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Supplementary Materials

In X-Ray Photon Correlation Spectroscopy (XPCS) experiments a beam of (partially) coherent

X-rays of wavelength λ impinges on the sample and the scattered photons are collected at a

given exchanged wave-vector, q, where q = 4π
λ

sin(θ/2) and θ is the scattering angle. The

scattered radiation is often sampled with a multi-element detector and a sequence of images is

collected at times t. As in visible dynamic light scattering (40), the normalised auto-correlation

function of the scattered intensity, I(q, t), is then calculated

g2(q, t) =
〈I(q, 0)I(q, t)〉
〈I(q, t)〉2

(1)

where 〈...〉 is an average over the pixels of the detector and/or over time. If the scattered electric

field, E(q, t), is a zero mean Gaussian complex variable, Eq. 1 can be written as

g2(q, t) = 1 + α(q)

∣∣∣∣∣〈E∗(q, 0)E(q, t)〉
〈I(q)〉

∣∣∣∣∣
2

(2)

where α(q) is a parameter, known as contrast, comprised between zero and one that depends

on the experimental setup. Typically in XPCS experiments carried out at third generation

synchrotron sources α(q) can be a small number due to the partial coherence of the X-ray

beam (41). Eq. 2 is known as the Siegert relation and allows relating the intensity auto-

correlation function via the electric field correlation function to the intermediate scattering

function, F (q, t)

g2(q, t) = 1 + α(q)

∣∣∣∣∣F (q, t)

F (q, 0)

∣∣∣∣∣
2

(3)
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The intermediate scattering function is the density-density correlation function, i.e.

F (q, t) = 〈ρ∗q(0)ρq(t)〉 (4)

where ρq(t) is the q component of the microscopic density at time t. Therefore, XPCS experi-

ments provide direct access to the density-density correlation function.

2 Sample characteri ation

The sample preparation procedure is presented in the Methods. Here, its characterisation in

terms of volume fraction and structure is discussed.

Volume fraction measurements

The volume fraction of the samples cannot be evaluated precisely from the procedure discussed

in the Methods, and has to be measured directly. X-ray transmission provides a tool to achieve

this. In fact, according to the Lambert-Beer equation, the transmitted intensity can be expressed

as

I(y) = I0 exp [− (s(y)/µcapillary + L(y)ϕ/µSiO2 + L(y)(1− ϕ)/µWL)] (5)

where y is the horizontal coordinate orthogonal to the beam direction; I(y) is the transmit-

ted intensity with the sample at position y; I0 is the incoming beam intensity; s(y) is the

thickness of the two capillary walls at position y traversed by the X-ray beam; L(y) is the

thickness of the traversed sample; ϕ is the volume fraction; µcapillary, µSiO2 and µWL are the

absorption lengths of the capillary (borosilicate glass), silica (nanoparticles) and water-lutidine

solution, respectively. The water-lutidine absorption length was estimated using the relation:

1/µWL = Cv
L/µlutidine + (1 − Cv

L)/µH2O, where Cv
L = 0.265 ± 0.010 is the volume fraction

of lutidine in the solution, µH2O = 1030 µm, µlutidine = 2553 µm (42). Moreover, we used

µcapillary = 136 µm and µSiO2 = 143 µm (42). A transmission measurement can then pro-

vide ϕ.
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An example of a transmission measurement is reported in Fig. S1A and the corresponding vol-

ume fraction extracted inverting Eq. 5 in Fig.S1B. The latter plot demonstrates the homogeneity

of the sample, and provides ϕ = 37.65%. The volume fraction measurement has a standard de-

viation of 0.11% over the horizontal section shown in Fig. S1B. For what concerns the absolute

value of the volume fraction, we estimate an error of 0.2% due to residual uncertainties in the

parameters entering Eq. 5, the most severe of which concerns the capillary wall thickness.

Scans at different heights of the sample were also carried out to assess the absence of sedi-

mentation.

Form factor and structure factor

The scattered intensity can be written as I(q) ∝ S(q)|f(q)|2. Here f(q) is the form amplitude,

|f(q)|2 is the form factor and S(q) is the static structure factor

S(q) = F (q, 0) = 〈ρ∗q(0)ρq(0)〉 (6)

The form factor can be obtained directly measuring the intensity scattered by a low volume

fraction solution where S(q) = 1 with very good approximation. In the present experiment, a

solution with volume fraction φr < 0.001 was used. The corresponding experimental data are
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Fig. S1. Volume fraction measurement. A) Transmission scan for the sample reported as
the ratio of the transmitted to the incoming beam intensity as a function of the sample position
y transverse to the incoming beam direction. B) Volume fraction obtained from Eq. 5 as a
function of y.

reported in Fig.S2 (green circles) together with a fit carried out assuming a Schultz distribution

to describe the polydispersivity of the nanoparticles (43). The result of the fitting procedure

gives an average radius of R̄ = (50.8± 0.3) nm and a polydispersity ∆r
R̄

= (9.4± 0.6)%.

The intensity scattered from the sample is reported as a function of q in Fig. S2 as red diamonds.

