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Fig. S1. False-colored photograph (A) and simplified circuit diagram (B) of the quantum
processor with corresponding colors.

1.1 Setup

A full wiring diagram of the setup is provided in (Fig. S2). All operations are controlled by a

fully digital device, the central controller (CC7), which takes as input a binary in an executable

quantum instruction set architecture [eQASM (46)], and outputs digital codeword triggers based

on the execution result of these instructions. These digital codeword triggers are issued every

20 ns to arbitrary waveform generators (AWGs) for single-qubit gates and two-qubit gates, a

vector switch matrix (VSM) for single-qubit gate routing and a readout module (AWG and

acquisition) for frequency-multiplexed readout. Single-qubit gate generation, readout pulse

generation and readout signal integration are performed by single-sideband mixing. The mea-

surement signal is amplified with a JTWPA (47) at the front end of the amplification chain. Fol-

lowing Ref. (48), we extract an overall measurement efficiency η = 48 ± 1.0% by comparing

the integrated signal-to-noise ratio of single-shot readout to the integrated measurement-induced
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dephasing.
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1.2 Cross-measurement-induced dephasing of data qubits

During ancilla measurement, data-qubit coherence is susceptible to intrinsic decoherence, phase

shifts via residual ZZ interactions and cross-measurement-induced dephasing (8, 33). For the

single-data-qubit subspace we investigate the different contributions experimentally and assess

the benefit of an echo pulse on the data qubits halfway through the ancilla measurement. We

study this by including the ancilla measurement (with amplitude ε) in a Ramsey-type sequence

(Fig. S3A). By varying the azimuthal phase of the second π/2 pulse, we obtain Ramsey fringes

from which we extract the coherence |ρ01| and phase arg (ρ01). Several features of these curves

explain the need for the echo pulse on the data qubits. Firstly, at ε = 0, the echo pulse improves

data-qubit coherence (for both ancilla states) by reducing the effect of low-frequency noise

(Fig. S3, B and C). This is confirmed by individual Ramsey and echo experiments. Secondly,

the echo pulse almost perfectly cancels ancilla-state dependent phase shifts due to residual ZZ

interactions (Fig. S3, D and E). When gradually turning on the ancilla measurement towards

the nominal value ε = 1, we furthermore observe that: thirdly, the echo pulse almost perfectly

cancels the measurement-induced Stark shift (Fig. S3, D and E). When increasing the measure-

ment amplitude beyond the operation amplitude (indicated by the vertical dashed lines), we see

rapid non-Gaussian decay of data-qubit coherence. We attribute this to measurement-induced

relaxation of the ancilla: via the ZZ interaction, this can lead to probabilistic phase shifts on the

data qubit. This effect is stronger for QDL than for QDH due to its higher residual interaction

with QA (Table S1).
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Fig. S3. Study of data-qubit  coherence  and phase accrual during  ancilla  measurement. 



Gate and Coherence Parameters QDL QA QDH

operating qubit frequency, ωop/2π (GHz) 5.02 5.79 6.88†

max. qubit frequency, ωmax/2π (GHz) 5.02 5.79 6.91
anharmonicity, α/2π (MHz) −306 −308 −331
coherence time (at ωop/2π), T echo

2 (µs) 29.6± 2.7 21.7± 1.4 14.7± 0.9
relaxation time (at ωop/2π) T1 (µs) 25.3± 1.2 17.0± 0.6 25.6± 1.2
Ramsey dephasing time (at ωop/2π), T ∗2 (µs) 24.5± 2.0 14.6± 1.2 5.9± 0.7
average error per single qubit gate††††, eSQ (%) 0.08± 0.02 0.14± 0.016 0.21± 0.06
resonance exchange coupling, J1/2π (MHz) 17.2 14.3
bus resonator frequency, ∼ ωbus/2π (GHz) 8.5 8.5
error per CZ†††††, eCZ (%) 1.4± 0.6 0.9± 0.16
leakage per CZ†††††, L1 (%) 0.27± 0.12 0.15± 0.07
ZZ coupling (at ωop/2π), ζZZ/2π (MHz) 0.95 0.33

Measurement Parameters QDL QA QDH

readout pulse frequency, ωro/2π (GHz) 7.225 7.420 7.838
readout resonator frequency, ωro/2π (GHz) 7.275 7.385 7.867
Purcell resonator frequency, ωro/2π (GHz) 7.260 7.405 7.872
qubit-RR coupling strength, g01,RR/2π (MHz) 202 188 135
PF-RR coupling strength, JRR,PF/2π (MHz) 48 30 38
dispersive shift qubit-RR, χRR/π (MHz) −2.5 −5.3 −2.8††

dispersive shift qubit-PF, χPF/π (MHz) −1.5 −4.7 −2.8††

critical photon number, ncrit 2.3 2.7 2.4
intra-resonator photon number RR, nRR 1.2
quantum efficiency, η (%) 48± 1.0
Average assignment error, ea (%) 9.0††† 1.0± 0.1 16†††

