#### Supplementary information

Metastasis-initiating cells induce and exploit a fibroblast niche to fuel malignant colonization of the lungs **Pein** *et al* 



# Supplementary Figure 1. Isolation of fibroblasts from healthy mouse lungs and lungs with growing metastases.

**a**, Lung bioluminescence in mice harboring MDA/MDA-LM2 micro- or macrometastases. Mice selected for fibroblast isolation and transcriptomic screen are labelled in blue (MDA) or red (MDA-LM2). Each point represents an individual mouse. **b-d**, FACS gating strategy used to isolate fibroblasts from healthy lungs (b) and lungs with metastases (c,d). Dead cells were excluded by DAPI staining, cancer cells were excluded by green fluorescent protein (GFP) expression, fibroblasts were further enriched by excluding CD45-, CD11b-, EPCAM- and CD31-expressing cells (PE staining) and by gating on CD140a- or CD140b-expressing cells (APC staining). PE - phycoerythrin, APC - allophycocyanin.



# Supplementary Figure 2. Purity- and functional analyses of metastasis-associated fibroblasts.

**a**,**b**, Expression of indicated marker genes of fibroblasts (a), endothelial cells, bone-marrowderived cells (BMDCs), and epithelial cells (b) determined by RT-qPCR in RNA from three lungs harboring MDA-LM2 macrometastases (Total Lung) as compared to the sorted fibroblast fraction. Expression of each target is normalized to expression in total lung. Bars show mean with SEM. Indicated numbers in fibroblast fraction in (b) show average relative expression level of each gene. ND, not detected. **c**, Gene ontology analysis of top upregulated genes accounting for shift in PCA in fibroblasts from MDA- versus MDA-LM2-micrometastases as shown in Figure 1g. **d**, Contraction of collagen gels by mouse lung fibroblasts stimulated with conditioned medium (CM) from MDA, MDA-LM2 and control medium. Control, n = 8, MDA or MDA-LM2, n = 7 for each group. Data points show biological replicates and bars depict mean with SD. *P* value was calculated by unpaired two-tailed t-test.



<sup>0,</sup> no staining; 1, moderate staining; 2, strong staining

# Supplementary Figure 3. Reactive fibroblasts in lung metastases of human breast cancer.

**a-c**, Immunohistochemical analysis of alpha smooth muscle actin ( $\alpha$ SMA) in human breast cancer metastases in lungs. Representative example of  $\alpha$ SMA-expressing fibroblasts (a, white arrows). Scale bar, 20 µm.  $\alpha$ SMA expression in lung metastases was analyzed from 12 breast cancer patients.



# Supplementary Figure 4. Expression of extracellular matrix (ECM) and associated proteins in MAFs.

Heatmaps of normalized expression of genes encoding collagens, ECM-modifying enzymes, and ECM glycoproteins in isolated fibroblasts of healthy lungs and lungs harboring micro- or macrometastases established by MDA or MDA-LM2 breast cancer cells. Gene collections were obtained from the matrisomeproject.mit.edu<sup>1</sup>.



#### Supplementary Figure 5. Gene signature upregulated in MAFs coding membranebound surface proteins or secreted proteins.

**a**, Venn diagram indicating the number of genes significantly induced (BH-P value < 0.05) in fibroblasts isolated from lungs harboring MDA/MDA-LM2 micro- or macrometastasis. b, Heatmap of normalized gene expression in fibroblasts from healthy lungs and lungs harboring MDA/MDA-LM2 micro- or macrometastases. Shown are genes significantly induced (BH-P value < 0.05) in fibroblasts from lungs with MDA-LM2 micrometastasis that overlap with general induction at macrometastatic stage. c,d, CXCL9 and CXCL10 protein levels in lung homogenates from n = 4 healthy mice and n = 4 mice harboring MDA-LM2 macrometastases. Cytokine levels were determined by ELISA on samples diluted 1:10. e, Standard expression curves of murine Cxcl9 and human CXCL9. f, Quantification of relative CXCL9 mRNA levels in MDA-LM2 cancer cells compared to expression of Cxcl9 levels in isolated fibroblasts from lungs harboring MDA-LM2 macrometastases. g, Standard curves of murine Cxcl10 and human CXCL10. h, Quantification of relative CXCL10 mRNA levels in MDA-LM2 cancer cells compared to expression of Cxcl10 levels in sorted fibroblasts from lungs harboring MDA-LM2 macrometastases; 0.0012 is the average relative expression level in MDA-LM2 cancer cells. For panels (f,h), bars depict mean with SEM.



### Supplementary Figure 6. Ectopic *CXCL9/10* expression in breast cancer cells and examples of resulting lung metastases in mice.

a, CXCL9 and CXCL10 mRNA levels in MDA or SUM breast cancer cells upon combined overexpression of CXCL9/10. Expression levels were determined by RT-qPCR. Bars show mean with upper and lower limits. b, Relative expression levels of CXCL9 and CXCL10 in MDA or SUM breast cancer cells upon overexpression of CXCL9/10 in comparison to expression levels of Cxcl9/10 in fibroblasts isolated from lungs harboring MDA-LM2 metastases (Reactive MAFs). Standard curves were used to compare efficiency of murine and human Cxcl9/10 primers. The following formula were used for calculation of expression levels using qPCR Ct values: human CXCL9: y = 63529e-0.673x, murine Cxcl9: y = 16015e-0.665x, human CXCL10: y = 2939.3e-0.688x, murine *Cxcl10*: y = 2247.1e-0.661x. Expression was analyzed by RT-qPCR. Bars depict mean of three biological replicates with SD. c,d, Examples of bioluminescence (c) or histology (d) from lungs of mice injected intravenously with MDA or SUM breast cancer cells CXCL9/10 vector overexpressing or а control as shown in Fig. 3d.e. Immunohistochemistry was used to visualize human vimentin expression as a marker of cancer cells. Arrows indicate metastatic foci. Scale bars, 200 µm.







