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Fig. S1. Surface roughness of diverse substrates. (A-E) AFM characterizations of diverse
substrates used for adhesion tests with small mean surface roughness (Ra) as 0.431 nm for gold
(A), 0.657 nm for glass (B), 1.226 nm for ITO-glass (C), 2.088 nm for polyimide (D), and 3.831
nm for PDMS (E).
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Fig. S2. Amine functionalization of diverse substrates. (A-D) Schematic illustrations for
primary amine functionalization for glass (A), PDMS, ITO-glass, Pt (B), gold (C), and polyimide

(D).
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Fig. S3. Strong adhesion of wet conducting polymer by PU adhesive layer. (A,B) Images of a
solvent-casted wet PEDOT:PSS on glass substrates with (A) and without (B) the PU adhesive
layer in PBS. Conducting polymers with 50 pum thickness and PU adhesive layers with 60 nm
thickness were used for all experiments. Photo Credit: Hyunwoo Yuk, MIT.
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Fig. S4. Chemical structures of hydrophilic PU, PEDOT, and PSS.
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Fig. S5. XPS spectra of solvent-casted PEDOT:PSS with varying thickness of PU adhesive
layer. (A-C) XPS general scan spectra for PEDOT:PSS without the PU adhesive layer (A), with
the 60 nm PU adhesive layer (B), and the 1,500 nm PU adhesive layer (C). (D-F) XPS S(2p)
(sulfur) spectra for PEDOT:PSS without the PU adhesive layer (D), with the 60 nm PU adhesive
layer (E), and the 1,500 nm PU adhesive layer (F). Conducting polymers with 100 um thickness
were used for all experiments.
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Fig. S6. Amine functionalization effect on lap-shear strength for diverse substrates. (A-D)
Displacement vs. shear stress curves of lab-shear tests of wet PEDOT:PSS on PU-coated glass
(A), PDMS (B), polyimide (C), and ITO-glass (D) substrates with and without primary amine
functionalization. Conducting polymers with 10 um thickness and PU adhesive layers with 60

nm thickness were used for all experiments.
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Fig. S7. PU adhesive layer thickness effect on lap-shear strength for amine-functionalized
glass substrate. Conducting polymers with 10 um thickness were used for all experiments.
Values represent mean and the error bars represent 95% CI of the measured values (n = 5).
Statistical significance and P values are determined by one-way ANOVA and Tukey’s multiple
comparison test. ns, not significant.
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Fig. S8. Lap-shear test curves for diverse substrates. Conducting polymers with 10 um
thickness and PU adhesive layers with 60 nm thickness were used for all experiments.
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Fig. S9. Adhesion of hydrophilic PU to polyimide. (A) Displacement vs. shear stress curves
from lab-shear tests of hydrophilic PU on polyimide substrates with and without primary amine
functionalization. (B) Lap-shear strength of hydrophilic PU on polyimide substrates with and
without primary amine functionalization. Hydrophilic PU layers with 10 pum thickness were used
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for all experiments. Values in B represent mean and the error bars represent 95% CI of the
measured values (n = 5). P values are determined by Student’s t test. ns, not significant.
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Fig. S10. Mechanical properties of wet PEDOT:PSS with varying PU adhesive layer
thickness. (A) Nominal stress vs. tensile strain curves for wet PEDOT:PSS with the varying PU
adhesive layer thickness. (B) Young’s moduli of wet PEDOT:PSS with the varying PU adhesive
layer thickness. (C) Ultimate tensile strain of wet PEDOT:PSS with the varying PU adhesive
layer thickness. Values in B,C represent mean and the error bars represent 95% CI of the
measured values (n = 5). Conducting polymers with 100 um thickness were used for all
experiments. Statistical significance and P values are determined by one-way ANOVA and

Tukey’s multiple comparison test. ns, not significant.
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Fig. S11. Nyquist plots for EIS measurements of adhesive interface by varying PU adhesive
layer thickness. (A-C) Nyquist plot obtained from the EIS measurement of a bare ITO-glass
electrode (A), a wet PEDOT:PSS (10 pm thickness) on an amine-functionalized 1TO-glass
electrode with the PU adhesive layer (60 nm thickness) (B), and a wet PEDOT:PSS (10 um
thickness) on an amine-functionalized ITO-glass electrode with the PU adhesive layer (1,500 nm
thickness) (C) overlaid with the plot predicted from the corresponding equivalent circuit models.
In the equivalent circuit models, R; represents ionic resistance for the electrolyte, R, represents
electronic resistance of the ITO-glass electrode, Re cp represents electronic resistance of the wet
conducting polymer, Re py represents electronic resistance of the PU adhesive layer, CPEq
represents the double-layer capacitive phase element (CPE) for the ITO-glass electrode, CPEcp
represents CPE of the wet conducting polymer, and CPEpy represents CPE of the PU adhesive
layer. CPE is used to account inhomogeneous or imperfect capacitance, and are represented by
the parameters Q and n where Q represents the peudocapacitance value and n represents the
deviation from ideal capacitive behavior. The true capacitance C can be calculated from these
parameters by using the relationship C = Qomax"", where wmax is the frequency at which the

