1 Shotgun Ion Mobility Mass Spectrometry Sequencing of Heparan Sulfate Saccharides

- 2 3
- Rebecca L. Miller^{1,2,3}*, Scott E. Guimond^{2,4}, Ralf Schwörer⁵, Olga V. Zubkova⁵, Peter. C. Tyler⁵,
- 4 Yongmei Xu⁶, Jian Liu⁶, Pradeep Chopra⁷, Geert-Jan Boons^{7,8}, Márkó Grabarics^{9,10}, Christian Manz^{9,10},
- Johanna Hofmann^{9,10}, Niclas G. Karlsson¹¹, Jeremy E. Turnbull^{1,2}, Weston B. Struwe¹², and Kevin
 Pagel^{9,10}.
- 7
- ¹Copenhagen Center for Glycomics, Department of Cellular & Molecular Medicine, University of
 ⁹ Copenhagen, Copenhagen N 2200, Denmark.
- ²Centre for Glycobiology, Department of Biochemistry, Institute of Integrative Biology, University of
- 11 Liverpool, Crown Street, Liverpool, L69 7ZB, United Kingdom.
- ¹² ³Laboratory of Cancer Biology, Department of Oncology, Medical Sciences Division, University of
- 13 Oxford, Old Road Campus Research Building, Old Road Campus, Roosevelt Drive, Oxford OX3 7DQ,
- 14 United Kingdom.
- ⁴Institute for Science and Technology in Medicine, School of Medicine, Keele University, Keele,
- 16 Staffordshire, ST5 5BG, United Kingdom.
- ⁵Ferrier Research Institute, Victoria University of Wellington, 69 Gracefield Road, Gracefield, Lower
- 18 Hutt 5010, New Zealand.
- ⁶Division of Chemical Biology and Medicinal Chemistry, Eshelman School of Pharmacy, University of
- 20 North Carolina, Chapel Hill, North Carolina 27599, USA.
- ⁷Complex Carbohydrate Research Center, University of Georgia, 315 Riverbend Road, Athens, GA
 30602, USA.
- ⁸Department of Chemical Biology and Drug Discovery, Utrecht Institute for Pharmaceutical Science, and
- Bijvoet Center for Biomolecular Research, Utrecht University, Universiteitsweg 99, 3584 CG Utrecht,
 The Netherlands.
- ⁹Freie Universitaet Berlin, Institute of Chemistry and Biochemistry, Takustrasse 3, 14195 Berlin,
 Germany.
- ¹⁰Fritz Haber Institute of the Max Planck Society, Faradayweg 4-6, 14195 Berlin, Germany.
- ¹¹Department of Medical Biochemistry and Cell Biology, University of Gothenburg, Box
- 30 440, Medicinaregatan 9A, 405 30 Gothenburg, Sweden.
- ¹²Department of Chemistry, Chemistry Research Laboratory, University of Oxford, Oxford, OX1 3QZ,
- 32 United Kingdom.
- 33

34

Supplementary Information

Supplementary Fig. 1.	SIMMS ² method for sequencing a hexasaccharide.
Supplementary Fig. 2	SIMMS ² sequencing of isomeric 30- and 60-sulfated structures
Supplementary Fig. 3.	HS hexasaccharide purification and disaccharide analysis.
Supplementary Fig. 4.	Purification of HS oligosaccharides with FGF1/2 bioactivity.
Supplementary Fig. 5.	CCS of standard #10 using different DTIMS source conditions
Supplementary Table 1.	Summary of the used library of standards.
Supplementary Table 2.	Summary of CCS values obtained from the standard library.
Supplementary Table 3.	CCS of B, Y, C, Z ions - tetrasaccharides UA-GlcNAc6S-UA-GlcNAc6S-R ₁
Supplementary Table 4.	CCS of B, Y, C, Z ions - tetrasaccharides UA-GlcNS6S-UA-GlcNS6S-R ₁
Supplementary Table 5.	CCS of B, Y, C, Z ions - tetrasaccharide G-GlcNS6S-I2S-GlcNS6S-R ₁
Supplementary Table 6.	CCS of B, Y, C, Z ions - hexasaccharide G-GlcNS6S-I-GlcNS6S-G-GlcNS6S-R ₁ .
Supplementary Table 7.	CCS of B, Y, C, Z ions - hexasaccharide GlcNAc6S-[G-GlcNAc6S] ₂ -G-R ₂ .

Supplementary Table 8.	CCS of B, Y, C, Z ions - hexasaccharide GlcNAc6S-[I-GlcNAc6S] ₂ -I-R ₂ .
Supplementary Table 9.	CCS of B, Y, C, Z ions - octasaccharide GlcNAc6S-[I-GlcNAc6S] ₃ -I-R ₂ .
Supplementary Table 10.	CCS of B, Y, C, Z ions - octasaccharide GlcNAc6S-[G-GlcNAc6S] ₃ -G-R ₂ .
Supplementary Table 11.	CCS of B, Y, C, Z ions - octasaccharide GlcNAc6S-G-GlcNac6S-G-GlcNAc6S-I-
	GlcNAc6S-I-R ₂ .
Supplementary Table 12.	CCS of B, Y, C, Z ions - octasaccharide GlcNAc6S-G-GlcNac6S-I-GlcNAc6S-I-
	GlcNAc6S-G-R ₂ .
Supplementary Table 13.	CCS of B, Y, C, Z ions - octasaccharide GlcNAc6S-I-GlcNAc6S-G-GlcNAc6S-I-
	$GlcNAc6S-G-R_2$.
Supplementary Table 14.	CCS of B, Y, C, Z ions - octasaccharide GlcNAc6S-G-GlcNAc6S-I-GlcNAc6S-G-
	GlcNAc6S-I-R ₂ .
Supplementary Table 15.	CCS of B, Y, C, Z ions - nonasaccharide G-GlcNS-G-GlcNS-I-GlcNS-G-GlcNS-G-R ₃ .
Supplementary Table 16.	CCS of B, Y, C, Z ions - nonasaccharide G-GlcNS-G-GlcNS-I2S-GlcNS-G-GlcNS-G-
	R ₃ .
Supplementary Table 17.	CCS of B, Y, C, Z ions - decasaccharide GlcNAc6S-[I-GlcNAc6S] ₄ -I-R ₂ .
Supplementary Table 18.	CCS of B, Y, C, Z ions - decasaccharide GlcNAc6S-[G-GlcNAc6S] ₄ -G-R ₂ .
Supplementary Table 19	CCS of B, Y, C, Z ions - disaccharide Δ UA2S-GlcNS3S6S
Supplementary Table 20	CCS of B, Y, C, Z ions - tetrasaccharide ΔUA-GlcNS-I2S-GlcNS3S
Supplementary Table 21	CCS of B, Y, C, Z ions - tetrasaccharide ΔUA-GlcNS6S-G-GlcNS3S6S
Supplementary Table 22	CCS of B, Y, C, Z ions - tetrasaccharide ΔUA-GlcNAc6S-G-GlcNS3S6S
Supplementary Table 23	CCS of B, Y, C, Z ions - G-GlcNS6S-G-GlcNS6S-I2S-GlcNS6S-R ₁
Supplementary Table 24	CCS of B, Y, C, Z ions - G-GlcNS6S-G-GlcNS3S-I2S-GlcNS6S-R ₁
Supplementary Table 25	CCS of B, Y, C, Z ions - G-GlcNS6S-G-GlcNS6S3S-I2S-GlcNS6S-R ₁
Supplementary Table 26.	CCS of B, Y, C, Z ions - septasaccharide Δ UA-GlcNS-I2S-GlcNS-G-GlcNS-G-R ₃ .
Supplementary Table 27	CCS of B, Y, C, Z -SO3 ions - tetrasaccharides UA-GlcNAc6S-UA-GlcNAc6S-R1
Supplementary Table 28.	CCS of B, Y, C, Z -SO3 ions - tetrasaccharides G-GlcNS6S-I-GlcNS6S-R1
Supplementary Table 29.	CCS of B, Y, C, Z -SO3 ions - tetrasaccharides I-GlcNS6S-G-GlcNS6S-R1
Supplementary Table 30.	CCS of B, Y, C, Z -SO3 ions - tetrasaccharide G-GlcNS6S-I2S-GlcNS6S-R1
Supplementary Table 31.	CCS of B, Y, C, Z -SO3 ions - hexasaccharide G-GlcNS6S-I-GlcNS6S-G-GlcNS6S-R1.
Supplementary Table 32.	CCS of B, Y, C, Z -SO3 ions - hexasaccharide GlcNAc6S-[G-GlcNAc6S]2-G-R2.
Supplementary Table 33.	CCS of B, Y, C, Z -SO3 ions - hexasaccharide GlcNAc6S-[I-GlcNAc6S]2-I-R2.
Supplementary Table 34	CCS of B, Y, C, Z -SO3 ions - GlcNAc6S-[I-GlcNAc6S]3-I-R2
Supplementary Table 35.	CCS of B, Y, C, Z -SO3 ions - octasaccharide GlcNAc6S-[G-GlcNAc6S]3-G-R2.
Supplementary Table 36.	CCS of B, Y, C, Z -SO3 ions - octasaccharide GlcNAc6S-G-GlcNAc6S-G-GlcNAc6S-
	I-GlcNAc6S-I-R ₂ .
Supplementary Table 37.	CCS of B, Y, C, Z -SO3 ions - octasaccharide GlcNAc6S-G-GlcNAc6S-I-GlcNAc6S-I-
	$GlcNAc6S-G-R_2$.
Supplementary Table 38.	CCS of B, Y, C, Z -SO3 ions - octasaccharide GlcNAc6S-I-GlcNAc6S-G-GlcNAc6S-I-
	GlcNAc6S-G-R ₂ .
Supplementary Table 39.	CCS of B, Y, C, Z -SO3 ions - octasaccharide GlcNAc6S-G-GlcNAc6S-I-GlcNAc6S-
	G-GlcNAc6S-I-R ₂ .
Supplementary Table 40.	CCS of B, Y, C, Z -SO3 ions - nonasaccharide G-GlcNS-G-GlcNS-I-GlcNS-G-GlcNS-
	G-R ₃ .
Supplementary Table 41.	CCS of B, Y, C, Z -SO3 ions - nonasaccharide G-GlcNS-G-GlcNS-I2S-GlcNS-G-
	GlcNS-G-R ₃ .
Supplementary Table 42.	CCS of B, Y, C, Z -SO3 ions - decasaccharide GlcNAc6S-[I-GlcNAc6S] ₄ -I-R ₂ .
Supplementary Table 43.	CCS of B, Y, C, Z -SO3 ions - decasaccharide GlcNAc6S-[G-GlcNAc6S]4-G-R2.
Supplementary Table 44	CCS of B, Y, C, Z -SO ₃ ions - disaccharide Δ UA2S-GlcNS3S6S
Supplementary Table 45	CCS of B, Y, C, Z -SO ₃ ions - tetrasaccharide Δ UA-GlcNS-I2S-GlcNS3S