Measurement integration time, τint (ns) 600 600 600

† QDH is operated 30 MHz
below its maximum frequency to avoid spurious interaction with a spurious two-level system.
†† The Purcell mode and readout resonator mode of QDH have near-perfect hybridization (with
qubit at ωop/2π), making them indistinguishable. ††† Single-shot readout on the data qubits was
not optimized.†††† Single-qubit gates are characterized using Clifford randomized benchmarking
(49) ††††† Two-qubit gates are characterized using interleaved RB(2, 49) with aleakage-extraction
modification (5).

Table S1. Measured  parameters of the three-transmon  device. 



Supplementary Text

2.1 Performance of the simple hidden Markov model

In this section we detail the performance of the simple HMMs, as described in Fig. 3A and

Sec. 4.4 of the main text. In Fig. S10, A and B, we plot a histogram of the computational

likelihoods Lcomp,Q of 105 simulated and actual ZZ experiments as calculated with the simple

HMMs HZZ−D(simple) and HZZ−A(simple). This can be compared with Fig. 3, B and C, of the

main text. We plot similar histograms for the interleaved ZZ—XX experiment in Fig. S10, H

and I. We see reasonable agreement, but noticeably worse agreement than that in the detailed

model. This is underscored by the Akaike information criterion (Eq.1 of the main text), which

is significantly reduced compared to the more detailed HMMs

A(HZZ −D)− A(HZZ −D(simple)) = 4.5× 105 (S1)

A(HZZ − A)− A(HZZ − A(simple)) = 5.9× 106 (S2)

A(HZZ,XX −D)− A(HZZ,XX −D(simple)) = 1.5× 105 (S3)

A(HZZ,XX − A)− A(HZZ,XX − A(simple)) = 1.6× 106 (S4)

Indeed, in all cases the Akaike information criterion for the simple HMM is lower than that

for the detailed HMM without leakage. This makes complete sense, as even though the simple

HMMs might capture leakage fairly well, the additional effects captured in the detailed HMMs

are far more dominant in the measurement signals than that of leakage. As such, the inter-

nal metrics, such as the ROC curves (Fig. S11) for the simplified model are significantly less

trustworthy than those of the detailed model. This exemplifies the need for external HMM ver-

ification, as achieved in the main text by testing the HMM in a leakage mitigation scheme. We

now repeat this verification procedure for the simple model. We see that in the ZZ experiment

the performance is significantly degraded; although the flat line in the 〈Z⊗Z〉 curve is restored



after about 8 parity checks, it requires rejecting 47% of the data, and is restored to a point∼ 8%

below the performance of the detailed HMM. By contrast, the simple HMM performs almost

identically to the complex HMM in the interleaved ZZ—XX experiment, achieving Bell-state

fidelities within 2% whilst retaining the same amount of data. As the signal from a large-scale

QEC code is more similar to the latter experiment than the former (See Sec. 2.2), this strongly

suggests that the detailed modeling used in this text will not be needed in such experiments.

2.2 Hidden Markov models for large-scale QEC

The hidden Markov models used in this text provide an exciting prospect for the indirect detec-

tion of leakage on both data qubits and ancillas in a QEC code. This is essential for accurate

decoding of stabilizer measurements made during QEC. Furthermore, this idea can be com-

bined with proposals for leakage reduction (14–17) to target such efforts, reducing unnecessary

overhead. As leakage does not spread in superconducting qubits (to lowest order), and gives

only local error signals (16), such a scheme would require a single HMM per (data and ancilla)

qubit. Each individual HMM needs only to process the local error syndrome, and as demon-

strated in this work, completely independent HMMs may be used for the detection of nearby

data-qubit and ancilla leakage. This implies that the computational overhead of leakage detec-

tion via HMMs in a larger QEC code will grow only linearly with the system size. Previous

leakage reduction units are designed to act as the identity on the computational subspace (up

to additional noise), so we do not require perfect discrimination between leaked and computa-

tional states. However, optimizing this discrimination (and investigating threshold levels for the

application of targeted leakage reduction) will boost the code performance. Also, near-perfect

discrimination could allow for the direct resetting of leaked data qubits (40), which would com-

pletely destroy an error correcting code if not targeted.

On the other hand, for implementation on classical hardware within the sub-1 µs QEC cycle



time on superconducting qubits (36), one may wish to strip back some of the optimization used

in this work. The minimal HMM that could be used in QEC for detection has only two states,

leaked and unleaked (Fig. 3A), and 2nA outputs, where nA is the number of neighboring ancilla

on which a signature of leakage is detected. (For the surface code, nA ≤ 4 in all situations.)