а



# Supplementary Figure 7. *CXCL9* and *CXCL10* individually expressed in breast cancer cells promote oncosphere formation and lung colonization.

**a**, *CXCL9* and *CXCL10* expression in MDA and SUM breast cancer cells transduced with cDNA of either gene. mRNA levels were analyzed by RT-qPCR. Bars show mean with upper and lower limits. **b**, Formation of oncospheres by MDA or SUM breast cancer cells overexpressing *CXCL9* or *CXCL10* versus a vector control. Sphere numbers per well were normalized to the average number in the control group. Data represent n = 5 independent experiments with quantification of 10 and 12 wells per condition, respectively. Statistics were calculated on biological replicates. **c**, Lung colonization by MDA or SUM breast cancer cells upon ectopic expression of *CXCL9* or *CXCL10* or a vector control, measured using bioluminescence. For panels (b,c), boxes depict median with upper and lower quartiles. Data points show values of biological replicates, whiskers represent minimum and maximum values. *P* values were determined by unpaired one-tailed t-tests.





С

а



#### Supplementary Figure 8. CXCL9/10 are induced in lung fibroblasts via IL-1R signaling.

**a**, CXCL10 protein levels measured by ELISA in conditioned medium from MRC-5 fibroblasts after stimulation with vehicle control, recombinant human IL-1 $\alpha$  (1 ng/ml), IL-1 $\beta$  (1 ng/ml), or IL-1 $\alpha$  + IL-1 $\beta$  (1 ng/ml each) for 48 h. Bars depict mean of technical replicates with SD. **b**,**c**, *CXCL9/10* expression in MRC-5 fibroblasts treated with 1 ng/mL recombinant IL-1 $\alpha$  (b) or IL-1 $\beta$  (c) in combination with 20 µg/ml IL-1R neutralizing antibody (IL-1Rab) or IgG isotype control (IgG) for 48 h. Linked sets of data points depict relative expression in independent experiments and bars show mean. Expression was analyzed by RT-qPCR; n = 3 biological replicates. *P* values were calculated by ratio-paired one-tailed t-tests



### Supplementary Figure 9. IL-1 is induced by JNK signaling in MDA-LM2 and SUM-LM1 breast cancer cells.

**a**, Protein levels of active human IL-1 $\alpha$  and IL-1 $\beta$  as measured in conditioned medium from MDA, MDA-LM2, SUM, and SUM-LM1 cancer cells. Protein levels were measured by ELISA. b, CXCL10 expression in fibroblasts treated with conditioned media (CM) from MDA-LM2 breast cancer cells alone or in combination with 5 μM NF-κB inhibitor (NF-κBi). Linked sets of values show expression in biological replicates. Bars depict mean. P value was determined by ratio-paired one-tailed t-test; n = 3 independent experiments. c,d, Expression levels of CXCL9 and CXCL10 (c) or IL-1A and IL-1B (d) in MDA-LM2 cancer cells after 48 h stimulation with 1 ng/ml recombinant human IL-1α or IL-1β. For panels (a,c and d), data points show values of biological replicates and bars depict mean with SD. e, IL1A and IL1B expression in control and IL1A/B double knockdown (shIL1A/B) MDA-LM2 cancer cells. Bars show mean with upper and lower limits. f, Enrichment of a JNK response signature<sup>2</sup> in cultured MDA-LM2 versus MDA parental breast cancer cells<sup>3</sup>. NES, normalized enrichment score. P value was determined by random permutation test. g, Protein levels of active human IL-1α and IL-1β measured in conditioned medium from MDA cancer cells upon ectopic expression of MKK7-JNK, MKK7-JNK(mut), or an empty vector control by ELISA. h, Expression levels of IL1B in MDA-LM2 cancer cells after 48 h stimulation with 1 ng/ml recombinant human IL-1a or IL-1β combined with vehicle or 5 µM CC-401 (JNKi). Data points represent values of biological replicates. i, ChIP-qPCR analysis of c-Jun binding to IL1A and IL1B promoter chromatin in SUM-LM1 cells. Bars in panels (h,i) depict mean with SD. j, Expression of CXCL9/10 in MDA-LM2 breast cancer cells transduced with CXCL9, CXCL10, or vector control. Values are mean with upper and lower limits. Gene expression in panels (b-e, h and j) was analyzed by RT-qPCR.



### Supplementary Figure 10. CXCR3<sup>+</sup> breast cancer cells in primary effusion samples from patients with metastasis.

**a**, CXCR3-positive (CXCR3<sup>+</sup>) subpopulations in human metastatic cells isolated from pleural effusions (nr. 1 and 4) or ascites (nr. 2 and 3) of breast cancer patients as determined by flow cytometry. CXCR3-PE stained samples in red, isotype control samples in grey. Percentages of CXCR3<sup>+</sup> cells are shown. **b**, Pan-cytokeratin staining of primary cancer cells derived from pleural effusions or ascites from metastatic breast cancer patients (Patients 1-4; black lines). Isotype controls are indicated in grey (dotted lines). MDA cancer cells were used as positive control (blue line), and MRC-5 fibroblasts were used as negative control (red filled line).



