				0.80	
PbtO2x10	 360	 .74	 0.72				0.77	
PbtO2	 15	 .90	 0.86				0.92	
PbtO2	 30	 .91	 0.87				0.94	
PbtO2	 60	 .81	 0.78				0.85	
PbtO2	 120	 .78	 0.74				0.81	
PbtO2	 180	 .73	 0.70				0.76	
PbtO2	 360	 .68	 0.65				0.71	

 
Table S10: The 95% confidence intervals (CI) as a function of prediction time for 
ICP and PbtO2 crisis events for the best model in tables S8 and S9.  
 
 
  1 month GOS 3 month GOS 6 month GOS 
Signal Metric [1,2,3] vs. [4,5] [1,2,3] vs. [4,5] [1,2,3] vs. [4,5] 

ICP 
Minutes in 
crisis 0.104 0.001 0.003 
Fraction of 
time in crisis 0.501 0.200 0.049 

PbtO2 

Minutes in 
crisis 0.078 0.043 0.191 
Fraction of 
time in crisis 0.194 0.065 0.346 

 
Table S11: Significance values for correlations in model validation set. 
Statistically significant values (< 0.05) are shaded.   
  



Predictive Models 

Gaussian Process 

 We follow the process used by Güiza et al. (1) and use the gpml toolbox 

(http://www.gaussianprocess.org/gpml/) to implement the Gaussian Process 

predictive model. The features we used are listed in Table S12.  