Such a simple model cannot perfectly deal with correlated errors, such as ancilla errors (which

give multiple error signals separated in time). However, this should only cause a slight reduction

in the discrimination capability whenever such correlations remain local. If the loss in accuracy

is acceptable, one may store only π(post)
0 , and update it following a measurement MA[m] as

π
(prior)
0 [m] = (A0,0 − A0,1)π

(post)
0 [m− 1] + A0,1 (S5)

π
(post)
0 [m] =

π
(prior)
0 [m]BMA[m],0

BMA[m],1 + π
(prior)
0 (BMA[m],0 −BMA[m],1)

(S6)

which is trivial compared to the overhead for most QEC decoders.

A key question about the use of HMMs for leakage detection in future QEC experiments is

whether leakage in larger codes is reliably detectable. In previous theoretical work (50), data-

qubit leakage in repetition codes has been sometimes hidden, a phenomenon known as ‘leakage

paralysis’ or ‘silent stabilizer’ (51). This effect occurs when the relative phase ϕ accumulated

between the |20〉 and |21〉 states during a CZ gate is a multiple of π. In the absence of additional

error, an indirect measurement of the data qubit via an ancilla would return a result ϕ
π

mod 2.

(By comparison, if ϕ = π/2, the ancilla would return measurements of 0 or 1 at random.) This

is then identical to the measurement of a data qubit in the |ϕ
π

mod 2〉 state, and no discrimination

between the two may be achieved. However, in anN -qubit parity check S, the ancilla continues

to accumulate phase from the other qubits, reducing this to anN−1-qubit effective parity check

S ′ (plus a well-defined, constant phase). Such a parity check may no longer commute with other

effective parity checks R′ that share the leaked qubit, even though we would require [S,R] = 0

in stabilizer QEC. This is demonstrated in our second experiment measuring both ZZ and XX



parity checks; though these commute when no data qubit is leaked, leakage reduces the checks

to non-commuting Z and X measurements (of the unleaked data qubit). (In the ZZ experiment,

the leakage paralysis was broken by the echo pulse on the data qubits, which flips the effective

stabilizer of a leaked qubit at each round.) The repeated measurement of these non-commuting

operators generates random results, similar to the case when ϕ = π/2. To the best of our

knowledge, in all fully fault-tolerant stabilizer QEC codes, the removal of a single data qubit

breaks the commutativity of at least two neighboring stabilizers. As such, data-qubit leakage

will always be detectable in QEC experiments with superconducting circuits.

Beyond the proof-of-principle argument above, one might question whether the signal of

leakage is improved or reduced when going from our prototype experiment to a larger QEC

code, and when the underlying physical-qubit error rate is reduced. Fortunately, we can expect

an improvement in the HMM discrimination capability in both situations. To see this, consider

the example of a data qubit which is either leaked at round 1 with probability pleak or never

leaks. Let us further assume that in the absence of leakage, a number of neighboring ancillas

nA incur errors (where the parity check reports a flip) at a rate p, whereas in the presence of

leakage these ancillas incur errors at a rate 0.5. (For example, in the bulk of the surface code,

nA = 4.) The computational likelihood at round m > 0 after seeing e errors may be calculated

as

Lcomp,Q[m] =
(1− pleak)pe(1− p)mnA−e

(1− pleak)pe(1− p)mnA−e + pleak(0.5)mnA
(S7)

If the data qubit was leaked, e ∼ mnA/2, and the computational likelihood on average is

approximately

Lcomp[m] ∼ 1− pleak

pleak

(
pnA/2(1− p)nA/2

0.5nA

)m
(S8)

which is of the form

Lcomp[m] = Ae−λm, A =
1− pleak

pleak

, λ = log
(
2nAp−

nA
2 (1− p)−

nA
2

)
(S9)



We see that the signal of leakage (Lcomp[m]→ 0) switches on exponentially in time, with a rate

proportional to log(p−nA/2). Any decrease in p (from better qubits) or increases in nA (from

additional ancillas surrounding the leaked qubit in a QEC code) will serve to increase, and not

decrease this rate. The exponential decay constant is inversely proportional to the leakage rate

(as this corresponds to an initial HMM skepticism towards unlikely leakage events). However,

as the likelihood ’switch’ is exponential, a decrease in pleak by even an order of magnitude

should only increase the time before definite detection by a single step or so. The above analysis

is complicated in a real scenario, as single physical errors give correlated detection signals, and

as leakage may occur at any time, and as leaked qubits may seep. Correlations in the detection

signals will serve to renormalize the switching time λ (but not remove the generic feature of

exponential onset). Seepage causes individual leakage events to be finite (with some average

lifetime Tseep); an individual leakage event of length� λ−1 will not be detectable by the HMM.