Supplementary Figure 11. Genes expressed in CXCR3<sup>+</sup> breast cancer cells are associated with stem cell properties.

Enrichment of indicated gene sets<sup>4, 5</sup> in CXCR3<sup>+</sup> compared to CXCR3<sup>-</sup> SUM-LM1 breast cancer cells. NES, normalized enrichment score. FDR, false discovery rate. *P* values were determined by random permutation tests.



### Supplementary Figure 12. CXCR3<sup>+</sup> breast cancer cells are enriched with activated c-Jun and promote tumor initiation when co-transplanted with fibroblasts.

a. Single channel immunofluorescence analyses of CXCR3, p-c-Jun, DAPI, and cytokeratin 8 (CK8) as shown in Fig. 8e. Dashed lines indicate margin of metastatic nodule as determined by CK8 expression. Scale bar, 100 µm. b, Pie chart depicting percentages of p-c-Jun-positive cancer cells as in Fig. 8e that express CXCR3 or not. c, Protein levels of secreted human IL-1α and IL-1β measured by ELISA in conditioned medium from isolated CXCR3<sup>+</sup> or CXCR3<sup>-</sup> MDA-LM2 cancer cells. Data points show values of technical replicates. Bars depict mean with SD. d, CXCL10 expression in MRC-5 human lung fibroblasts treated with control medium or conditioned medium (CM) from CXCR3<sup>+</sup> or CXCR3<sup>-</sup> 4T1 mammary tumor cells for 48 h. Two independent experiments are shown, bars depict mean from triplicates. e, Tumors resected 3 weeks after subcutaneous injection of CXCR3<sup>+</sup> or CXCR3<sup>-</sup> 4T1 mammary cancer cells and lung fibroblasts in limiting dilutions into either flank of BALB/c mice as quantified in Fig. 8j. Scale bar, 5 mm. f, Quantification of tumor sizes 3 weeks after subcutaneous injection of CXCR3<sup>+</sup> or CXCR3<sup>-</sup> 4T1 cancer cells (without lung fibroblasts) in limiting dilution into either flank of BALB/c mice; n = 8 mice per group from two independent experiments. Tumor sizes were normalized to average tumor size established by injection of 10,000 CXCR3<sup>-</sup> 4T1 cells. Data points are values of biological replicates. Boxes show median with upper and lower quartiles and whiskers depict maximum and minimum.



# Supplementary Figure 13. Analysis of CXCR3 and checkpoint regulators in T cells from lung metastases in mice.

**a-d,** Expression of indicated markers measured by flow cytometry in cell populations from healthy lungs or lungs harboring metastases, 2 weeks after intravenous injection of 4T1 cancer cells into BALB/c mice. Data points represent values of biological replicates and bars show mean with SD. **a**, CXCR3-expressing populations within CD8a<sup>+</sup> or CD4<sup>+</sup> lymphocytes **b**, Expression of immune checkpoint molecule and exhaustion marker PD1 in CD8a<sup>+</sup> or CD4<sup>+</sup> lymphocytes. **c**, Expression of checkpoint protein and exhaustion marker Lag3 in CD8a<sup>+</sup> lymphocytes. **d**, PD1 and Lag3 expression in CXCR3<sup>+</sup> CD8a<sup>+</sup> lymphocytes. **e**, Expression of PD-L1 in 4T1 cancer cells populations isolated from lungs with growing metastases. Shown are three biological replicates.



#### Supplementary Figure 14. Proliferation gene signatures are repressed in cancer cells after treatment with CXCR3i.

a, Enrichment of indicated gene sets of the MSigDB Hallmark gene set collection in vehicletreated MDA cancer cells overexpressing CXCL9 and CXCL10 compared to treatment with CXCR3i. NES, normalized enrichment score, FDR, false discovery rate. P values were determined by random permutation tests. b, Gene ontology analysis of top 300 downregulated genes in CXCL9/10 expressing MDA cancer cells treated with CXCR3i as compared to vehicle control. BH - Benjamini Hochberg, FDR, False Discovery Rate. c, Heatmap depicting normalized expression of genes belonging to a Breast Cancer Proliferation Cluster<sup>6</sup> in MDA cancer cells expressing CXCL9/10 and treated with CXCR3i.

а

Row

1.5

0

1.5

С

Breast Cancer Proliferation



# Supplementary Figure 15. Metastatic colonization by CXCR3 knockdown mammary cancer cells.

a, Relative expression of Cxcr3 in 4T1 mouse mammary tumor cells transduced with shRNAs against Cxcr3 or a non-targeting shRNAs as control. Two nontargeting shRNAs and two hairpins targeting Cxcr3 were used. Bars depict mean with SD. **b**, *In vivo* lung bioluminescence in BALB/c mice injected intravenously with shCxcr3 or control 4T1 cancer cells 24 days post injection; n = 9 mice per group. Boxes show median with upper and lower quartiles and whiskers show minimum and maximum values. P value was determined by unpaired one-tailed t-test. For panels (a,b), data points represent values of biological replicates and different hairpins are indicated by different point colors. С. Representative immunofluorescence analysis of cytokeratin 8 expression in cancer cells (white) to visualize metastatic nodules in lung sections from (b). Dashed line indicates margin of metastatic foci and arrows point to single cancer cells. DAPI was used for nuclear staining. Scale bar, 100 µm.