Supplementary Table 46	CCS of B, Y, C, Z -SO ₃ ions - tetrasaccharide Δ UA-GlcNS6S-G-GlcNS3S6S
Supplementary Table 47	CCS of B, Y, C, Z -SO ₃ ions - tetrasaccharide Δ UA-GlcNAc6S-G-GlcNS3S6S
Supplementary Table 48	CCS of B, Y, C, Z ions - G-GlcNS6S-G-GlcNS6S-I2S-GlcNS6S-R ₁
Supplementary Table 49	CCS of B, Y, C, Z ions - G-GlcNS6S-G-GlcNS3S-I2S-GlcNS6S-R ₁
Supplementary Table 50	CCS of B, Y, C, Z ions - G-GlcNS6S-G-GlcNS6S3S-I2S-GlcNS6S-R ₁
Supplementary Table 51.	CCS of B, Y, C, Z -SO3 ions - septasaccharide ΔUA-GlcNS-I2S-GlcNS-G-GlcNS-G-
	R ₃ .
Supplementary Table 52.	Theoretically ions - dp6+3SO ₃ +1NAc, Δ UA-GlcNS-UA-GlcNAc-UA2S-GlcNS.
Supplementary Table 53	Theoretically ions - dp6+3SO ₃ +1NAc, Δ UA-GlcNS-UA2S-GlcNS-UA-GlcNAc.
Supplementary Table 54.	Theoretically ions - dp6+3SO ₃ +1NAc, Δ UA-GlcNAc-UA-GlcNS-UA2S-GlcNS
Supplementary Table 55.	Theoretically ions - dp6+3SO ₃ +1NAc, Δ UA-GlcNAc-UA2S-GlcNS-UA-GlcNS.
Supplementary Table 56.	Theoretically ions - dp6+3SO ₃ +1NAc, Δ UA2S-GlcNS-UA-GlcNS-UA-GlcNAc.
Supplementary Table 57.	Theoretically ions - dp6+3SO ₃ +1NAc, Δ UA2S-GlcNS-UA-GlcNAc-UA-GlcNS.
Supplementary Table 58.	Summary overview of the B, Y, C and Z ions for dp6+3SO ₃ +1NAc.
Supplementary Table 59.	CCS of B, Y, C and Z ions - Δ UA-GlcNS-I2S-GlcNS-G-GlcNAc.
Supplementary Table 60	CCS of B, Y, C and Z -SO ₃ ions - Δ UA-GlcNS-I2S-GlcNS-G-GlcNAc
Supplementary Table 61.	Theoretically ions - dp6+5SO ₃ +1NAc, Δ UA-GlcNS-UA-GlcNAc6S-UA2S-GlcNS6S.
Supplementary Table 62.	Theoretically ions - dp6+5SO ₃ +1NAc, Δ UA-GlcNS-UA2S-GlcNS6S-UA-GlcNAc6S.
Supplementary Table 63.	Theoretically ions - dp6+5SO ₃ +1NAc, Δ UA-GlcNAc6S-UA-GlcNS-UA2S-GlcNS6S
Supplementary Table 64.	Theoretically ions - dp6+5SO ₃ +1NAc, Δ UA-GlcNAc6S-UA2S-GlcNS6S-UA-GlcNS
Supplementary Table 65.	Theoretically ions - dp6+5SO ₃ +1NAc, Δ UA2S-GlcNS6S-UA-GlcNS-UA-GlcNAc6S
Supplementary Table 66.	Theoretically ions - dp6+5SO ₃ +1NAc, Δ UA2S-GlcNS6S-UA-GlcNAc6S-UA-GlcNS
Supplementary Table 67.	Summary overview of the B, Y, C and Z ions for dp6+5SO ₃ +1NAc.
Supplementary Table 68.	CCS of B, Y, C and Z ions - ΔUA-GlcNS-I2S-GlcNS6S-UA-GlcNAc6S
Supplementary Table 69	CCS of B, Y, C and Z -SO ₃ ions - Δ UA-GlcNS-I2S-GlcNS6S-UA-GlcNAc6S

Supplementary Fig. 1. Using the SIMMS² method for sequencing a hexasaccharide. Overlaying two
 tetrasaccharide standard structures (#12 and #14) provides complete sequence coverage of the
 hexasaccharide (#16). Each structure was fragmented in the trap of the mass spectrometer and analysed

using DTIMS, resulting in accurate CCS values. A comparison of overlapping fragment ions displayed
the same CCS value between the two tetra- and hexasaccharides, providing a three-dimensional (MS,

- the same CCS value between the two tetra- and hexasaccharides, providing a three-dimensional (MS,
 MS/MS and IMMS) sequencing method. a-f, The hexasaccharide #16 displays the DTIMS data to be
- determined. **g-h**, Tetrasaccharide #12 displayed CCS values from B -SO₃ ions; B_2 -SO₃ 122Å² and B₃-
- 45 $SO_3 140 Å^2$ matched CCS values observed in the hexasaccharide (a-c). i-j, Tetrasaccharide #14
- displayed CCS values from Y ions; Y_1 -SO₃ 109Å² and Y_3 -SO₃ 150Å² matched the CCS values observed
- 47 in the hexasaccharide **d-f**.
- 48
- 49
- 50
- 51
- 52

54 Supplementary Figure 2. SIMMS² sequencing of two hexasaccharides differing in a single 3*O*- and 55 6*O*-sulfation. HS structures #33 and #34 were fragmented in the trap and separated through IMMS to

56 create a defined set of CCS values for each fragment. B ion fragments from #33 and #34 showed a

difference at B₄ with the 6*O*-sulfated isomer (#33) showing a CCS value of 225 Å² and the B₄ fragment

for 3*O*-sulfation (#34) demonstrating a CCS value of 220Å² respectively. Fragment ions from B/Y/C/Z

59 are displayed in **Supplementary Tables 23 and 24.**

60

63 Supplementary Fig. 3. Purification of HS oligosaccharides with FGF1/2 bioactivity from porcine

64 HS. a, Heparinase III digested porcine HS was separated by SEC and fractions a and b (corresponding to

a dp8 and dp6, respectively) were further separated by SAX-HPLC to yield fractions a^{1-4} and b^{1-3} . **b**,

- Radar charts illustrating BaF3 cell activation and inhibition of fractions a^{1-4} and b^{1-3} . Activation assays
- 67 were performed with FGF1 or FGF2 (1 ng/mL) and fractions as indicated. Heparin (3 μ g/mL) was used as
- positive control, while FGF1 or FGF2 alone was used as negative. Inhibition assays were performed with
- 69 the same fractions (3 μ g/mL) in the presence of a sub-maximal dose of heparin (0.1 μ g/mL). Cell
- proliferation results were expressed as a percentage of heparin activity set as 100%.

composition. a, Bioactive inhibitory hexasaccharides were purified further with CTA-SAX HPLC. b,

75 Isolated CTA-SAX fractions #HS1 and #HS2 were subjected to mass spectrometry to confirm purity and

mass. **c**, Disaccharide analysis of #HS1 and #HS2 through complete digestion to disaccharide products

and separation on SAX ProPac PA1 (compared to authentic standards). Structure #HS1 contained ΔUA-

78 GlcNAc, Δ UA-GlcNS and Δ UA2S-GlcNS, whereas structure #HS2 was composed of Δ UA-GlcNS,

79 Δ UA-GlcNAc6S and Δ UA2S-GlcNS6S. Standards are 1- Δ UA-GlcNAc, 2 - Δ UA-GlcNAc6S, 3 - Δ UA-

 $\text{ GlcNS}, 4 - \Delta \text{UA-GlcNS6S}, 5 - \Delta \text{UA2S-GlcNS}, 6 - \Delta \text{UA2S-GlcNS6S}, 7 - \Delta \text{UA2S-GlcNAc}, 8 - \Delta \text{U$

81 GlcNAc6S.

Supplementary Fig. 5. CCS of #10 using different DTIMS source conditions. Standard #10 was

sprayed at a capillary voltage of 0.6 kV and 0.8 kV and a sample cone voltage or 2 and 20. The CCS

value of #10 was determined from 8 DTIMS voltage measurements.

No.	Chemdraw Structure	Structure ¹
#1	HOOC OH OH HO OH HO NHCOCH ₃	ΔUA-GlcNAc
#2	HOOC HOOT HOOT HOOT HOOT HOOT HOOT HOOT	ΔUA-GlcNAc6S
#3	HOOC HO OH HO NHSO ₃ H	ΔUA-GlcNS
#4	$H_{OOC} OSO_{3H} OOH OOH OOH OOH OOH OOH OOH OOH OOH O$	ΔUA-GlcNS6S
#5	$H_{OOC} O O O O O O O O O O O O O O O O O O$	ΔUA2S-GlcNS
#6	HOOC O O O O O O O O O O O O O O O O O O	ΔUA2S-GlcNS6S
#7	HOOC HO OSO ₃ H NHCOCH ₃	ΔUA2S-GlcNAc
#8	HOOC O O O O O O O O O O O O O O O O O O	ΔUA2S-GlcNAc6S
#9	$HOOC OSO_3H OO-(CH_2)_5NH_2 OO-(CH_2)_5NH_2 OO-(CH_2)_5NH_2 OO-(CH_2)_5NH_2 OO-(CH_3) OO-(CH_3$	G-GlcNAc6S-G-GlcNAc6S-R ₁

Supplementary Table 1. Summary of the used library of standards.

#10	HO T TO T	I-GlcNAc6S-I-GlcNAc6S-R ₁
#11	$HOOC OSO_3H OS$	G-GlcNAc6S-I-GlcNAc6S-R ₁
#12	$\begin{array}{c} HOOC \\ HO \\ HO \\ HO \\ HO \\ HO \\ HO \\ HO$	G-GlcNS6S-I-GlcNS6S-R ₁
#13	HO + O + O + O + O + O + O + O + O + O +	I-GlcNAc6S-G-GlcNAc6S-R1
#14	$HOOC OSO_3H OO-(CH_2)_8NH_2 OO-(CH_2) OO-(CH_2)_8NH_2 OO-(CH_2) $	I-GlcNS6S-G-GlcNS6S-R ₁
#15	$\begin{array}{c} HOOC \\ HO \\ HO \\ HO \\ HO \\ HO \\ HO \\ HO$	G-GlcNS6S-I2S-GlcNS6S-R ₁
#16	$\begin{array}{c} HOOC \\ HO \\ HO \\ HO \\ HO \\ HO \\ HO \\ HO$	G-GlcNS6S-I-GlcNS6S-G-GlcNS6S-R ₁
#17	$\begin{array}{c} HOOC \\ OSO_3H \\ HO \\ HO \\ HO \\ HO \\ HCCCH_3 \end{array} \xrightarrow{HOOC} OSO_3H \\ HO \\ HO \\ HCCCH_3 \\ HO \\ HCCCH_3 \\ HO \\ HO \\ HCCCH_3 \\ HO \\ HO \\ HCCCH_3 \\ HO \\ HO \\ HCCCH_3 \\ H$	GlcNAc6S-[G-GlcNAc6S]2-G-R2
#18	$HO \longrightarrow HO CCH_{3}COOH HO HO CCH_{3}COOH HO HO COCH_{3}COOH HO HO COCH_{3}COOH HO HO COCH_{3}COOH HO HO COCH_{3}COOH COCH_{$	GlcNAc6S-[I-GlcNAc6S] ₂ -I-R ₂
#19	HO TO HO COL HO	GlcNAc6S-[I-GlcNAc6S] ₃ -I-R ₂
#20	$\begin{array}{c} \begin{array}{c} \begin{array}{c} 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 $	GlcNAc6S-[G-GlcNAc6S] ₃ -G-R ₂