However, when the system returns to the computational subspace in such a short period of time,

the leakage event may be treated as a ‘regular’ error, and does not need complicated leakage-

detection hardware for fault tolerance. For example, a leakage event followed by immediate

decay to |1〉 is indistinguishable from a direct transition to |1〉 for all practical purposes in QEC.
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Fig. S5. Postselected fractions for the “no error” conditioning in Figs. 2 and 4. 
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(A) Simplified quantum circuit for preparation, ZZ and XX measurements, sequential data-
qubit state tomography and PFU. (B to E) Manhattan-style plots of the reconstructed data-qubit
density matrix conditioned on the ancilla measurement outcomes with occurrence and fidelity
to the four expected Bell states. (F) We use the two-bit outcome of the parity checks to apply a
PFU that transforms all runs ideally to |Φ+〉. Frames on the tomograms indicate the Bell states
ideally produced.
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curves). For comparison, the ROCs for the HMMs for repeated ZZ checks only are also shown
(dotted curves, same data as in Fig. 3F).

Fig.  S6. Generating entanglement  by sequential  ZZ and XX parity  measurements and PFU.  

Fig. S7. ROCs for mitigation of data-qubit and ancilla leakage during interleaved ZZ and 

XX checks. 
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eSQ, eCZ) of Table S1. This modeling uses two-level systems (no leakage) following Ref. (36),
which uses quantumsim (52). As expected, the modeling is outperforming the experiment for
‘first’ and ‘final’ correction strategies as the modeling does not include leakage. It however
shows an excellent matching for the ‘no error’ conditioning (which rejects both qubit errors and
leakage). The ‘final + HMM’ is excellently matching the ‘final’ modeling curve, confirming the
leakage detection capability of the HMMs.

Fig. S8. Comparison  of experimental  data and no-leakage  modeling  of the repeated  parity 
check  experiments of Figs. 2  and  4. 



repeated ZZ checks interleaved ZZ and XX checks

(A) [(B)] TPR, FPR as a function of the chosen computational-space likeli-
hood threshold for the repeated parity check experiments of Figs. 2 and 3 for data-qubit leakage
[ancilla leakage] at M = 25. (C) [(D)] The improvement in repeated ZZ checks is expressed
as the increase in 〈Z ⊗ Z〉 for data-qubit leakage [ancilla leakage]. Horizontal dashed lines in-
dicate the chosen threshold TPR = 0.7 (Fig. 3, F and G) and vertical dashed lines indicate the
accompanying computational-space likelihoods. (E-H) Similar plots for leakage rejection for
interleaved ZZ and XX checks (Fig. 4) atM = 26. The protocol improvement is here expressed
as an increase of F|Φ+〉.

Fig.  S9. Leakage mitigation for the repeated parity check experiments as a function of the 
chosen threshold.  
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Performance of simple, two-state HMMs
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(A) [(B)] Histograms of 105 ~s with M = 25
for repeated ZZ checks (as in Fig. 3D [Fig. 3E]). HMM training suggests 3.6% [20%] total
data-qubit [ancilla] leakage at M = 25. (C) [(D)] TPR, FPR as a function of the chosen
computational-space likelihood threshold for the repeated parity check experiments of Fig. 2
for data-qubit leakage [ancilla leakage] at M = 25. (E) [(F)] The improvement in repeated
ZZ checks is expressed as the increase in 〈Z ⊗ Z〉 for data-qubit leakage [ancilla leakage].
Horizontal dashed lines indicate the chosen threshold TPR = 0.7 and vertical dashed lines
indicate the accompanying computational-space likelihoods (as in Fig. S9). (G) 〈Z ⊗ Z〉 after
M ZZ checks and correction based on the ‘final’ outcomes, without (same data as in Fig. 2D)
and with leakage mitigation by postselection (TPR = 0.7). (H-M) Similar plots for simple-
HMM leakage rejection for interleaved ZZ and XX checks (Fig. 4) at M = 26. (N) F|Φ+〉 after
M interleaved checks and correction based on the ‘final’ outcomes, without (same data as in
Fig. 4) and with leakage mitigation by postselection (TPR = 0.7). The protocol improvement
(L, M and N) is here expressed as an increase of F|Φ+〉.

Fig. S10. Leakage mitigation for the simple, two-state HMMs for repeated parity check 
experiments as a function of the chosen threshold. 



ROCs for simple, two-state HMMs

Fig. S11. ROCs for leakage mitigation as in fig. S7 but using simple two-state HMMs. 
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