# Supplementary Figure 16. CXCR3S expression associates with poor outcome in breast cancer patients.

**a-c**, Kaplan-Meier analyses of breast cancer patients, associating CXCR3<sup>+</sup> cell signature (CXCR3S, mean expression of 65 genes) with overall survival (**a**, TOP trial data set, n = 107 patients), distant metastasis-free survival (**b**, compiled data set from basal-like breast cancer, KM plotter, n = 145) or relapse-free survival (**c**, compiled data set from basal-like breast cancer, KM plotter, n = 360). Median cutoff was used to group patients into CXCR3S low and high. HR, hazard ratio. *P* values were determined by log-rank tests.

#### Supplementary Table 1. Gene sets used in heatmap for Fig. 1h.

GSEA on gene expression profiles of fibroblasts isolated from lungs of mice with growing MDA231 (MDA) or MDA231-LM2 (MDA-LM2) metastases. Shown are normalized enrichment scores (NES) of fibroblasts isolated at 1 week or 3 weeks post injection. False discovery rate (FDR) < 0.1.

| Cellular Responses                                              | NES Micrometastasis NES Macrometastas |         | ometastasis |         |
|-----------------------------------------------------------------|---------------------------------------|---------|-------------|---------|
|                                                                 | MDA                                   | MDA-LM2 | MDA         | MDA-LM2 |
| BENPORATH_CYCLING_GENES                                         |                                       |         | 2.369       | 2.252   |
| BENPORATH_PROLIFERATION                                         |                                       |         | 2.466       | 2.336   |
| BIOCARTA_CELLCYCLE_PATHWAY                                      |                                       |         | 1.785       | 1.868   |
| BIOCARTA_G1_PATHWAY                                             |                                       |         | 1.903       | 2.032   |
| BIOCARTA_G2_PATHWAY                                             |                                       |         | 1.776       | 1.736   |
| CHANG_CYCLING_GENES                                             |                                       | 2.064   | 2.959       | 2.903   |
| CHIANG_LIVER_CANCER_SUBCLASS_PROLIFERATION_UP                   |                                       | 1.708   | 2.898       | 2.749   |
| KAUFFMANN_DNA_REPLICATION_GENES                                 |                                       |         | 1.893       | 1.884   |
| KEGG_CELL_CYCLE                                                 |                                       |         | 2.204       | 2.252   |
| KEGG_DNA_REPLICATION                                            |                                       | 1.880   | 1.868       | 2.102   |
| REACTOME_CELL_CYCLE                                             |                                       |         | 2.373       | 2.430   |
| REACTOME_CELL_CYCLE_CHECKPOINTS                                 |                                       | 1.715   | 2.226       | 2.417   |
| REACTOME_CELL_CYCLE_MITOTIC                                     |                                       |         | 2.447       | 2.506   |
| REACTOME_CYCLIN_E_ASSOCIATED_EVENTS_<br>DURING_G1_S_TRANSITION_ |                                       | 1.921   | 2.186       | 2.262   |
| REACTOME_DNA_REPLICATION                                        |                                       | 1.610   | 2.391       | 2.504   |
| REACTOME_DNA_STRAND_ELONGATION                                  |                                       | 1.889   | 2.018       | 2.085   |
| REACTOME_G0_AND_EARLY_G1                                        |                                       |         | 1.743       | 1.668   |
| REACTOME_G1_PHASE                                               |                                       |         | 1.866       | 1.831   |
| REACTOME_G1_S_TRANSITION                                        |                                       | 1.973   | 2.373       | 2.421   |
| REACTOME_LAGGING_STRAND_SYNTHESIS                               |                                       | 1.668   | 1.660       | 1.748   |
| REACTOME_M_G1_TRANSITION                                        |                                       | 2.121   | 2.305       | 2.402   |
| REACTOME_MITOTIC_G1_G1_S_PHASES                                 |                                       | 1.834   | 2.429       | 2.515   |
| REACTOME_MITOTIC_G2_G2_M_PHASES                                 |                                       |         | 1.552       | 1.615   |
| REACTOME_MITOTIC_M_M_G1_PHASES                                  |                                       |         | 2.323       | 2.430   |
| REACTOME_MITOTIC_PROMETAPHASE                                   |                                       |         | 2.184       | 2.260   |
| REACTOME_REGULATION_OF_MITOTIC_CELL_CYCLE                       |                                       | 1.942   | 2.375       | 2.451   |
| REACTOME_S_PHASE                                                |                                       | 2.122   | 2.399       | 2.500   |
| REACTOME_SYNTHESIS_OF_DNA                                       |                                       | 2.186   | 2.347       | 2.427   |
| ROSTY_CERVICAL_CANCER_PROLIFERATION_CLUSTER                     |                                       | 1.953   | 3.137       | 3.106   |
| WHITFIELD_CELL_CYCLE_G1_S                                       |                                       |         | 1.694       | 1.535   |
| WHITFIELD_CELL_CYCLE_G2                                         |                                       |         | 2.164       | 2.050   |
| WHITFIELD_CELL_CYCLE_G2_M                                       |                                       |         | 2.407       | 2.344   |
| WHITFIELD_CELL_CYCLE_LITERATURE                                 |                                       | 1.624   | 2.584       | 2.606   |
| WHITFIELD_CELL_CYCLE_M_G1                                       |                                       |         | 1.831       | 1.516   |
| WHITFIELD_CELL_CYCLE_S                                          |                                       |         | 1.647       | 1.594   |