#21	$\begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 $	GlcNAc6S-G-GlcNAc6S-G-GlcNAc6S-I-GlcNAc6S-I-R ₂
#22	$\begin{array}{c} \begin{array}{c} HOOC\\ OSO_3H\\ HO\\ HO\\ HO\\ HO\\ HO\\ HCOCH_3\end{array} \xrightarrow{OSO_3H} OSO_3H\\ OSO_3H\\ OSO_3H\\ HO\\ OSO_3H\\ O$	GlcNAc6S-G-GlcNAc6S-I-GlcNAc6S-I-GlcNAc6S-G-R ₂
#23	$\begin{array}{c} \begin{array}{c} 0 \\ 0 \\ H \\ H \\ H \\ H \\ 0 \\ H \\ 0 \\ H \\ 0 \\ 0$	GlcNAc6S-I-GlcNAc6S-G-GlcNAc6S-I-GlcNAc6S-G-R ₂
#24	$\begin{array}{c} 0 \\ 0 \\ H \\ H \\ H \\ H \\ 0 \\ H \\ 0 \\ H \\ 0 \\ 0$	GlcNAc6S-G-GlcNAc6S-I-GlcNAc6S-G-GlcNAc6S-I-R2
#25	HOOC OH HOOC O	G-GlcNS-G-GlcNS-I-GlcNS-G-GlcNS-G-R ₃
#26	HOOC OH HOOC OH OH OH OOC OH OH OH OOC OH OH OOC OH OH OOC OH	G-GlcNS-G-GlcNS-I2S-GlcNS-G-GlcNS-G-R ₃
#27	HO = OOH =	GlcNAc6S-[I-GlcNAc6S] ₄ -I-R ₂
#28	$HO = OSO_{3}HOOC OSO_{3}HOOC OCH_{3}$ $HO = OH $	GlcNAc6S-[G-GlcNAc6S]4-G-R2
#29	$\begin{array}{c} HOOC & OSO_3H \\ HO & OSO_3H \\ HO & OSO_3H \\ HO_3SO \end{array} H \\ HO_3SO \end{array}$	ΔUA2S-GlcNS3S6S
#30	HOOC HO OH OH OH HO OH OH OH OH HO OH OH OH OH OH NHSO ₃ HO COOH OSO ₃ H NHSO ₃ H	ΔUA-GlcNS-IdoA2S-GlcNS3S
#31	$\begin{array}{c} HOOC \\ HOOC \\ HO \\ HO \\ HO \\ HO \\ HO \\ $	ΔUA-GlcNS6S-GlcA-GlcNS3S6S

#32	$\begin{array}{c} HOOC \\ HOOC \\ HO \\ HO \\ HO \\ HO \\ HO \\ $	ΔUA-GlcNAc6S-GlcA-GlcNS3S6S
#33	$\begin{array}{c} HOOC \\ HO \\ HO \\ HO \\ HO \\ HO \\ HO \\ HO$	G-GlcNS6S-G-GlcNS6S-I2S-GlcNS6S-R ₁
#34	$\begin{array}{c} HOOC \\ HO \\ HO \\ HO \\ HO \\ HO \\ HO \\ HO$	G-GlcNS6S-G-GlcNS3S-I2S-GlcNS6S-R ₁
#35	$\begin{array}{c} HOOC \\ HO \\ HO \\ HO \\ HO \\ HO \\ HO \\ HO$	G-GlcNS6S-G-GlcNS3S6S-I2S-GlcNS6S-R ₁
#36	$\begin{array}{c} HOOC \\ HOOC \\ HO \\ OH \\ HO \\ OH \\ HO \\ HO$	Δ UA-GlcNS-I2S-GlcNS-G-GlcNS-G-R ₃

¹ The GlcA residues are represented by G and the IdoA residues represented by I. Tags R_1 is (CH₂)₅NH₂, R_2 is C₇H₇O and R_3 is C₆H₄NO₂.

94 ² Standard #26 was digested with heparinase II and then separated using SAX, resulting in the purification of the dp7 + 2OS (#36) required.

	CCS $(1-)^{1}$	CCS (2-)	CCS (3-)	CCS (4-)	CCS (5-)
#1	$111.9 (0.3)^2$				
#2	121.0 (0.5)				
#3	112.4 (0.4)				
#4	123.5 (0.1)				
#5	124.3 (0.2)				
#6	137.4 (0.5)				
#7	123.6 (0.5)				
#8	134.2 (0.5)				
#9		206.2 (0.8)	214.2 (0.7)/247 (0.9)		
#10		210.1 (0.5)	242.0 (0.2)		
#11		206.8 (0.5)	232.4 (0.7)		
#12		200.1 (0.9)	236.2 (0.2)		
#13		208.7 (0.4)	245.5 (0.7)		
#14		201.5 (0.8)	234.0 (0.1)		
#15		203.9 (0.5)	238.8 (0.5)		
#16		255.6 (0.9)	258.8 (0.8)		
#17		266.8 (0.6)	296.5 (0.4)	347.4 (0.2)	
#18		265.8 (0.2)	292.4 (0.4)	342.2 (0.5)	
#19				379.8 (0.7)/416.0 (0.2)	433.8 (0.5)
#20				391.4 (0.8)	442.9 (0.2)
#21				379.2 (0.8)	438.5 (0.5)
#22				396.5 (0.7)	440.8 (0.5)
#23				400.8 (0.3)	435.6 (0.4)
#24				378.3 (0.5)	439.7 (0.4)
#25				437.4 (0.3)	438.4 (0.8)
#26				441.4 (0.3)	445.7 (0.5)
#27					499.8 (0.4)
#28					496.1 (0.7)
#29		149.7 (0.2)			
#30			228.0 (0.1)		
#31			228.9 (0.3)		
#32			234.5 (0.1)		
#33			280.5 (0.1)	339.5 (0.3)	
#34			282.4 (0.4)		
#35				328.3 (0.6)	
#36				363.2 (0.8)	

96 **Supplementary Table 2.** Summary of CCS values obtained from the standard library.

97

98 ¹ Columns represent different charge states.

			#9		#10		#11		#13	
			G-GlcNAc65	S-G-GlcNAc6S-	I-GlcNAc6S-I-GlcNAc6S-		G-GlcNAc6S-I-GlcNAc6S-		I-GlcNAc6S-G-GlcNAc6S-	
				R ₁	R_1		\mathbf{R}_1		\mathbf{R}_1	
[M-2H] ²⁻			509.61	$206.2 (0.8)^2$	509.61	210.1 (0.5)	509.61	206.8 (0.5)	509.61	208.7 (0.4)
[M-3H] ³⁻			339.4	214.2 (0.7)/247 (0.9)	339.4	242.0 (0.2)	339.4	232.4 (0.7)	339.4	245.5 (0.7)
	$(1-)^1$	(2-)	$(1-)^1$	(2-)	(1-)	(2-)	(1-)	(2-)	(1-)	(2-)
B1	175.02	87.01	Х	Х	Х	Х	Х	Х	Х	х
B2	458.06	228.53	120.9 (0.3)	Х	121.5 (0.5)	Х	121.5 (0.3)	Х	120.8 (0.1)	Х
B3	634.09	316.54	150.6 (0.1)	Х	150.7 (0.5)	Х	150.7 (0.5)	Х	150.5 (0.11)	Х
B4	917.13	458.06	Х	X	Х	Х	Х	Х	Х	Х
Y0	102.09	50.54	Х	x	х	Х	Х	Х	х	х
Y1	385.13	192.06	120.1 (0.5)	Х	119.7 (0.6)	Х	119.8 (0.2)	Х	120.2 (0.5)	х
Y2	561.16	280.08	Х	Х	145.27 (0.1)	161.5 (0.3)	145.9 (0.4)	161.9 (0.2)	Х	х
Y3	844.20	421.59	Х	188.9 (0.2)	х	187.5 (0.5)	Х	186.2 (0.7)	х	188.6 (0.3)
C1	193.03	96.01	X	X	Х	X	X	Х	X	Х
C2	476.07	237.53	122.5 (0.2)	X	122.3 (0.2)	Х	122.6 (0.3)	Х	122.2 (0.2)	Х
C3	652.10	325.55	х	Х	Х	х	х	Х	х	х
C4	935.14	467.07	Х	x	Х	Х	Х	Х	х	Х
Z0	84.08	41.54	X	X	Х	Х	X	Х	X	X
Z1	367.12	183.05	116.7 (0.2)	х	117.4 (0.3)	Х	117.3 (0.2)	Х	116.9 (0.3)	х
Z2	543.15	271.07	x	х	X	х	x	Х	x	х
Z3	826.19	412.59	х	х	Х	Х	х	Х	Х	Х

100 **Supplementary Table 3.** CCS of B, Y, C and Z ions identified in isomeric tetrasaccharide UA-GlcNAc6S-UA-GlcNAc6S- R_{+} structures, where R_{1} is 101 (CH₂)₅NH₂.

102 ¹ Columns represent different charge states.

				#12			#14		
				G-GlcNS6S-	G-GlcNS6S-I-GlcNS6S-R ₁			G-GlcNS6S-R1	
[M-2H] ²⁻				547.55	$200.1 (0.9)^2$		547.55	201.5 (0.8)	
[M-3H] ³⁻				364.7	236.2 (0.2)		364.7	234.0 (0.1)	
	(1-)	(2-)	(3-)	$(1-)^1$	(2-)	(3-)	(1-)	(2-)	(3-)
B1	175.02	87.01	57.67	68.9 (0.2)	Х	х	69.0 (0.4)	х	Х
B2	496.01	247.50	164.66	х	134.5 (0.6)	х	х	133.8 (0.3)	х
B3	672.04	335.52	223.34	х	160.2 (0.2)	х	х	165.5 (0.2)	х
B4	993.02	496.01	330.34	x	x	225.7 (0.2)	x	x	226.1 (0.2)
Y0	102.09	50.54	33.46	X	X	X	X	X	X
Y1	423.07	211.03	140.35	112.5 (0.3)	х	х	112.1 (0.1)	X	Х
Y2	599.11	299.05	199.03	X	162.2 (0.5)	х	х	156.5 (0.5)	х
Y3	920.09	459.54	306.02	Х	x	Х	Х	Х	212.6 (0.6)
C1	193.03	96.01	63.67	X	X	X	X	X	X
C2	514.02	256.50	170.67	х	х	х	х	х	х
C3	690.05	344.52	229.34	х	Х	х	х	165.6 (0.1)	Х
C4	1011.03	505.01	336.34	x	x	x	x	x	Х
70	84.08	41 54	27.36	x	x	x	x	x	x
Z1	405.06	202.03	134 35	x	x	x	x	x	x
72	581.10	290.04	193.03	x	x	x	x	x	x
Z3	902.08	450.54	300.02	X	X	X	X	X	X

Supplementary Table 4. CCS of B, Y, C and Z ions identified in isomeric tetra-saccharide UA-GlcNS6S-UA-GlcNS6S-R₁ structures, where R₁ is
 (CH₂)₅NH₂.