Final Ranking Predictor Name 

1 ICP median over t(-0) - t(-19) 

2 ICP minute t(-0) 

3 ICP median over t(-0) - t(-9) 

4 ICP minute t(-1) 

5 ICP minute t(-5) 

6 ICP minute t(-4) 

7 ICP minute t(-6) 

8 ICP median over t(-0) - t(-4) 

9 ICP median over t(-5) - t(-9) 

10 ICP minute t(-9) 

11 ICP minute t(-7) 

12 ICP minute t(-3) 

13 ICP minute t(-8) 

14 ICP median over t(-10) - t(-14) 

15 ICP minute t(-11) 

16 ICP minute t(-2) 

17 ICP minute t(-12) 

18 ICP median over t(-10) - t(-19) 

19 ICP minute t(-10) 

20 ICP minute t(-13) 

21 ICP median over t(-15) - t(-19) 



22 ICP minute t(-15) 

23 ICP minute t(-17) 

24 ICP minute t(-16) 

25 ICP minute t(-14) 

26 ICP minute t(-18) 

27 ICP minute t(-19) 

28 3rd cepstrum coefficient for MAP 

29 2nd cepstrum coefficient for MAP 

30 2nd cepstrum coefficient for ICP 

31 3rd cepstrum coefficient for ICP 

32 Change in ICP from first to last points in epoch 

33 ICP standard deviation over t(-0) - t(-9) 

34 ICP standard deviation over t(-0) - t(-4) 

35 ICP standard deviation over  t(-0) - t(-19) 

36 Length of Stay 

37 5th cepstrum coefficient for ICP 

38 4th cepstrum coefficient for ICP 

39 CPP minute t(-12) 

40 CPP minute t(-13) 

41 CPP minute t(-14) 

42 CPP median over t(-10) - t(-14) 

43 CPP minute t(-4) 

44 CPP minute t(-5) 

45 CPP minute t(-15) 

46 CPP minute t(-19) 

47 CPP minute t(-18) 

48 CPP minute t(-16) 



49 CPP median over t(-0) - t(-9) 

50 CPP minute t(-0) 

51 CPP minute t(-3) 

52 CPP median over t(-15) - t(-19) 

53 CPP minute t(-17) 

54 CPP minute t(-10) 

55 4th cepstrum coefficient for MAP 

56 5th cepstrum coefficient for MAP 

57 CPP minute t(-6) 

58 Largest FFT coefficient for MAP 

59 CPP minute t(-9) 

60 CPP median over t(-0) - t(-4) 

61 CPP median over t(-5) - t(-9) 

62 CPP minute t(-1) 

63 CPP minute t(-8) 

64 CPP minute t(-7) 

65 ICP standard deviation over t(-5) - t(-9) 

66 CPP minute t(-2) 

67 Largest FFT coefficient for ICP 

68 ICP standard deviation over t(-15) - t(-19) 

69 CPP minute t(-11) 

70 4th largest FFT coefficient for ICP 

71 5th largest FFT coefficient for ICP 

72 MAP median over  t(-0) - t(-19) 

73 4th largest FFT coefficient for MAP 

74 5th largest FFT coefficient for MAP 

75 ICP standard deviation over t(-10) - t(-19) 



76 CPP median over  t(-0) - t(-19) 

77 CPP median over t(-10) - t(-19) 

78 3rd largest FFT coefficient for MAP 

79 CPP standard deviation over t(-0) - t(-4) 

80 2nd largest FFT coefficient for MAP 

81 MAP minute t(-0) 

82 3rd largest FFT coefficient for ICP 

83 2nd largest FFT coefficient for ICP 

84 ICP standard deviation over t(-10) - t(-14) 

85 MAP standard deviation over t(-5) - t(-9) 

86 MAP standard deviation over t(-15) - t(-19) 

87 change in CPP from first to last points in epoch 

88 MAP standard deviation over t(-0) - t(-4) 

89 CPP standard deviation over  t(-0) - t(-19) 

90 MAP standard deviation over t(-10) - t(-14) 

91 MAP minute t(-4) 

92 MAP standard deviation over t(-0) - t(-9) 

93 MAP standard deviation over t(-10) - t(-19) 

94 MAP minute t(-6) 

95 MAP minute t(-2) 

96 MAP minute t(-1) 

97 MAP minute t(-12) 

98 MAP minute t(-3) 

99 MAP minute t(-13) 

100 MAP median over t(-0) - t(-9) 

101 MAP minute t(-5) 

102 MAP minute t(-7) 



103 MAP median over t(-0) - t(-4) 

104 MAP median over t(-5) - t(-9) 

105 MAP median over t(-10) - t(-19) 

106 MAP minute t(-15) 

107 MAP median over t(-10) - t(-14) 

108 MAP minute t(-8) 

109 MAP minute t(-14) 

110 MAP minute t(-11) 

111 MAP minute t(-16) 

112 MAP minute t(-9) 

113 MAP minute t(-17) 

114 MAP median over t(-15) - t(-19) 

115 Frequency of the largest FFT coefficient for ICP 

116 Frequency of the 2nd largest FFT coefficient for ICP 

117 Frequency of the largest FFT coefficient for MAP 

118 Frequency of the 2nd largest FFT coefficient for MAP 

119 Frequency of the largest FFT coefficient for CPP 

120 CPP standard deviation over t(-5) - t(-9) 

121 Frequency of the 2nd largest FFT coefficient for CPP 

122 2nd cepstrum coefficient for CPP 

123 3rd cepstrum coefficient for CPP 

124 4th cepstrum coefficient for CPP 

125 5th cepstrum coefficient for CPP 

126 CPP standard deviation over t(-0) - t(-9) 

127 change in MAP from first to last points in epoch 

128 change in correlation value 

129 MAP minute t(-18) 



130 MAP minute t(-10) 

131 1st cepstrum coefficient for ICP 

132 MAP minute t(-19) 

133 correlation between ICP and MAP in over t(-0) - t(-9) 

134 5th largest FFT coefficient for CPP 

135 1st cepstrum coefficient for MAP 

136 3rd largest FFT coefficient for CPP 

137 2nd largest FFT coefficient for CPP 

138 Correlation between ICP and MAP in t(-10) - t(-19) 

139 Largest FFT coefficient for CPP 

140 1st cepstrum coefficient for CPP 

141 CPP standard deviation over t(-10) - t(-14) 

142 4th largest FFT coefficient for CPP 

143 CPP standard deviation over t(-10) - t(-19) 

144 CPP standard deviation over t(-15) - t(-19) 

145 MAP standard deviation over  t(-0) - t(-19) 
 
Table S12: Final ranking of epoch features for Gaussian Process experiments 

 
We consistently and randomly select the same number of pre-crisis and non-pre-

crisis epochs (982/1964) for study and validation (392/784) to evaluate both the 

individual features and the top 5%. To test the individual features, we use the 

'covRQard' covariance function in the gpml toolbox for 500 iterations. We ranked 

the features by AUC and selected the top 5%  (7 features). We then used the 

'covSEiso' covariance function, again with 500 iterations, on the combined 

features to determine a final AUC for this approach. 

 



Logistic Regression 

 We use Weka (www.cs.waikato.ac.nz/ml/weka/) version 3.7.12 for logistic 

regression, and obtained the best results with the default ridge regression value 

of 1.0E-8. 

AR-OR 

 We augmented the AR-OR model as described in Myers, et al. (2) to 

weight the points in each epoch in such a way that the points later in the series 

are given a greater importance. Each point is assigned the weight βt, where t is 

the number of minutes from the end of the epoch. Specifically, the last point in 

the epoch is given weight β0, or 1, while the first point in the epoch is assigned 

weight β-n, where n is the number of points in the epoch. The parameter β is 

learned at the same time as the rest of the model.  

 
Comparing Means using bootstrapping 

  To compare the median number of crises and time spent in crises 

between groups of patients with different Glasgow Outcome Scores, we use a 

null hypothesis of "The median time in crisis for GOS 1-3 is ≤ median time in 

crisis for GOS 4-5." To test this hypothesis, we followed these steps: 

1. From all of the patients, extract total time spent in each type of crisis 

2. For each of the GOS months (1, 3, 6) 

a. Remove all data for patients without a valid GOS score 

b. Repeat 10,000 times 



i. Sample the data with replacement until we have obtained 

the same number of sampled patients as original patients 

after step (i) 

ii. Split the values into two groups: 1) GOS 1-3 vs. 2) GOS 4-5  

iii. Compute the median value of each group 

iv. Compare the medians of each group. If group 1's median is 

less than or equal to the group 2's median, increment the 

count for group 1, otherwise, increment the count for group 

2. 

c. Compute the fraction of time group 1's median is ≤ group 2's. This 

number is the significance (p-value). 

We then repeat this process again using for fraction of time spent in each type of 

crisis (instead of total time) to check the null hypothesis "The median fraction of 

time in crisis for GOS 1-3 is ≤ median fraction of time in crisis for GOS 4-5.”  
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