| ZHANG_PROLIFERATING_VS_QUIESCENT                                                   |       | 1.904 | 1.900 |
|------------------------------------------------------------------------------------|-------|-------|-------|
| PLASARI_TGFB1_SIGNALING_VIA_NFIC_10HR_UP                                           | 1.980 | 1.429 | 1.573 |
| PLASARI_TGFB1_SIGNALING_VIA_NFIC_1HR_UP                                            |       | 1.543 | 1.630 |
| PLASARI_TGFB1_TARGETS_10HR_UP                                                      | 1.672 | 2.786 | 2.662 |
| PLASARI_TGFB1_TARGETS_1HR_UP                                                       |       | 2.347 | 2.112 |
| REACTOME_SIGNALING_BY_TGF_BETA_RECEPTOR_COMPLEX                                    |       | 1.737 | 1.657 |
| VERRECCHIA_RESPONSE_TO_TGFB1_C1                                                    |       | 1.501 |       |
| VERRECCHIA_RESPONSE_TO_TGFB1_C5                                                    | 1.758 | 1.501 | 1.742 |
| VERRECCHIA_DELAYED_RESPONSE_TO_TGFB1                                               |       | 1.767 | 1.814 |
| VERRECCHIA_EARLY_RESPONSE_TO_TGFB1                                                 |       | 1.569 | 1.467 |
| SEKI_INFLAMMATORY_RESPONSE_LPS_UP                                                  |       | 2.934 | 2.690 |
| BIOCARTA_INFLAM_PATHWAY                                                            |       | 1.701 | 1.593 |
| OKUMURA_INFLAMMATORY_RESPONSE_LPS                                                  |       | 1.805 | 1.754 |
| REACTOME_ACTIVATED_TLR4_SIGNALLING                                                 |       | 1.472 |       |
| WUNDER_INFLAMMATORY_RESPONSE_AND_CHOLESTEROL_UP                                    | 1.912 | 2.496 | 2.471 |
| KEGG_TOLL_LIKE_RECEPTOR_SIGNALING_PATHWAY                                          |       | 1.875 | 1.778 |
| ALTEMEIER_RESPONSE_TO_LPS_WITH_MECHANICAL_VENTILATION                              | 1.875 | 2.914 | 2.774 |
| REACTOME_TOLL_RECEPTOR_CASCADES                                                    |       | 1.619 | 1.526 |
| REACTOME_TRIF_MEDIATED_TLR3_SIGNALING                                              |       | 1.685 | 1.649 |
| ZHOU_INFLAMMATORY_RESPONSE_FIMA_UP                                                 |       | 1.753 | 1.535 |
| ZHOU_INFLAMMATORY_RESPONSE_LIVE_UP                                                 |       | 2.261 | 2.030 |
| ZHOU_INFLAMMATORY_RESPONSE_LPS_UP                                                  |       | 2.066 | 1.820 |
| ZHANG_INTERFERON_RESPONSE                                                          | 2.045 | 2.242 | 2.040 |
| REACTOME_INTERFERON_SIGNALING                                                      | 1.788 | 2.326 | 2.316 |
| REACTOME_INTERFERON_GAMMA_SIGNALING                                                | 1.603 | 2.166 | 2.140 |
| REACTOME_IL1_SIGNALING                                                             |       | 1.452 |       |
| MAHAJAN_RESPONSE_TO_IL1A_UP                                                        | 1.642 | 1.969 | 1.589 |
| BIOCARTA_IL1R_PATHWAY                                                              |       | 1.958 | 1.693 |
| REACTOME_TRAF6_MEDIATED_NFKB_ACTIVATION                                            | 1.698 | 1.541 | 1.511 |
| JAIN_NFKB_SIGNALING                                                                |       | 1.439 | 1.444 |
| REACTOME_RIP_MEDIATED_NFKB_ACTIVATION_VIA_DAI                                      | 1.736 | 1.806 | 1.743 |
| HINATA_NFKB_TARGETS_KERATINOCYTE_UP                                                |       | 2.405 | 2.239 |
| HINATA_NFKB_TARGETS_FIBROBLAST_UP                                                  |       | 2.218 | 2.182 |
| RASHI_NFKB1_TARGETS                                                                |       | 2.336 | 2.170 |
| MANTOVANI_NFKB_TARGETS_UP                                                          |       | 2.084 | 2.073 |
| REACTOME_TAK1_ACTIVATES_NFKB_BY_PHOSPHORYLATION_<br>AND_ACTIVATION_OF_IKKS_COMPLEX |       | 1.631 | 1.518 |

#### Supplementary Table 2. Poor outcome gene cluster is enriched in MAFs.

GSEA of poor outcome stromal signature<sup>7</sup> in MDA- or MDA-LM2-associated fibroblasts from mouse lungs harboring micro- or macrometastasis. NES, normalized enrichment score. FDR, false discovery rate. *P* values were determined by random permutation tests.

| Comparison                                   | NES     | P value | FDR     |
|----------------------------------------------|---------|---------|---------|
| Micrometastasis: MDA-LM2 vs MDA              | 1.50192 | 0.01877 | 0.03859 |
| Macrometastasis: MDA-LM2 vs MDA              | 1.42618 | 0.02764 | 0.10624 |
| MDA-LM2: Macrometastasis vs. Micrometastasis | 2.06136 | < 0.001 | < 0.001 |
| MDA: Macrometastasis vs. Micrometastasis     | 2.11246 | < 0.001 | < 0.001 |