¹Columns represent different charge states.

#15						
G	-GlcNS6S-I	2S-GlcNS6S-R	1			
[M-2H] ²⁻	587.53	$203.9 (0.5)^2$				
[M-3H] ³⁻	391.35	238.8 (0.5)				
	$(1-)^1$	(2-)	(3-)	(1-)	(2-)	(3-)
B1	175.02	87.01	57.67	Х	Х	Х
B2	496.01	247.50	164.66	Х	135.2 (0.5)	Х
B3	752.00	375.49	249.99	Х	Х	Х
B4	1072.98	535.99	356.99	Х	Х	229.0 (0.4)
YO	102.09	50.54	33.36	X	X	Х
Y1	423.07	211.03	140.35	112.8 (0.3)	Х	Х
Y2	679.06	339.03	225.68	X	Х	х
Y3	1000.05	499.52	332.68	Х	Х	Х
C1	193.03	96.01	63.67	X	X	X
C2	514.02	256.50	170.67	х	Х	х
C3	770.01	384.50	256.00	Х	Х	х
C4	1090.99	544.99	362.99	Х	Х	х
70	8/1 08	41.54	27.36	x	x	x
Z0	405.06	202.03	134 35	X	X	x
72	661.05	330.02	219.68	x	x	x
Z3	982.03	490.51	326.67	X	X	X

108 **Supplementary Table 5.** CCS of B, Y, C and Z ions identified in a tetra-saccharide structure (R_1 is 109 (CH_2)₅NH₂).

¹Columns represent different charge states.

112

² Each CCS is an average of independent measurements with the corresponding standard deviation

#16								
G-G	lcNS6S-I-Glc	NS6S-G-GlcNS	6S-R ₁					
[M-2H] ²⁻	796.06	$255.6 (0.9)^2$						
[M-3H] ³⁻	530.37	258.8 (0.8)						
	$(1-)^1$	(2-)	(3-)	(4-)	(1-)	(2-)	(3-)	(4-)
B1	175.02	87.01	57.67	43.00	Х	Х	Х	Х
B2	496.01	247.50	164.66	123.25	Х	134.6 (0.4)	Х	Х
B3	672.04	335.52	223.34	167.25	Х	160.3 (0.2)	Х	Х
B4	993.02	496.01	330.34	247.50	Х	х	226.1 (0.2)	Х
B5	1169.05	584.02	389.01	291.51	Х	Х	249.4 (0.8)	275.9 (0.7)
B6	1490.04	744.51	496.01	371.75	Х	Х	Х	Х
Y0	102.09	50.54	33.36	24.77	X	Х	Х	Х
Y1	423.07	211.03	140.35	105.01	Х	130.0 (0.7)	X	х
Y2	599.11	299.05	199.03	149.02	Х	156.4 (0.5)	х	х
Y3	920.09	459.54	306.02	229.27	Х	Х	213.1 (0.7)	Х
Y4	1096.12	547.56	364.70	273.27	Х	Х	233.2 (0.6)	Х
Y5	1417.10	708.05	471.70	353.52	Х	Х	X	324.5 (0.2)
C1	193.03	96.01	63.67	47.50	Х	X	X	Х
C2	514.02	256.50	170.67	127.75	Х	X	X	х
C3	690.05	344.52	229.34	171.76	Х	х	х	х
C4	1011.03	505.01	336.34	252.00	Х	Х	Х	Х
C5	1187.06	593.03	395.02	296.01	Х	Х	Х	Х
C6	1508.05	753.52	502.01	376.26	Х	X	X	Х
Z0	84.08	41.54	27.36	20.26	Х	X	X	Х
Z1	405.06	202.03	134.35	100.51	Х	X	X	х
Z2	581.10	290.04	193.03	144.52	Х	х	X	х
Z3	902.08	450.54	300.02	224.76	X	X	X	X

Supplementary Table 6. CCS of B, Y, C and Z ions identified in a hexa-saccharide structure (R₁ is (CH₂)₅NH₂).

Z4	1078.11	538.55	358.70	268.77	Х	Х	Х	х
Z5	1399.09	699.04	465.69	349.02	Х	Х	Х	Х

¹Columns represent different charge states.

 2 Each CCS is an average of independent measurements with the corresponding standard deviation

Supplementary Table 7. CCS of B, Y, C and Z ions identified in a hexa-saccharide GlcNAc6S-[G-GlcNAc6S]₂-G-R₂ structure, where R^2 is C_7H_7O .

#17						
GlcNAc6S-	[G-GlcNA	$c6S]_2-G-R_2$				
[M-3H] ³⁻	499.41	$296.5 (0.4)^2$				
[M-4H] ⁴⁻	374.3	347.4 (0.2)				
	$(1-)^1$	(2-)	(3-)	(1-)	(2-)	(3-)
B1	282.03	140.51	93.34	93.0 (0.2)	Х	Х
B2	458.06	228.53	152.01	120.8 (0.2)	135.1 (0.5)	Х
B3	741.1	370.04	246.36	Х	169.7 (0.6)	Х
B4	917.13	458.06	305.04	Х	Х	225.6 (0.8)
B5	1200.16	599.58	399.38	Х	Х	270.4 (0.2)
B6	1376.2	687.59	458.06	Х	Х	291.3 (0.7)
Y0	122.04	60.51	40.01	Х	X	X
Y1	299.08	149.03	99.02	105.4 (0.7)	Х	Х
Y2	582.11	290.55	193.37	154.4 (0.4)	166.0 (0.4)	Х
Y3	758.14	378.57	252.04	Х	х	х
Y4	1041.18	520.09	346.39	Х	Х	255.8 (0.5)
Y5	1217.21	608.1	405.07	Х	Х	Х
C1	300.04	149.52	99.34	94.4 (0.2)	Х	Х
C2	476.07	237.53	158.02	122.3 (0.4)	Х	Х
C3	759.11	379.05	252.36	Х	Х	200.1 (0.9)
C4	935.14	467.07	311.04	Х	185.2 (0.6)	Х
C5	1218.18	608.58	405.39	Х	Х	273.9 (0.1)
C6	1394.21	696.6	464.06	Х	Х	Х
Z0	105.03	52.01	34.34	Х	Х	Х
Z1	281.07	140.03	93.02	х	х	Х
Z2	564.1	281.55	187.36	X	X	X
Z3	740.13	369.56	246.04	X	X	X
Z4	1023.17	511.08	340.38	X	X	X
Z5	1199.2	599.1	399.06	X	X	X

¹ Columns represent different charge states.

² Each CCS is an average of independent measurements with the corresponding standard deviation

Supplementary Table 8. CCS of B, Y, C and Z ions identified in a hexa-saccharide GlcNAc6S-[I-GlcNAc6S]₂-I-R₂ structure, where R_2 is C_7H_7O .

#18						
GlcNAc6S-[]	[-GlcNAc6S] ₂ -	I-R ₂				
[M-3H] ³⁻	499.41	$291.8(0.7)^2$				
[M-4H] ⁴⁻	374.3	342.2 (0.3)				
	$(1-)^1$	(2-)	(3-)	$(1-)^1$	(2-)	(3-)
B1	282.03	140.51	93.34	92.9 (0.2)	Х	Х
B2	458.06	228.53	152.01	122.6 (0.4)	х	Х
B3	741.10	370.04	246.36	х	176.0 (0.8)	Х
B4	917.13	458.06	305.04	Х	197.1 (0.17)	Х
B5	1200.16	599.58	399.38	Х	Х	269.2 (0.8)
B6	1376.20	687.59	458.06	Х	Х	294.1 (0.16)
Y0	122.04	60.51	40.01	X	Х	Х
Y1	299.08	149.03	99.02	103.7 (0.1)	Х	Х
Y2	582.11	290.55	193.37	153.9 (0.6)	166.3 (0.3)	Х
Y3	758.14	378.57	252.04	х	Х	Х
Y4	1041.18	520.09	346.39	Х	Х	Х
Y5	1217.21	608.10	405.07	Х	229.9 (0.1)	Х
C1	300.04	149.52	99.34	94.1 (0.2)	X	Х
C2	476.07	237.53	158.02	122.6 (0.3)	Х	Х
C3	759.11	379.05	252.36	х	Х	Х
C4	935.14	467.07	311.04	х	Х	Х
C5	1218.18	608.58	405.39	Х	Х	Х
C6	1394.21	696.60	464.06	Х	Х	Х
Z0	105.03	52.01	34.34	Х	Х	Х
Z1	281.07	140.03	93.02	х	Х	Х
Z2	564.10	281.55	187.36	х	Х	Х
Z3	740.13	369.56	246.04	х	Х	Х
Z4	1023.17	511.08	340.38	X	X	X
Z5	1199.20	599.10	399.06	X	X	X

¹ Columns represent different charge states.

² Each CCS is an average of independent measurements with the corresponding standard deviation

#19								
G	lcNAc6S-[I-Gl	cNAc6S] ₃ -I-R ₂						
[M-4H] ⁴⁻	489.07	379.8 (0.7)	² /416.0 (0.2)					
[M-5H] ⁵⁻	391.05	433.8 (0.5)						
[M-6H] ⁶⁻	325.7	449.4 (0.6)						
	$(1-)^1$	(2-)	(3-)	(4-)	(1-)	(2-)	(3-)	(4-)
B1	282.03	140.51	93.34	69.75	93.3 (0.3)	Х	Х	Х
B2	458.06	228.53	152.01	113.76	122.0 (0.6)	Х	х	х
B3	741.10	370.04	246.36	184.52	X	176.3 (0.8)	х	Х
B4	917.13	458.06	305.04	228.53	X	197.2 (0.7)	Х	Х
B5	1200.16	599.58	399.38	299.29	X	Х	270.0 (0.3)	Х
B6	1376.20	687.59	458.06	343.29	х	Х	294.4 (0.7)	Х
B7	1659.23	829.11	552.41	414.05	х	Х	Х	Х
B8	1835.27	917.13	611.08	458.06	X	Х	Х	394.0 (0.6)
Y0	122.04	60.51	40.01	29.75	X	Х	Х	Х
Y1	299.08	149.03	99.02	74.01	X	х	Х	х
Y2	582.11	290.55	193.37	144.77	X	166.0 (0.6)	х	х
Y3	758.14	378.57	252.04	188.78	X	Х	Х	х
Y4	1041.18	520.09	346.39	259.54	X	Х	Х	Х
Y5	1217.21	608.10	405.07	303.55	X	229.2 (0.2)	Х	Х
Y6	1500.25	749.62	499.41	374.31	X	290.5 (0.5)	X	X
Y7	1676.28	837.64	558.09	418.31	Х	Х	Х	Х
C1	300.04	149.52	99.34	74.25	94.0 (0.7)	X	X	X
C2	476.07	237.53	158.02	118.26	122.8 (0.5)	х	х	х
C3	759.11	379.05	252.36	189.02	x	х	х	х
C4	935.14	467.07	311.04	233.03	X	Х	Х	Х

Supplementary Table 9. CCS of B, Y, C and Z ions identified in an octa-saccharide GlcNAc6S-[I-GlcNAc6S]₃-I-R₂ structure, where R₂ is C₇H₇O.