The experimental structure factor S(q) can be obtained as I(q)/|f(q)|2 (inset in Fig.S2)

The structure factor calculated at the beginning (green diamonds) and at the end (red circles)

of the measurements discussed in the main text is reported in Fig. S3. During the measurement

time (lasted ≈600 s) there is no sign of a change of the structural properties.

3 Dynamical properties

In SAXS geometry, rings on the detector centred at the transmitted beam position correspond

to a given |q|, and the pixels over a given ring can be identified by an angle φ, where we define

this angle with respect to the horizontal direction (see Fig. 1A in the main text). In Fig. S4A

Section S .
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Fig. S2. Scattered intensity, form factor,  and structure factor. Scattered intensity from the
sample (red diamonds) and from the reference diluted suspension (green circles). Inset: static
structure factor S(q) = I(q)/|f(q)|2.

a set of normalised g2(q, t) − 1 are reported, computed using the detector pixels in horizontal

sectors at different values of q. These data can be well approximated by a KWW function (11)

g2(q, t)− 1 = α(q) exp(−2(t/τ)β) (7)

This function was fitted to the measured data, as shown in an example reported in Fig. S4A. As

outlined in the main text, the shape of the autocorrelation functions is independent of q and can

be described as a compressed exponential with β ∼ 2. In Fig. S4B the g2(q, t)− 1 for different

φ and fixed q are reported. It is clear that approaching the vertical direction (φ = π/2) both the

relaxation time τ and the shape strongly change since 1/τ = q · δv · cos(φ), as discussed in the

main text. It is possible to notice that at some q values small oscillations can be found in the tail

of the g2(q, t)−1 function. These features provide information on the distribution of the relative

velocity field lying in the horizontal plane, similarly to what reported in XPCS experiments on
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Fig. S3. Structure factor at different ages. Structure factor corresponding to the first and
last frame of the measurements reported in the main text, showing that no significant structural
changes have occurred in this period of time.

flowing colloidal suspensions (44,45). As already observed in (46), the dynamics that we probe

here arises solely from velocity differences between the particles in the scattering volume.

Glasses, and colloidal glasses in particular, are expected to display a frozen dynamics on the

experimental timescale (23). Still, since the first report of a compressed dynamics in colloidal

gels (17), evidences accumulate that this is not the case, e.g. (3, 12–16, 21). This dynamics is

usually related to the release of stress accumulated in the glass. Models (17, 18) and, more re-

cently, numerical simulations make this connection clear (19, 20). From an experimental point

of view, to the best of our knowledge, it has not been possible yet to measure directly the amount

of stress accumulated locally in bulk glasses, and in particular in the colloidal glasses under dis-

Section               S4.        D    ynamics, residual stresses,         and gravity in
colloidal glasses
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Fig. S4. Autocorrelation functions for different exchanged wave vectors and different
azimuthal angles. A) Normalised intensity autocorrelation functions at different exchanged
wavevectors computed selecting only horizontal sectors of the detector images (within the
∆φ = π/16 range). The red line is an example of fit to the data using a KWW ansatz. B)
Normalised (g2(q, t) − 1)/α functions at different azimuthal angles φ for a given q. These
curves have been computed averaging over the ∆φ = π/16 range.

cussion here. However, indirect evidences of the connection residual stress-compressed expo-

nential dynamics are abundant. The most important ones are the following: i) The compressed

dynamics is present in the glassy state but disappears as soon as the non-equilibrium glassy

state is turned into an equilibrium system either by changing the temperature (e.g. heating up a

metallic glass across the glass transition temperature (16)) or the volume fraction (e.g. reducing

the volume fraction in a colloidal glass below the arrested state limit (24)). ii) The characteristic

time of this compressed dynamics increases when the glass ages, e.g. (17), suggesting that this
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Fig. S5. Effect of annealing on the dynamics probed in a colloidal glass. Normalized
intensity autocorrelation functions for different azimuthal angles for A) an as-prepared and B)
an annealed sample. The as-prepared sample has been prepared as described in the Methods,
and corresponds to a volume fraction ϕ ∼ 37 %. The annealed sample is the same sample after
heating it up to T=308 K for 20 min and then cooling it back to room temperature. These curves
correspond to an exchanged wavevector q=(0.150 ± 0.015) nm−1 and have been computed
selecting horizontal and vertical sectors of the detector images (see legend) within the ∆φ =
π/4 range.

characteristic time scales inversely to the residual amount of stress. The samples discussed here

make no exception to these observations, and their compressed dynamics clearly depends on

the sample preparation protocol. It is for example possible to produce by annealing at higher

than ambient temperature a colloidal glass which, while still displaying compressed exponential

dynamics, shows a much longer characteristic time than at room temperature with no sign of

anisotropy, see Fig. S5. This provides further support to the connection between local stress and

compressed dynamics. Since the stress-induced dynamics observed here takes place in the hor-

izontal plane, it is interesting to investigate the role possibly played by gravity. To this extent,

a series of measurements were performed on the same sample in vertical and tilted alignment,

see see Fig. S6. When tilting the capillary by 0 ≈ 50◦ with respect to the vertical directionφ
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Fig. S6. Gravity does not affect the anisotropy of the dynamics.Azimuthal dependence of
the relaxation rate for the as-prepared sample mounted vertically (blue squares, same conditions
as in Fig. 2A of the main text) and for the same sample tilted by 0 ≈50o with respect to
the vertical direction (red circles). The data for the tilted sample show a phase shift of 0

with respect to those for the vertical one. These data correspond to an exchanged wavevector
q=(0.124 ± 0.012) nm−1 and have been computed selecting azimuthal sectors of the detector
images within the ∆φ = π/16 range).