| Gene         | Linear FC | P value | BH-adjusted <i>P</i> value |
|--------------|-----------|---------|----------------------------|
| AADAC        | 2.8154    | 0.0019  | 0.0773                     |
| ABCA13       | 2.9828    | 0.0005  | 0.0368                     |
| AMIGO2       | 2.4061    | 0.0024  | 0.0553                     |
| CCDC69       | 2.3784    | 0.0020  | 0.0407                     |
| CCL20        | 2.6882    | 0.0008  | 0.0317                     |
| CCL5         | 3.3558    | 0.0002  | 0.0317                     |
| CD1D         | 3.3792    | 0.0005  | 0.0516                     |
| CD33         | 2.6329    | 0.0024  | 0.0773                     |
| CD55         | 2.8481    | 0.0007  | 0.0397                     |
| CD70         | 2.5847    | 0.0013  | 0.0429                     |
| CLCA2        | 2.9282    | 0.0012  | 0.0655                     |
| CLDN1        | 2.7511    | 0.0014  | 0.0632                     |
| CPA4         | 2.4566    | 0.0014  | 0.0358                     |
| CYTIP        | 2.3729    | 0.0026  | 0.0560                     |
| DHRS3        | 2.8679    | 0.0005  | 0.0317                     |
| EDIL3        | 2.9759    | 0.0006  | 0.0414                     |
| EHF          | 3.0035    | 0.0009  | 0.0553                     |
| EPHA4        | 2.6451    | 0.0011  | 0.0414                     |
| FAM83B       | 2.8089    | 0.0010  | 0.0498                     |
| FCAR         | 2.5491    | 0.0060  | 0.1311                     |
| FCRLA        | 2.4967    | 0.0018  | 0.0516                     |
| FYB          | 2.8154    | 0.0006  | 0.0317                     |
| GJB2         | 2.6635    | 0.0008  | 0.0324                     |
| GJB5         | 3.6553    | 0.0010  | 0.0827                     |
| GPR87        | 2.5198    | 0.0019  | 0.0553                     |
| IL1B         | 2.5257    | 0.0040  | 0.0991                     |
| IL33         | 2.8350    | 0.0011  | 0.0560                     |
| IL6          | 2.7195    | 0.0018  | 0.0719                     |
| ITGB4        | 2.4061    | 0.0023  | 0.0544                     |
| KRT14        | 2.6635    | 0.0010  | 0.0397                     |
| KRT15        | 2.3894    | 0.0109  | 0.1687                     |
| KRT17        | 2.7007    | 0.0014  | 0.0553                     |
| KRT6A        | 2.7132    | 0.0030  | 0.0973                     |
| KRT75        | 2.3620    | 0.0060  | 0.1107                     |
| LOC100505946 | 3.2868    | 0.0003  | 0.0324                     |
| LOC101927787 | 2.5315    | 0.0026  | 0.0722                     |
| LOC201651    | 2.7132    | 0.0015  | 0.0616                     |
| LPAR3        | 2.7195    | 0.0011  | 0.0482                     |
| MAB21L3      | 3.8637    | 0.0002  | 0.0398                     |
| MIR205       | 2.6268    | 0.0019  | 0.0686                     |
| MMP10        | 2.7766    | 0.0077  | 0.1687                     |

#### Supplementary Table 3. 65-gene signature in CXCR3<sup>+</sup> breast cancer cells.

| MMP13    | 6.0210 | 0.0000 | 0.0169 |
|----------|--------|--------|--------|
| MMP3     | 3.4422 | 0.0006 | 0.0627 |
| MRGPRX3  | 3.9632 | 0.0001 | 0.0317 |
| MT2A     | 2.5315 | 0.0028 | 0.0773 |
| NEURL1B  | 2.9282 | 0.0022 | 0.0951 |
| NTN4     | 2.7830 | 0.0009 | 0.0417 |
| NUAK2    | 2.5257 | 0.0058 | 0.1249 |
| NUP62CL  | 2.9214 | 0.0008 | 0.0498 |
| OASL     | 3.5554 | 0.0002 | 0.0355 |
| P2RY1    | 2.7511 | 0.0027 | 0.0951 |
| PAK6     | 3.2944 | 0.0004 | 0.0401 |
| PHEX     | 2.3403 | 0.0140 | 0.1865 |
| PI3      | 3.1602 | 0.0015 | 0.0859 |
| PKIA     | 2.4396 | 0.0028 | 0.0701 |
| PODXL    | 2.3729 | 0.0021 | 0.0419 |
| PPP1R14C | 2.8547 | 0.0008 | 0.0417 |
| PRSS3    | 2.7007 | 0.0009 | 0.0407 |
| SDC4     | 2.4737 | 0.0022 | 0.0604 |
| SERPINB2 | 3.5390 | 0.0011 | 0.0835 |
| SERPINB5 | 2.5315 | 0.0022 | 0.0655 |
| SHISA2   | 2.5491 | 0.0016 | 0.0505 |
| SLC35F3  | 2.6208 | 0.0020 | 0.0686 |
| SULF1    | 2.4967 | 0.0015 | 0.0414 |
| TRPV3    | 3.2565 | 0.0013 | 0.0809 |

Supplementary Table 4. GO term analysis of genes induced in CXCR3<sup>+</sup> population of SUM-LM1 cancer cells compared to the CXCR3<sup>-</sup> population.