C5	1218.18	608.58	405.39	303.79	х	х	х	х
C6	1394.21	696.60	464.06	347.80	х	х	х	х
C7	1677.24	838.12	558.41	418.56	х	х	х	Х
C8	1853.28	926.13	617.09	462.56	х	х	Х	Х
Z0	105.03	52.01	34.34	25.50	х	х	х	х
Z1	281.07	140.03	93.02	69.51	х	х	х	Х
Z2	564.10	281.55	187.36	140.27	х	х	х	х
Z3	740.13	369.56	246.04	184.28	х	х	х	Х
Z4	1023.17	511.08	340.38	255.04	х	х	х	Х
Z5	1199.20	599.10	399.06	299.04	х	х	Х	Х
Z6	1482.24	740.62	493.41	369.80	X	x	Х	X
Z7	1658.27	828.63	552.09	413.81	X	x	х	X

¹Columns represent different charge states.

141 ² Each CCS is an average of independent measurements with the corresponding standard deviation

#20								
GlcNAc6S-[G-C	GlcNAc6S]3-G-F	R ₂						
[M-4H] ⁴⁻	489.07	$391.4(0.8)^2$						
[M-5H] ⁵⁻	391.05	442.9 (0.2)						
[M-6H] ⁶⁻	325.7	456.7 (0.8)						
	$(1-)^1$	(2-)	(3-)	(4-)	(1-) ¹	(2-)	(3-)	(4-)
B1	282.03	140.51	93.34	69.75	93.4 (0.1)	х	Х	Х
B2	458.06	228.53	152.01	113.76	121.6 (0.5)	Х	Х	x
B3	741.10	370.04	246.36	184.52	Х	169.9 (0.4)		x
B4	917.13	458.06	305.04	228.53	Х	194.1 (0.3)	225.8 (0.8)	x
B5	1200.16	599.58	399.38	299.29	Х	Х	270.5 (0.2)	x
B6	1376.20	687.59	458.06	343.29	Х	х	Х	x
B7	1659.23	829.11	552.41	414.05	Х	Х	291.0 (0.1)	322.1 (0.2)
B8	1835.27	917.13	611.08	458.06	х	Х	Х	391.8 (0.1)
Y0	122.04	60.51	40.01	29.75	x	x	x	x
Y0 Y1	122.04 299.08	60.51 149.03	40.01	29.75 74.01	X	X	X	x
Y0 Y1 Y2	122.04 299.08 582.11	60.51 149.03 290.55	40.01 99.02 193.37	29.75 74.01 144.77	x x 154.3 (0.5)	x x 165.8 (0.7)	X X X	X X X X
Y0 Y1 Y2 Y3	122.04 299.08 582.11 758.14	60.51 149.03 290.55 378.57	40.01 99.02 193.37 252.04	29.75 74.01 144.77 188.78	x x 154.3 (0.5) x	x x 165.8 (0.7) x	X X X X	x x x x x
Y0 Y1 Y2 Y3 Y4	122.04 299.08 582.11 758.14 1041.18	60.51 149.03 290.55 378.57 520.09	40.01 99.02 193.37 252.04 346.39	29.75 74.01 144.77 188.78 259.54	x x 154.3 (0.5) x x	x x 165.8 (0.7) x x	x x x x 255.1 (0.8)	x x x x x x x
Y0 Y1 Y2 Y3 Y4 Y5	122.04 299.08 582.11 758.14 1041.18 1217.21	60.51 149.03 290.55 378.57 520.09 608.10	40.01 99.02 193.37 252.04 346.39 405.07	29.75 74.01 144.77 188.78 259.54 303.55	x x 154.3 (0.5) x x x x	x x 165.8 (0.7) x x x x	x x x x 255.1 (0.8) x	X X X X X X X
Y0 Y1 Y2 Y3 Y4 Y5 Y6	122.04 299.08 582.11 758.14 1041.18 1217.21 1500.25	60.51 149.03 290.55 378.57 520.09 608.10 749.62	40.01 99.02 193.37 252.04 346.39 405.07 499.41	29.75 74.01 144.77 188.78 259.54 303.55 374.31	x x 154.3 (0.5) x x x x x x	x x 165.8 (0.7) x x x x x x	x x x x 255.1 (0.8) x x x	x x x x x x x x x x x x
Y0 Y1 Y2 Y3 Y4 Y5 Y6 Y7	122.04 299.08 582.11 758.14 1041.18 1217.21 1500.25 1676.28	60.51 149.03 290.55 378.57 520.09 608.10 749.62 837.64	40.01 99.02 193.37 252.04 346.39 405.07 499.41 558.09	29.75 74.01 144.77 188.78 259.54 303.55 374.31 418.31	x x 154.3 (0.5) x x x x x x x x x	x x 165.8 (0.7) x x x x x x x x x	x x x x 255.1 (0.8) x x x x x	X X X X X X X X X X X
Y0 Y1 Y2 Y3 Y4 Y5 Y6 Y7 C1	122.04 299.08 582.11 758.14 1041.18 1217.21 1500.25 1676.28 300.04	60.51 149.03 290.55 378.57 520.09 608.10 749.62 837.64	40.01 99.02 193.37 252.04 346.39 405.07 499.41 558.09	29.75 74.01 144.77 188.78 259.54 303.55 374.31 418.31 74.25	x x 154.3 (0.5) x x x x x x y 4.6 (0.4)	x x 165.8 (0.7) x x x x x x x	x x x x 255.1 (0.8) x x x x x	X X X X X X X X X X
Y0 Y1 Y2 Y3 Y4 Y5 Y6 Y7 C1 C1 C2	122.04 299.08 582.11 758.14 1041.18 1217.21 1500.25 1676.28 300.04 476.07	60.51 149.03 290.55 378.57 520.09 608.10 749.62 837.64 149.52 237.53	40.01 99.02 193.37 252.04 346.39 405.07 499.41 558.09 99.34 158.02	29.75 74.01 144.77 188.78 259.54 303.55 374.31 418.31 74.25 118.26	x x 154.3 (0.5) x x x x x 94.6 (0.4) 122.2 (0.4)	x x 165.8 (0.7) x x x x x x x x x x	x x x x 255.1 (0.8) x x x x x x x	X X X X X X X X X X X
Y0 Y1 Y2 Y3 Y4 Y5 Y6 Y7 C1 C2 C2 C3	122.04 299.08 582.11 758.14 1041.18 1217.21 1500.25 1676.28 300.04 476.07 759.11	60.51 149.03 290.55 378.57 520.09 608.10 749.62 837.64 149.52 237.53 379.05	40.01 99.02 193.37 252.04 346.39 405.07 499.41 558.09 99.34 158.02 252.36	29.75 74.01 144.77 188.78 259.54 303.55 374.31 418.31 74.25 118.26 189.02	x x 154.3 (0.5) x x x x y 94.6 (0.4) 122.2 (0.4) x	x x 165.8 (0.7) x x x x x x x x x x 167 5 (0 1)	x x x x 255.1 (0.8) x x x x x x x x x	x x x x x x x x x x x x x x x x x x x
Y0 Y1 Y2 Y3 Y4 Y5 Y6 Y7 C1 C2 C2 C3 C4	122.04 299.08 582.11 758.14 1041.18 1217.21 1500.25 1676.28 300.04 476.07 759.11 935.14	60.51 149.03 290.55 378.57 520.09 608.10 749.62 837.64 149.52 237.53 379.05	40.01 99.02 193.37 252.04 346.39 405.07 499.41 558.09 99.34 158.02 252.36 311.04	29.75 74.01 144.77 188.78 259.54 303.55 374.31 418.31 74.25 118.26 189.02 233.03	x x 154.3 (0.5) x x x x x y 94.6 (0.4) 122.2 (0.4) x x	x x 165.8 (0.7) x x x x x x x 167.5 (0.1) x	x x x x 255.1 (0.8) x x x x x x x x x x x x x x x x x x x	X X X X X X X X X X X X X X X X X X X
Y0 Y1 Y2 Y3 Y4 Y5 Y6 Y7 C1 C2 C2 C3 C4	122.04 299.08 582.11 758.14 1041.18 1217.21 1500.25 1676.28 300.04 476.07 759.11 935.14	60.51 149.03 290.55 378.57 520.09 608.10 749.62 837.64 149.52 237.53 379.05 467.07	40.01 99.02 193.37 252.04 346.39 405.07 499.41 558.09 99.34 158.02 252.36 311.04	29.75 74.01 144.77 188.78 259.54 303.55 374.31 418.31 74.25 118.26 189.02 233.03	x x 154.3 (0.5) x x x x x y 4.6 (0.4) 122.2 (0.4) x x	x x 165.8 (0.7) x x x x x x x 167.5 (0.1) x	x x x x 255.1 (0.8) x x x x x x x x x x x x x x x x x	X X X X X X X X X X X X X X X X X X X

Supplementary Table 10. CCS of B, Y, C and Z ions identified in an octa-saccharide GlcNAc6S-[G-GlcNAc6S]₃-G-R₂ structure, where R₂ is C₇H₇O.

C6	1394.21	696.60	464.06	347.80	Х	х	309.1 (0.87)	х
C7	1677.24	838.12	558.41	418.56	Х	Х	х	Х
C8	1853.28	926.13	617.09	462.56	Х	Х	Х	Х
Z0	105.03	52.01	34.34	25.50	Х	Х	х	Х
Z1	281.07	140.03	93.02	69.51	Х	Х	х	Х
Z2	564.10	281.55	187.36	140.27	Х	Х	х	Х
Z3	740.13	369.56	246.04	184.28	Х	Х	Х	Х
Z4	1023.17	511.08	340.38	255.04	Х	Х	х	Х
Z5	1199.20	599.10	399.06	299.04	Х	Х	х	Х
Z6	1482.24	740.62	493.41	369.80	Х	Х	X	Х
Z7	1658.27	828.63	552.09	413.81	Х	Х	X	Х

146 ¹ Columns represent different charge states.