imaginary component reaches a maximum.
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Fig. S12. PU adhesive layer thickness effect on lap-shear strength for amine-functionalized
ITO-glass substrates. Conducting polymers with 50 um thickness were used for all experiments.
Values represent mean and the error bars represent 95% CI of the measured values (n = 5).
Statistical significance and P values are determined by one-way ANOVA and Tukey’s multiple
comparison test. ****P < (.0001; ns, not significant.
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Fig. S13. Adhesion stability of electrodeposited wet conducting polymer. (A) Images of an
electro-deposited wet PEDOT:PSS on a ITO-glass substrate without the PU adhesive layer
before and after ultrasonication for 1 min. Photo Credit: Hyunwoo Yuk, MIT. (B) Images of an
electro-deposited wet PEDOT:PSS on an amine-functionalized ITO-glass substrate with the PU
adhesive layer before and after ultrasonication for 1 min. Photo Credit: Hyunwoo Yuk, MIT. (C)
EIS curves for a ITO-glass electrode without the PU adhesive layer, an electro-deposited wet
PEDOT:PSS on a ITO-glass electrode without the PU adhesive layer, and an electro-deposited
wet PEDOT:PSS on an amine-functionalized ITO-glass electrode with the PU adhesive layer.
(D) EIS curves for an electro-deposited wet PEDOT:PSS on an amine-functionalized ITO-glass
electrode with the PU adhesive layer before and after ultrasonication for 60 min in PBS. (E)
Long-term CV curves for an electro-deposited wet PEDOT:PSS on an amine-functionalized Pt
electrode with the PU adhesive layer in PBS. (F) Measured CSC vs. CV cycle number for an
electro-deposited wet PEDOT:PSS on an amine-functionalized Pt electrode with the PU adhesive
layer in PBS. Conducting polymers with 500 nm thickness and PU adhesive layers with 60 nm
thickness were used for all experiments.
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Fig. S14. SEM images of electrodeposited PEDOT:PSS on Pt microwire electrode without
PU adhesive layer. Electro-deposited PEDOT:PSS on a Pt microwire electrode without the PU
adhesive layer exhibits significant damage and delamination from the Pt electrode after
ultrasonication for 5 min in PBS. Conducting polymers with 500 nm thickness and PU adhesive
layers with 60 nm thickness were used for all experiments.
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Fig. S15. SEM images of electrodeposited PEDOT:PSS on amine-functionalized Pt
microwire electrode with PU adhesive layer. Electro-deposited PEDOT:PSS on an amine-
functionalized Pt microwire electrode with the PU adhesive layer remains intact on the Pt
electrode after ultrasonication for 30 min in PBS. Conducting polymers with 500 nm thickness
and PU adhesive layers with 60 nm thickness were used for all experiments.
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Fig. S16. Strong adhesion of wet conducting polymer by PVA adhesive layer. (A) Image of
cohesive failure during lap-shear test for a wet PEDOT:PSS on a glass substrate with the PVA
adhesive layer. Photo Credit: Hyunwoo Yuk, MIT. (B) Lap-shear strength of wet PEDOT:PSS
on glass substrates with and without the PVA adhesive layer. Conducting polymers with 10 pum
thickness and PVA adhesive layers with 100 nm thickness were used for all experiments. Values
in B represent mean and the error bars represent 95% CI of the measured values (n = 5). P values
are determined by Student’s t test. ***P < (0.001.
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Fig. S17. Adhesion of thin spin-coated conducting polymers in wet physiological
environment. Images of spin-coated PEDOT:PSS (~ 100 nm thickness) on gold substrates with
and without the PU adhesive layer (60 nm thickness) after ultrasonication for 1 min in PBS.
Photo Credit: Hyunwoo Yuk, MIT.
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Legend for Supplementary Movie

Movie S1. Adhesion stability of wet PEDOT:PSS under cyclic bending deformations.
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