| Category | Term                                                               | Fold<br>Enrichment | BH-P value | FDR   |
|----------|--------------------------------------------------------------------|--------------------|------------|-------|
|          | GO:0032602~chemokine production                                    | 22.857             | 0.000      | 0.000 |
|          | GO:0032722~positive regulation of chemokine production             | 22.271             | 0.002      | 0.012 |
|          | GO:0032642~regulation of chemokine production                      | 19.029             | 0.001      | 0.003 |
|          | GO:0050729~positive regulation of inflammatory response            | 11.548             | 0.005      | 0.053 |
|          | GO:0042098~T cell proliferation                                    | 8.874              | 0.005      | 0.054 |
|          | GO:0032103~positive regulation of response to external stimulus    | 7.229              | 0.002      | 0.016 |
|          | GO:0043410~positive regulation of MAPK cascade                     | 4.776              | 0.005      | 0.064 |
|          | GO:0030334~regulation of cell migration                            | 4.227              | 0.002      | 0.016 |
|          | GO:0043408~regulation of MAPK cascade                              | 3.985              | 0.005      | 0.069 |
|          | GO:2000145~regulation of cell motility                             | 3.934              | 0.004      | 0.037 |
|          | GO:0040012~regulation of locomotion                                | 3.770              | 0.005      | 0.059 |
| BP       | GO:0051270~regulation of cellular component movement               | 3.610              | 0.006      | 0.094 |
|          | GO:0016477~cell migration                                          | 3.586              | 0.000      | 0.001 |
|          | GO:0023014~signal transduction by protein phosphorylation          | 3.521              | 0.005      | 0.062 |
|          | GO:0051674~localization of cell                                    | 3.483              | 0.000      | 0.000 |
|          | GO:0048870~cell motility                                           | 3.483              | 0.000      | 0.000 |
|          | GO:0040011~locomotion                                              | 3.280              | 0.000      | 0.000 |
|          | GO:0006928~movement of cell or subcellular component               | 2.903              | 0.000      | 0.001 |
|          | GO:0051240~positive regulation of multicellular organismal process | 2.832              | 0.005      | 0.049 |
|          | GO:0009888~tissue development                                      | 2.748              | 0.002      | 0.009 |
|          | GO:0032268~regulation of cellular protein metabolic process        | 2.304              | 0.005      | 0.047 |
|          | GO:0007166~cell surface receptor signaling pathway                 | 2.242              | 0.003      | 0.022 |
|          | GO:0044707~single-multicellular organism process                   | 1.754              | 0.000      | 0.001 |
|          | GO:0009986~cell surface                                            | 3.833              | 0.002      | 0.074 |
|          | GO:0005887~integral component of plasma membrane                   | 3.203              | 0.000      | 0.000 |
|          | GO:0005615~extracellular space                                     | 3.191              | 0.000      | 0.003 |
| сс       | GO:0031226~intrinsic component of plasma membrane                  | 3.079              | 0.000      | 0.001 |
|          | GO:0044459~plasma membrane part                                    | 2.305              | 0.001      | 0.022 |
|          | GO:0044421~extracellular region part                               | 2.053              | 0.000      | 0.006 |
|          | GO:0005576~extracellular region                                    | 1.903              | 0.000      | 0.008 |
|          | GO:0071944~cell periphery                                          | 1.754              | 0.001      | 0.035 |
|          | GO:0005102~receptor binding                                        | 2.819              | 0.005      | 0.040 |
| MF       | GO:0060089~molecular transducer activity                           | 2.687              | 0.008      | 0.028 |
|          | GO:0004872~receptor activity                                       | 2.687              | 0.008      | 0.028 |