² Each CCS is an average of independent measurements with the corresponding standard deviation

#21								
GlcN	Ac6S-G-GlcNac6	5S-G-GlcNAc6S	-I-GlcNAc6S-I-	R ₂				
[M-4H] ⁴⁻	489.07	$379.2 (0.8)^2$						
[M-5H] ⁵⁻	391.05	438.5 (0.5)						
[M-6H] ⁶⁻	325.7	452.4 (0.8)						
	$(1-)^1$	(2-)	(3-)	(4-)	(1-)	(2-)	(3-)	(4-)
B1	282.03	140.51	93.34	69.75	92.6 (0.5)	Х	Х	Х
B2	458.06	228.53	152.01	113.76	121.4 (0.2)	Х	Х	Х
B3	741.10	370.04	246.36	184.52	x	X	Х	x
B4	917.13	458.06	305.04	228.53	х	Х	224.8 (0.4)	х
B5	1200.16	599.58	399.38	299.29	х	Х	270.1 (0.4)	Х
B6	1376.20	687.59	458.06	343.29	х	Х	Х	322.3 (0.2)
B7	1659.23	829.11	552.41	414.05	X	Х	Х	367.3 (0.4)
B8	1835.27	917.13	611.08	458.06	x	Х	х	x
Y0	122.04	60.51	40.01	29.75	X	Х	x	X
Y1	299.08	149.03	99.02	74.01	103.4 (0.5)	Х	Х	х
Y2	582.11	290.55	193.37	144.77	153.8 (0.5)	Х	х	х
Y3	758.14	378.57	252.04	188.78	Х	Х	Х	Х
Y4	1041.18	520.09	346.39	259.54	Х	Х	255.4 (0.6)	Х
Y5	1217.21	608.10	405.07	303.55	Х	Х	Х	Х
Y6	1500.25	749.62	499.41	374.31	X	Х	284.7 (0.6)	346.4 (0.7)
Y7	1676.28	837.64	558.09	418.31	x	X	Х	x
C1	300.04	1/10.52	00 3/	74.25	94 4 (0 3)	v	v	v
C1 C2	476.07	237 53	158.02	118.26	122 4 (0.8)	<u>л</u> х	x	x
C2	759.11	379.05	252.36	189.02	т22.ч (0.0) х	x	x	x
C4	935.14	467.07	311.04	233.03	x	x	x	x

Supplementary Table 11. CCS of B, Y, C and Z ions identified in an octa-saccharide GlcNAc6S-G-GlcNac6S-G-GlcNAc6S-I-GlcNAc6S-I-R₂ structure,
 where R₂ is C₇H₇O.

C5	1218.18	608.58	405.39	303.79	х	х	х	Х
C6	1394.21	696.60	464.06	347.80	Х	х	Х	Х
C7	1677.24	838.12	558.41	418.56	Х	х	Х	Х
C8	1853.28	926.13	617.09	462.56	Х	Х	Х	Х
Z0	105.03	52.01	34.34	25.50	Х	Х	Х	Х
Z1	281.07	140.03	93.02	69.51	Х	х	Х	Х
Z2	564.10	281.55	187.36	140.27	х	х	Х	Х
Z3	740.13	369.56	246.04	184.28	Х	х	Х	Х
Z4	1023.17	511.08	340.38	255.04	Х	х	Х	Х
Z5	1199.20	599.10	399.06	299.04	Х	х	Х	Х
Z6	1482.24	740.62	493.41	369.80	Х	X	X	X
Z7	1658.27	828.63	552.09	413.81	Х	Х	X	X

153 ¹ Columns represent different charge states.

 2 Each CCS is an average of independent measurements with the corresponding standard deviation

#22								
GlcN	Ac6S-G-GlcNa	c6S-I-GlcNAce	6S-I-GlcNAc6S	-G-R ₂				
[M-4H] ⁴⁻	489.07	$396.5 (0.7)^2$						
[M-5H] ⁵⁻	391.05	440.8 (0.5)						
[M-6H] ⁶⁻	325.7	461.3 (0.7)						
	$(1-)^1$	(2-)	(3-)	(4-)	(1-)	(2-)	(3-)	(4-)
B1	282.03	140.51	93.34	69.75	93.0 (0.2)	Х	Х	Х
B2	458.06	228.53	152.01	113.76	121.6 (0.3)	Х	Х	Х
B3	741.10	370.04	246.36	184.52	Х	Х	Х	Х
B4	917.13	458.06	305.04	228.53	х	Х	х	х
B5	1200.16	599.58	399.38	299.29	Х	Х	272.8 (0.6)	Х
B6	1376.20	687.59	458.06	343.29	Х	Х	х	323.2 (0.2)
B7	1659.23	829.11	552.41	414.05	Х	Х	Х	Х
B8	1835.27	917.13	611.08	458.06	Х	Х	Х	Х
Y0	122.04	60.51	40.01	29.75	Х	Х	x	Х
Y1	299.08	149.03	99.02	74.01	Х	Х	Х	Х
Y2	582.11	290.55	193.37	144.77	154.9 (0.3)	Х	Х	Х
Y3	758.14	378.57	252.04	188.78	Х	Х	Х	Х
Y4	1041.18	520.09	346.39	259.54	Х	Х	254.1 (0.28)	Х
Y5	1217.21	608.10	405.07	303.55	Х	Х	Х	300.6 (0.2)
Y6	1500.25	749.62	499.41	374.31	Х	Х	289.1 (0.6)	Х
Y7	1676.28	837.64	558.09	418.31	Х	Х	X	Х
C1	300.04	149.52	99.34	74.25	94.1 (0.3)	Х	X	Х
C2	476.07	237.53	158.02	118.26	123.0 (0.4)	Х	Х	Х
C3	759.11	379.05	252.36	189.02	X	Х	X	X
C4	935.14	467.07	311.04	233.03	X	Х	X	Х

Supplementary Table 12. CCS of B, Y, C and Z ions identified in an octa-saccharide GlcNAc6S-G- GlcNac6S-I-GlcNAc6S-I-GlcNAc6S-G-R₂ structure,
 where R₂ is C₇H₇O.

C5	1218.18	608.58	405.39	303.79	х	х	х	х
C6	1394.21	696.60	464.06	347.80	Х	Х	Х	х
C7	1677.24	838.12	558.41	418.56	Х	Х	Х	371.4 (0.5)
C8	1853.28	926.13	617.09	462.56	х	х	Х	х
ZO	105.03	52.01	34.34	25.50	х	Х	Х	Х
Z1	281.07	140.03	93.02	69.51	х	х	х	х
Z2	564.10	281.55	187.36	140.27	х	х	х	х
Z3	740.13	369.56	246.04	184.28	Х	х	х	х
Z4	1023.17	511.08	340.38	255.04	Х	х	х	х
Z5	1199.20	599.10	399.06	299.04	Х	х	х	х
Z6	1482.24	740.62	493.41	369.80	X	X	X	x
Z7	1658.27	828.63	552.09	413.81	Х	X	X	х

160 ¹ Columns represent different charge states.

² Each CCS is an average of independent measurements with the corresponding standard deviation

#23								
GlcNAc6S-I-	GlcNAc6S-G-G	lcNAc6S-I-Glo	NAc6S-G-R ₂					
$[M-4H]^{4-}$	489.07	$400.8 (0.3)^2$						
[M-5H] ⁵⁻	391.05	435.6 (0.4)						
[M-6H] ⁶⁻	325.7	453.4 (0.7)						
	(1-) ¹	(2-)	(3-)	(4-)	(1-)	(2-)	(3-)	(4-)
B1	282.03	140.51	93.34	69.75	93.3 (0.6)	Х	Х	X
B2	458.06	228.53	152.01	113.76	х	х	Х	х
B3	741.10	370.04	246.36	184.52	х	х	х	х
B4	917.13	458.06	305.04	228.53	Х	Х	Х	х
B5	1200.16	599.58	399.38	299.29	х	х	272.0 (0.1)	х
B6	1376.20	687.59	458.06	343.29	х	х	х	х
B7	1659.23	829.11	552.41	414.05	x	х	х	х
B8	1835.27	917.13	611.08	458.06	Х	Х	х	Х
Y0	122.04	60.51	40.01	29.75	X	Х	x	X
Y1	299.08	149.03	99.02	74.01	X	х	х	x
Y2	582.11	290.55	193.37	144.77	155.0 (0.2)	х	х	X
Y3	758.14	378.57	252.04	188.78	х	Х	Х	Х
Y4	1041.18	520.09	346.39	259.54	X	X	X	X
Y5	1217.21	608.10	405.07	303.55	x	х	Х	х
Y6	1500.25	749.62	499.41	374.31	х	х	х	339.5 (0.3)
Y7	1676.28	837.64	558.09	418.31	Х	Х	Х	366.4 (0.3)
C1	300.04	149.52	99.34	74.25	93.2 (0.1)	Х	Х	X
C2	476.07	237.53	158.02	118.26	122.0 (0.2)	132.8 (0.4)	Х	X
C3	759.11	379.05	252.36	189.02	X	х	х	X
C4	935.14	467.07	311.04	233.03	x	Х	x	Х

Supplementary Table 13. CCS of B, Y, C and Z ions identified in an octa-saccharide GlcNAc6S-I-GlcNAc6S-G-GlcNAc6S-I-GlcNAc6S-G-R₂ structure, 168 where R_2 is C_7H_7O .

C5	1218.18	608.58	405.39	303.79	Х	Х	Х	Х
C6	1394.21	696.60	464.06	347.80	Х	Х	Х	315.3 (0.3)
C7	1677.24	838.12	558.41	418.56	Х	Х	Х	367.2 (0.5)
C8	1853.28	926.13	617.09	462.56	х	Х	х	х
Z0	105.03	52.01	34.34	25.50	Х	Х	х	х
Z1	281.07	140.03	93.02	69.51	х	Х	Х	Х
Z2	564.10	281.55	187.36	140.27	Х	Х	Х	Х
Z3	740.13	369.56	246.04	184.28	Х	Х	Х	Х
Z4	1023.17	511.08	340.38	255.04	Х	Х	Х	Х
Z5	1199.20	599.10	399.06	299.04	Х	Х	Х	Х
Z6	1482.24	740.62	493.41	369.80	х	Х	х	х
Z7	1658.27	828.63	552.09	413.81	X	X	X	Х

170 ¹ Columns represent different charge states.

 2 Each CCS is an average of independent measurements with the corresponding standard deviation

#24								
Glc	NAc6S-G-GlcN	ac6S-I-GlcNAc6S	S-G-GlcNAc6S-I-	\mathbf{R}_2				
[M-4H] ⁴⁻	489.07	$378.3 (0.5)^2$						
[M-5H] ⁵⁻	391.05	439.7 (0.4)						
[M-6H] ⁶⁻	325.7	451.4 (0.6)						
	$(1-)^1$	(2-)	(3-)	(4-)	(1-)	(2-)	(3-)	(4-)
B1	282.03	140.51	93.34	69.75	93.1 (0.4)	X	х	х
B2	458.06	228.53	152.01	113.76	121.4 (0.6)	Х	Х	Х
B3	741.10	370.04	246.36	184.52	X	170.5 (0.6)	Х	Х
B4	917.13	458.06	305.04	228.53	х	х	х	х
B5	1200.16	599.58	399.38	299.29	Х	Х	270.9 (0.8)	Х
B6	1376.20	687.59	458.06	343.29	Х	Х	Х	Х
B7	1659.23	829.11	552.41	414.05	Х	х	Х	366.2 (0.5)
B8	1835.27	917.13	611.08	458.06	х	x	х	X
Y0	122.04	60.51	40.01	29.75	Х	Х	Х	Х
Y1	299.08	149.03	99.02	74.01	103.1 (0.4)	X	Х	х
Y2	582.11	290.55	193.37	144.77	153.4 (0.3)	Х	х	х
Y3	758.14	378.57	252.04	188.78	Х	Х	Х	Х
Y4	1041.18	520.09	346.39	259.54	Х	Х	Х	Х
Y5	1217.21	608.10	405.07	303.55	Х	226.0 (0.5)	289.6 (0.6)	Х
Y6	1500.25	749.62	499.41	374.31	Х	288.4 (0.4)	Х	Х
Y7	1676.28	837.64	558.09	418.31	Х	x	х	Х
C1	300.04	149.52	00.34	74.25	94.1 (0.2)	v	v	v
	476.07	237 53	158.02	118.26	122.2 (0.2)	x	x	x
C_2	750.11	237.33	252.26	110.20	122.2 (0.2) v	A v	A v	A v
	025.14	319.03	232.30	107.02	A v	A v	A v	A v
C4	933.14	407.07	311.04	233.03	Х	Х	Х	Х

Supplementary Table 14. CCS of B, Y, C and Z ions identified in an octa-saccharide GlcNAc6S-G-GlcNAc6S-I-GlcNAc6S-G-GlcNAc6S-I-R₂ structure, 177 where R_2 is C_7H_7O .