the argument of the cosine function that describes the relaxation rate, Γ(φ), is shifted by 0,

implying that the velocity field (and therefore the stress field that gives rise to it) turns with

the capillary and remains orthogonal to the capillary axis. This comparison shows that gravity

plays a minor role in the development of the anisotropic dynamics discussed here.

5 Dynamical heterogeneities

In order to study the length-scale of the dynamical processes discussed above, an observable

sensitive to heterogeneities is required. One such observable is the four point correlation func-

tion defined as the variance of the intermediate scattering functionF (q, t) of Eq.4 (23,28,47,48)

χ4(q, t) = 〈(F (q, t)− 〈F (q, t)〉)2〉 (8)

Section S .
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This observable is in turn related to the variance of the two-times correlation matrix via Eqs. 2

and 3. It can be demonstrated (23, 28, 47, 48), that the χ4(q, t) is a peaked function and that its

maximum value is proportional to the number, Nr, of regions that move cooperatively within

the scattering volume, though the presence of a q-dependent pre-factor does not allow providing

a very precise estimate (26). However, by multiplying the χ4(q, t) function for the total number

of particles in the scattering volume, N , and observing that the number of particles that move

cooperatively is Ncorr = N/Nr, it is possible to estimate Ncorr from the knowledge of N and

χ4(q, t) (29,47,48). Clearly, the χ4(q, t) signal will be larger the smaller is the scattering volume

and/or the larger are the regions displaying cooperative motion.

As illustrated in Ref. (21), the variance of the g2(q, t) − 1 function, σ2
g2

, computed from the

two-times correlation matrix does not correspond exactly to the χ4(q, t) defined in Eq. 8. In

fact, the finite size of the statistical ensemble (which is directly proportional to the number of

pixels, Np) over which the intensity correlations are calculated introduces a statistical noise

contribution (σ2
n) that adds up to the intrinsic fluctuations due to the dynamical heterogeneities

σ2
g2

(Np, t) = σ2
n(Np, t) + χ4(q, t) (9)

It can be demonstrated (21) that this noise term σ2
n decreases with the inverse of the number of

pixels employed for the computation of the intensity correlations, eventually vanishing only in

the limitNp →∞. In the case of not too large speckle size to pixel size ratio σ2
n(Np, t) ∝ 1/Np.

Thus an extrapolation scheme can be implemented to obtain χ4(q, t) based on the computation

σ2
g2

(Np, t) for different Np values, as shown in the example reported in Fig. S7. It has to be

noticed that this extrapolation scheme requires a meaningful statistics and good signal to noise

ratios for all the chosen Np values, and so it cannot be applied for too low detected intensities

(typical situation for ROIs corresponding to large q-values far from the structure factor’s peak)

or too low initial number of pixels (ROIs too small or too close to the direct beam).
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Fig. S7. Variance of the intermediate scattering function for different subensembles of
detector pixels. Sequence of σ2

g2
(Np, t) for q = 0.064 nm−1 and for the Np values reported in

the legend. The correct χ4(q, t) (red circles) is obtained extrapolating the intensity in each time
channel of these curves in the limit Np →∞.

In the present case, the choice of the azimuthal range ∆φ over which calculating the χ4(q, t)

function has to be the result of a compromise. In fact, on the one hand the ∆φ range should be

large enough to provide a good enough signal to noise ratio to correctly compute the χ4(q, t)

function; on the other hand, since the dynamics here studied is strongly anisotropic as it is

confined in the horizontal plane, a too large ∆φ range would clearly wash out the χ4(q, t) signal.

These effects are shown in Fig. S8, where a comparison of the χ4(q, t) signal computed using

different ∆φ ranges is reported. Fig.S8 also shows that our choice of the ∆φ = π/2 range used

to compute the χ4(q, t) signal reported in the main text is a reasonable one, and highlights that

neglecting possible anisotropies in the dynamics can effectively wash out the χ4(q, t) signal.
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Fig. S8. Extrapolated variance of the intermediate scattering function for different range
of azimuthal angles. Extrapolated dynamical susceptibility at q = 0.064 nm−1 computed
using the horizontal sectors over different ranges: ∆φ = π/4, ∆φ = π/2, and ∆φ = π (i.e.
corresponding to the whole ring), see legend for correspondence to symbols. For ∆φ = π the
main peak of the χ4(q, t) is clearly washed out, while for ∆φ = π/4 it has reached a basically
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range used for the discussion in the main text.
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