|                                  | •                                |                                  |
|----------------------------------|----------------------------------|----------------------------------|
| Primer                           | Forward primer sequence (5'- 3') | Reverse primer sequence (5'- 3') |
| RPL13A (h)                       | AGATGGCGGAGGTGCAG                | GGCCCAGCAGTACCTGTTTA             |
| CXCL9 (h)                        | GAGTGCAAGGAACCCCAGTAG            | GGTGGATAGTCCCTTGGTTGG            |
| CXCL10 (h)                       | TGGCATTCAAGGAGTACCTCTC           | GGACAAAATTGGCTTGCAGGA            |
| IL1A (h)                         | GCTGAAGGAGATGCCTGAGATA           | ACAAGTTTGGATGGGCAACTG            |
| IL1B (h)                         | AACAGGCTGCTCTGGGATTC             | AGTCATCCTCATTGCCACTGT            |
| CXCL9 (h) for cloning of full-   | ATGAAGAAAAGTGGTGTTCTTTCCTC       | TTATGTAGTCTTCTTTTGACGAGAACGT     |
| length cDNA                      |                                  |                                  |
| CXCL10 (h) for cloning of full-  | ATGAATCAAACTGCCATTCTGATTTG       | TTAAGGAGATCTTTTAGACCTTTCCTTG     |
| length cDNA                      |                                  |                                  |
| CXCL9 (h) for comparing to       | CATCAGCACCAACCAAGGGA             | AGGGCTTGGGGCAAATTGTT             |
| levels of murine Cxcl9           |                                  |                                  |
| CXCL10 (h) for comparing to      | TGCCATTCTGATTTGCTGCC             | TGCAGGTACAGCGTACAGTT             |
| levels of murine Cxcl10          |                                  |                                  |
| IL1A (h) Primer pair 1 for ChIP- | GGCTGTAGCTTTAGAGAAGGCA           | GGCGTTTGAGTCAGCAAAGG             |
| qPCR                             |                                  |                                  |
| IL1A (h) Primer pair 2 for ChIP- | CCTTTGCTGACTCAAACGCC             | AGCCACGCCTACTTAAGACAA            |
| qPCR                             |                                  |                                  |
| IL1B (h) Primer pair 1 for ChIP- | CCTTGTGCCTCGAAGAGGTT             | TCTCAGCCTCCTACTTCTGCT            |
| qPCR                             |                                  |                                  |
| IL1B (h) Primer pair 2 for ChIP- | ATGGGTACAATGAAGGGCCAA            | GCTCCTGAGGCAGAGAACAG             |
| qPCR                             |                                  |                                  |
| B2m (m)                          | CCTGGTCTTTCTGGTGCTTG             | CCGTTCTTCAGCATTTGGAT             |
| Cxcl9 (m)                        | TCGGACTTCACTCCAACACAG            | AGGGTTCCTCGAACTCCACAC            |
| Cxcl10 (m)                       | GAGAGACATCCCGAGCCAAC             | GGGATCCCTTGAGTCCCAC              |
| ll1a (m)                         | CGCTTGAGTCGGCAAAGAAAT            | TGGCAGAACTGTAGTCTTCGT            |
| ll1b (m)                         | TGCCACCTTTTGACAGTGATG            | ATGTGCTGCTGCGAGATTTG             |
| Cxcr3 (m)                        | CCAGCCAAGCCATGTACCTT             | TCGTAGGGAGAGGTGCTGTT             |
| Pdgfra (m)                       | AACCTGAACCCAGACCATCG             | CGGAGGAGAACAAAGACCGC             |
| Pdgfrb (m)                       | GTGGAGATTCGCAGGAGGTCA            | TCGGATCTCATAGCGTGGCTTC           |
| Acta2 (m)                        | AGAGGCACCACTGAACCCTA             | CCAGCACAATACCAGTTGTACG           |
| Pecam1 (m)                       | AGTGGAAGTGTCCTCCCTTG             | GCCTTCCGTTCTTAGGGTC              |
| Cdh5 (m)                         | GGGCAAGCTGGTAGTACAGA             | ACTGCCCATACTTGACCGTG             |
| Ptprc (m)                        | TGGCCTTTGGATTTGCCCTT             | CTGTTGTGCTCAGTTCATCACT           |
| Cd14 (m)                         | GACCATGGAGCGTGTGCTTG             | CTGGACCAATCTGGCTTCGG             |
| Cdh1 (m)                         | CCTGCCAATCCTGATGAAAT             | GAACCACTGCCCTCGTAATC             |
| Encam (m)                        |                                  |                                  |
| Cycl9 (m) for cloping of full-   |                                  |                                  |
| length cDNA                      |                                  |                                  |
| Cycl10 (m) for cloping of full-  | ΔΤGΔΔCCCΔΔGTGCTGCCG              | TTAAGGAGCCCTTTTAGACCTTTTTGG      |
| length cDNA                      |                                  |                                  |
| Cycl9 (m) for comparing to       |                                  |                                  |
| levels of human CXCL9            |                                  |                                  |
| Cycl10 (m) for comparing to      |                                  |                                  |
| levels of human CYCL 10          | ATGACGGGCCAGTGAGAATG             | TCAACACGTGGGCAGGATAG             |
|                                  |                                  |                                  |
| IIIRE-AII0-IW                    |                                  |                                  |
|                                  | ACAGIGAGEG                       |                                  |
|                                  |                                  |                                  |
| RetBL MKK7 lok1o1 Ew             |                                  | GGUAGTAGGU                       |
|                                  |                                  |                                  |
| Xmal-MKK7Jnk1a1-Rv               |                                  | CATCCCCGGGGGGGCTCGAGTCACTGCT     |
|                                  |                                  | GC                               |

#### Supplementary Table 5. List of primers used in the study; (h) - human, (m) – murine.

#### Supplementary methods

#### **Gel contraction assay**

Number of lung fibroblasts, isolated from NSG mice, was adjusted to  $1.5 \times 10^5$  cells/ml in PBS. Then, 800 µl of the fibroblast suspension were mixed with 400 µl of a 3 mg/ml bovine collagen solution (Advanced BioMatrix). This was followed by 8 µl of 1 M NaOH added to the cell-collagen mixture and the solution was mixed by pipetting. 1 ml of the mixture was immediately transferred to a 12-well plate and gels were allowed to solidify at room temperature for 20 min. Cancer cell CM obtained from 250,000 MDA or MDA-LM2 cancer cells seeded in 2 ml MEM $\alpha$  medium per 6-well for 48 h was filtered through 0.45 µm filter and 1 ml CM or MEM $\alpha$  control medium was added per well. Gels were dissociated from the wells by gently running a pipet tip along gel edges and swirling the plate. 12-well plates were incubated at 37 °C and gel diameters were recorded after 24 h.

#### Supplementary references

- 1. Naba, A. *et al.* The matrisome: in silico definition and in vivo characterization by proteomics of normal and tumor extracellular matrices. *Molecular & Cellular Proteomics : MCP* **11**, M111 014647 (2012).
- Insua-Rodriguez, J. *et al.* Stress signaling in breast cancer cells induces matrix components that promote chemoresistant metastasis. *EMBO Molecular Medicine* 10 (2018).
- 3. Minn, A.J. *et al.* Genes that mediate breast cancer metastasis to lung. *Nature* **436**, 518-524 (2005).
- 4. Pece, S. *et al.* Biological and molecular heterogeneity of breast cancers correlates with their cancer stem cell content. *Cell* **140**, 62-73 (2010).
- 5. Huper, G. & Marks, J.R. Isogenic normal basal and luminal mammary epithelial isolated by a novel method show a differential response to ionizing radiation. *Cancer Research* **67**, 2990-3001 (2007).
- 6. Perou, C.M. *et al.* Molecular portraits of human breast tumours. *Nature* **406**, 747-752 (2000).
- 7. Finak, G. *et al.* Stromal gene expression predicts clinical outcome in breast cancer. *Nature Medicine* **14**, 518-527 (2008).