C5	1218.18	608.58	405.39	303.79	х	х	х	х
C6	1394.21	696.60	464.06	347.80	Х	Х	Х	Х
C7	1677.24	838.12	558.41	418.56	Х	Х	Х	Х
C8	1853.28	926.13	617.09	462.56	Х	х	х	х
Z0	105.03	52.01	34.34	25.50	Х	х	Х	Х
Z1	281.07	140.03	93.02	69.51	Х	х	х	х
Z2	564.10	281.55	187.36	140.27	Х	Х	Х	Х
Z3	740.13	369.56	246.04	184.28	Х	Х	Х	Х
Z4	1023.17	511.08	340.38	255.04	Х	Х	Х	Х
Z5	1199.20	599.10	399.06	299.04	Х	Х	Х	Х
Z6	1482.24	740.62	493.41	369.80	X	x	х	х
Z7	1658.27	828.63	552.09	413.81	X	X	Х	Х

179 ¹ Columns represent different charge states.

 2 Each CCS is an average of independent measurements with the corresponding standard deviation

#25								
G-	GlcNS-G-G	lcNS-I-GlcNS-C	G-GlcNS-G-	·R ₃				
[M-4H] ⁴⁻	494.81	$437.4 (0.3)^2$						
[M-5H] ⁵⁻	395.65	438.4 (0.8)						
	$(1-)^1$	(2-)	(3-)	(4-)	(1-)	(2-)	(3-)	(4-)
B1	175.02	87.01	57.67	43.00	71.5 (0.3)	Х	Х	Х
B2	416.05	207.52	138.01	103.26	112.4 (0.4)	Х	Х	Х
B3	592.08	295.54	196.69	147.26	Х	157.8 (0.4)	Х	Х
B4	833.11	416.05	277.03	207.52	Х	197.4 (0.4)	Х	Х
B5	1009.14	504.07	335.71	251.53	Х	235.2 (0.5)	X	X
B6	1250.17	624.58	416.05	311.79	Х	Х	Х	Х
B7	1426.20	712.59	474.73	355.79	Х	Х	321.4 (0.4)	X
B8	1667.22	833.11	555.07	416.05	Х	Х	Х	Х
B9	1843.25	921.12	613.75	460.06	Х	Х	X	407.6 (0.5)
Y0	138.02	68.51	45.33	33.75	Х	X	X	X
Y1	314.05	156.52	104.01	77.76	Х	Х	Х	Х
Y2	555.08	277.03	184.35	138.01	Х	Х	Х	Х
Y3	731.11	365.05	243.03	182.02	х	Х	Х	Х
Y4	972.13	485.56	323.37	242.28	Х	Х	Х	Х
Y5	1148.17	573.58	382.05	286.29	Х	Х	Х	Х
Y6	1389.19	694.09	462.39	346.54	х	Х	Х	Х
Y7	1565.22	782.11	521.07	390.55	Х	Х	Х	Х
Y8	1806.25	902.62	601.41	450.81	Х	Х	Х	Х
C1	192.03	95.51	63.34	47.25	х	x	х	x
C2	433.05	216.02	143.68	107.51	X	X	X	X
C3	609.08	304.04	202.36	151.52	X	X	X	X
C4	850.11	424.55	282.70	211.77	Х	X	Х	X

182 Supplementary Table 15. CCS of B, Y, C and Z ions identified in a 9mer, G-GlcNS-G-GlcNS-G-GlcNS-G-GlcNS-G-R₃ structure, where R₃ is C₆H₄NO₂.

C5	1026.14	512.57	341.38	255.78	х	Х	Х	Х
C6	1267.17	633.08	421.72	316.04	х	х	х	х
C7	1443.20	721.10	480.39	360.04	х	х	х	х
C8	1684.23	841.61	560.74	420.30	х	х	х	х
C9	1860.26	929.62	619.41	464.31	х	х	х	х
Z0	120.01	59.50	39.33	29.25	х	х	х	х
Z1	296.04	147.52	98.01	73.25	х	х	х	X
Z2	537.07	268.03	178.35	133.51	х	X	X	х
Z3	713.10	356.05	237.03	177.52	х	х	х	х
Z4	954.12	476.56	317.37	237.78	х	х	х	х
Z5	1130.16	564.57	376.05	281.78	х	Х	Х	Х
Z6	1371.18	685.09	456.39	342.04	х	Х	Х	Х
Z7	1547.21	773.10	515.07	386.05	X	X	X	X
Z8	1788.24	893.62	595.41	446.30	Х	Х	Х	Х

¹Columns represent different charge states.

#26								
(G-GlcNS-G	-GlcNS-I2S-GlcN	NS-G-GlcNS-C	G-R ₃				
[M-4H] ⁴⁻	514.8	$441.4 (0.3)^2$						
[M-5H] ⁵⁻	411.64	445.7 (0.5)						
	$(1-)^1$	(2-)	(3-)	(4-)	(1-)	(2-)	(3-)	(4-)
B1	175.02	87.01	57.67	43.00	х	Х	Х	х
B2	416.05	207.52	138.01	103.26	112.2 (0.2)	Х	Х	х
B3	592.08	295.54	196.69	147.26	х	158.0 (0.2)	Х	х
B4	833.11	416.05	277.03	207.52	х	197.3 (0.6)	Х	х
B5	1089.10	544.04	362.36	271.52	х	Х	249.6 (0.7)	x
B6	1330.12	664.56	442.70	331.77	х	Х	Х	х
B7	1506.15	752.57	501.38	375.78	х	Х	330.0 (0.6)	x
B8	1747.18	873.09	581.72	436.04	х	Х	Х	379.0 (0.4)
B9	1923.21	961.10	640.40	480.05	X	х	х	405.5 (0.2)
Y0	138.02	68.51	45.33	33.75	X	X	X	x
Y1	314.05	156.52	104.01	77.76	x	х	х	х
Y2	555.08	277.03	184.35	138.01	x	х	Х	х
Y3	731.11	365.05	243.03	182.02	x	х	х	х
Y4	972.13	485.56	323.37	242.28	х	Х	Х	Х
Y5	1228.12	613.56	408.70	306.27	х	х	Х	х
Y6	1469.15	734.07	489.04	366.53	х	Х	Х	х
Y7	1645.18	822.09	547.72	410.54	х	Х	Х	х
Y8	1886.21	942.60	628.06	470.80	X	X	X	X
C1	192.03	95.51	63.34	47.25	X	X	Х	X
C2	433.05	216.02	143.68	107.51	x	х	х	x
C3	609.08	304.04	202.36	151.52	x	х	Х	X

Supplementary Table 16. CCS of B, Y, C and Z ions identified in a dp9 + 1x2O-sulfate, G-GlcNS-G-GlcNS-G-GlcNS-G-GlcNS-G-R₃ structure, where R₃ is C₆H₄NO₂.

C4	850.11	424.55	282.70	211.77	Х	Х	Х	х
C5	1106.10	552.55	368.03	275.77	Х	Х	Х	Х
C6	1347.12	673.06	448.37	336.03	Х	Х	Х	Х
C7	1523.16	761.07	507.05	380.03	х	х	Х	х
C8	1764.18	881.59	587.39	440.29	Х	Х	Х	Х
C9	1940.21	969.60	646.07	484.30	х	х	Х	х
Z0	120.01	59.50	39.33	29.25	Х	Х	Х	Х
Z1	296.04	147.52	98.01	73.25	Х	Х	Х	Х
Z2	537.07	268.03	178.35	133.51	х	х	х	х
Z3	713.10	356.05	237.03	177.52	Х	х	Х	х
Z4	954.12	476.56	317.37	237.78	Х	х	Х	х
Z5	1210.11	604.55	402.70	301.77	Х	х	Х	Х
Z6	1451.14	725.07	483.04	362.03	X	х	X	X
Z7	1627.17	813.08	541.72	406.04	X	х	X	X
Z8	1868.20	933.59	622.06	466.29	х	Х	Х	х

188 ¹ Columns represent different charge states.

 2 Each CCS is an average of independent measurements with the corresponding standard deviation
#27								
	(GlcNAc6S-[I-Gle	cNAc6S] ₄ -I-R ₂					
[M-5H] ⁵⁻	482.87	$499.8 (0.4)^2$						
[M-6H] ⁶⁻	402.22	536.4 (0.7)						
	(1-) ¹	(2-)	(3-)	(4-)	(1-)	(2-)	(3-)	(4-)
B1	282.03	140.51	93.34	69.75	92.9 (0.5)	Х	Х	Х
B2	458.06	228.53	152.01	113.76	121.8 (0.6)	Х	Х	Х
B3	741.10	370.04	246.36	184.52	х	176.0 (0.7)	Х	х
B4	917.13	458.06	305.04	228.53	х	197.2 (0.5)	Х	х
B5	1200.16	599.58	399.38	299.29	х	Х	269.1 (0.3)	х
B6	1376.20	687.59	458.06	343.29	х	х	294.6 (0.2)	х
B7	1659.23	829.11	552.41	414.05	x	Х	Х	х
B8	1835.27	917.13	611.08	458.06	x	Х	Х	394.0 (0.6)
B9	2118.30	1058.65	705.43	528.82	x	x	Х	X
B10	2294.33	1146.66	764.11	572.83	х	Х	Х	Х
Y0	123.04	61.02	40.34	30.01	69.3 (0.1)	X	Х	X
Y1	299.08	149.03	99.02	74.01	X	Х	Х	Х
Y2	582.11	290.55	193.37	144.77	х	166.3 (0.8)	Х	Х
Y3	758.14	378.57	252.04	188.78	х	Х	Х	Х
Y4	1041.18	520.09	346.39	259.54	х	Х	Х	Х
Y5	1217.21	608.10	405.07	303.55	X	Х	Х	Х
Y6	1500.25	749.62	499.41	374.31	X	Х	Х	Х
Y7	1676.28	837.64	558.09	418.31	x	Х	368.5 (0.9)	Х
Y8	1959.32	979.15	652.43	489.07	x	X	Х	Х
Y9	2135.35	1067.17	711.11	533.08	x	X	Х	Х
C1	300.04	149.52	99.34	74.25	X	X	Х	X
C2	476.07	237.53	158.02	118.26	X	X	Х	Х

Supplementary Table 17. CCS of B, Y, C and Z ions identified in a dp10 GlcNAc6S-[I-GlcNAc6S]₄-I-R₂ structure, where R₂ is C₇H₇O.

C3	759.11	379.05	252.36	189.02	х	х	Х	х
C4	935.14	467.07	311.04	233.03	х	Х	Х	Х
C5	1218.18	608.58	405.39	303.79	х	Х	Х	Х
C6	1394.21	696.60	464.06	347.80	х	Х	Х	х
C7	1677.24	838.12	558.41	418.56	х	х	х	х
C8	1853.28	926.13	617.09	462.56	х	Х	Х	х
C9	2136.31	1067.65	711.43	533.32	х	х	х	х
C10	2312.34	1155.67	770.11	577.33	Х	Х	Х	Х
70	105.02	52.01	24.24	25.50	v	v	v	v
20	105.05	32.01	34.34	23.30	Λ	Λ	Λ	Λ
Z1	281.07	140.03	93.02	69.51	X	X	X	X
Z2	564.10	281.55	187.36	140.27	x	X	X	X
Z3	740.13	369.56	246.04	184.28	x	x	х	x
Z4	1023.17	511.08	340.38	255.04	х	х	х	х
Z5	1199.20	599.10	399.06	299.04	х	Х	х	х
Z6	1482.24	740.62	493.41	369.80	х	Х	Х	Х
Z7	1658.27	828.63	552.09	413.81	X	X	X	X
Z8	1941.31	970.15	646.43	484.57	X	Х	Х	х
Z9	2117.34	1058.17	705.11	528.58	X	Х	Х	х

¹ Columns represent different charge states.

 2 Each CCS is an average of independent measurements with the corresponding standard deviation

#28								
GlcNAc6S-[G-GlcNAc6S	$]_4$ -G-R ₂						
[M-5H] ⁵⁻	482.87	$496.1 (0.7)^2$						
[M-6H] ⁶⁻	402.22	524.5 (0.2)						
	$(1-)^1$	(2-)	(3-)	(4-)	(1-)	(2-)	(3-)	(4-)
B1	282.03	140.51	93.34	69.75	93.2 (0.2)	Х	Х	Х
B2	458.06	228.53	152.01	113.76	121.3 (0.8)	Х	Х	Х
B3	741.10	370.04	246.36	184.52	Х	Х	Х	Х
B4	917.13	458.06	305.04	228.53	Х	194.2 (0.2)	225.5 (0.4)	Х
B5	1200.16	599.58	399.38	299.29	Х	Х	Х	Х
B6	1376.20	687.59	458.06	343.29	Х	Х	291.6 (0.2)	Х
B7	1659.23	829.11	552.41	414.05	Х	Х	Х	Х
B8	1835.27	917.13	611.08	458.06	Х	Х	Х	390.9 (0.6)
B9	2118.30	1058.65	705.43	528.82	Х	Х	Х	Х
B10	2294.33	1146.66	764.11	572.83	Х	Х	Х	Х
Y0	123.04	61.02	40.34	30.01	69.0 (0.3)	Х	Х	Х
Y1	299.08	149.03	99.02	74.01	х	Х	Х	Х
Y2	582.11	290.55	193.37	144.77	Х	Х	Х	Х
Y3	758.14	378.57	252.04	188.78	Х	Х	Х	Х
Y4	1041.18	520.09	346.39	259.54	Х	Х	Х	Х
Y5	1217.21	608.10	405.07	303.55	Х	Х	281.0 (0.6)	Х
Y6	1500.25	749.62	499.41	374.31	Х	Х	Х	Х
Y7	1676.28	837.64	558.09	418.31	х	Х	x	Х
Y8	1959.32	979.15	652.43	489.07	х	Х	х	Х
Y9	2135.35	1067.17	711.11	533.08	Х	Х	Х	Х
C1	300.04	149.52	99.34	74.25	Х	X	X	X
C2	476.07	237.53	158.02	118.26	Х	Х	X	Х

Supplementary Table 18. CCS of B, Y, C and Z ions identified in a dp10 GlcNAc6S-[G-GlcNAc6S]₄-G-R₂ structure, where R₂ is C₇H₇O.

C3	759.11	379.05	252.36	189.02	Х	Х	х	Х
C4	935.14	467.07	311.04	233.03	Х	Х	Х	Х
C5	1218.18	608.58	405.39	303.79	Х	Х	х	Х
C6	1394.21	696.60	464.06	347.80	Х	Х	х	Х
C7	1677.24	838.12	558.41	418.56	Х	Х	x	Х
C8	1853.28	926.13	617.09	462.56	Х	Х	х	Х
C9	2136.31	1067.65	711.43	533.32	Х	Х	х	Х
C10	2312.34	1155.67	770.11	577.33	Х	Х	x	Х
ZO	105.03	52.01	34.34	25.50	Х	Х	Х	X
Z1	281.07	140.03	93.02	69.51	Х	Х	х	Х
Z2	564.10	281.55	187.36	140.27	Х	Х	х	Х
Z3	740.13	369.56	246.04	184.28	Х	Х	Х	Х
Z4	1023.17	511.08	340.38	255.04	Х	Х	Х	Х
Z5	1199.20	599.10	399.06	299.04	Х	Х	Х	Х
Z6	1482.24	740.62	493.41	369.80	Х	Х	х	х
Z7	1658.27	828.63	552.09	413.81	X	X	X	X
Z8	1941.31	970.15	646.43	484.57	X	X	X	X
Z9	2117.34	1058.17	705.11	528.58	X	X	X	X

¹Columns represent different charge states.

 2 Each CCS is an average of independent measurements with the corresponding standard deviation

Supplementary Table 19. CCS of B, Y, C and Z ions identified in disaccharide ΔUA2S-GlcNS3S6S
structure. Error +/- values are donated in brackets.

#29				
ΔUA	A2S-GlcNS3S6	S		
[M-2H] ²⁻	327.45	149.7 (0.2)		
	$(1-)^1$	(2-)	(1-)	(2-)
B1	236.97	117.98	79.7 (0.3)	Х
Y0	417.94	208.47	Х	Х
C1	254.98	126.99	138.6 (0.2)/162.2 (0.7)	X
ZO	399.93	199.46	Х	X

210 ¹ Columns represent different charge states.

² Each CCS is an average of independent measurements with the corresponding standard deviation

#30						
Δ١	JA-GlcNS-I	doA2S-GlcNS3	S			
[M-3H] ³⁻	330.33	228.0 (0.1)				
	(1-) ¹	(2-)	(3-)	(1-)	(2-)	(3-)
B1	157.01	78.00	51.67	70.7 (0.4)	х	х
B2	398.04	198.52	132.01	x	119.9 (0.5)	х
B3	654.03	326.51	217.34	x	162.4 (0.3)	х
B4	975.01	487.00	324.33	x	х	218.1 (0.7)
YO	337.99	168.49	111.99	x	104.9 (0.1)	х
Y1	593.97	296.48	197.32	x	х	х
Y2	835.00	417.00	277.66	х	х	х
C1	175.02	87.01	57.67	71.5 (0.5)	х	х
C2	416.05	207.52	138.01	113.9 (0.1)	120.8 (0.5)	х
C3	672.04	335.52	223.34	147.16 (0.5)	х	х
Z0	319.97	159.48	105.99	x	х	х
Z1	575.96	287.48	191.32	x	x	x
Z2	816.99	407.99	271.66	x	x	x

- 215 Supplementary Table 20. CCS of B, Y, C and Z ions identified in tetrasaccharide Δ UA-GlcNS-
- 216 IdoA2S-GlcNS3S structure. Error +/- values are donated in brackets.

¹ Columns represent different charge states.

² Each CCS is an average of independent measurements with the corresponding standard deviation

220

Supplementary Table 21. CCS of B, Y, C and Z ions identified in tetrasaccharide Δ UA-GlcNS6S-

#31				
∆UA-Glo	NS6S-G-C	GlcNS3S6S		
[M-3H] ³⁻	356.98	228.9 (0.3)		
	$(1-)^1$	(2-)	(1-)	(2-)
B1	157.01	78.00	70.0 (0.5)	Х
B2	478.00	238.49	118.0 (0.1)	128.5 (0.1)
B3	654.03	326.51	Х	163.4 (0.1)
Y0	417.94	208.47	Х	Х
Y1	593.97	296.48	Х	Х
Y2	914.96	456.97	х	х
C1	175.02	87.01	71.6 (0.5)	Х
C2	496.01	247.50	х	131.8 (0.4)
C3	672.04	335.52	Х	164.7 (0.2)
Z0	399.93	199.46	х	х
Z1	575.96	287.48	Х	Х
Z2	896.95	447.97	Х	Х

224

²²⁵ ¹ Columns represent different charge states.

²Each CCS is an average of independent measurements with the corresponding standard deviation

227

#32				
ΔU	NS3S6S			
[M-3H] ³⁻	344.33	234.5 (0.1)		
	$(1-)^1$	(2-)	(1-)	(2-)
B1	157.01	78.00	69.7 (0.1)	Х
B2	440.05	219.52	117.7 (0.1)	132.4 (0.8)
B3	616.08	307.54	151.7 (0.1)	Х
Y0	417.94	208.47	Х	Х
Y1	593.97	296.48	Х	Х
Y2	877.01	438.00	Х	Х
C1	175.02	87.01	71.5 (0.5)	Х
C2	458.06	228.53	120.6 (0.1)	131.5 (0.1)
C3	634.09	316.54	154.3 (0.2)	Х
ZO	399.93	199.46	Х	Х
Z1	575.96	287.48	X	х
Z2	859.00	429.00	Х	Х

229 Supplementary Table 22. CCS of B, Y, C and Z ions identified in tetrasaccharide ΔUA-GlcNAc6S-

230 GlcA-GlcNS3S6S structure. Error +/- values are donated in brackets.

231

¹Columns represent different charge states.

² Each CCS is an average of independent measurements with the corresponding standard deviation

234

#33						
	G-Glc	NS6S-G-GlcN	S6S-I2S-G	lcNS6S-R ₁		
[M-3H] ³⁻	557.06	280.5 (0.1)				
[M-4H] ⁴⁻	417.52	339.5 (0.3)				
	$(1-)^1$	(2-)	(3-)	(1-)	(2-)	(3-)
B1	175.02	87.01	57.67	69.0 (0.4)	х	Х
B2	496.01	247.50	164.66	х	132.5 (0.5)	х
B3	672.04	335.52	223.34	Х	161.7 (0.5)	Х
B4	993.02	496.01	330.34	х	х	225.1 (0.7)
B5	1249.01	624.00	415.66	х	х	х
B6	1569.99	784.49	522.66	Х	x	Х
YO	102.09	50.54	33.36	x	x	X
Y1	423.07	211.03	140.35	х	128.8 (0.7)	х
Y2	679.06	339.03	225.68	х	x	х
Y3	1000.05	499.52	332.68	х	x	х
Y4	1176.08	587.53	391.35	х	x	х
Y5	1497.06	748.03	498.35	Х	Х	Х
C1	193.03	96.01	63.67	74.2 (0.4)	X	Х
C2	514.02	256.50	170.67	х	133.7 (0.5)	х
C3	690.05	344.52	229.34	х	х	х
C4	1011.03	505.01	336.34	х	х	х
C5	1267.02	633.01	421.67	Х	х	Х
C6	1588.00	793.50	528.66	Х	X	Х
ZO	84.08	41.54	27.36	X	X	Х
Z1	405.06	202.03	134.35	х	X	х
Z2	661.05	330.02	219.68	X	X	X
Z3	982.03	490.51	326.67	X	X	X
Z4	1158.07	578.53	385.35	X	X	X
Z5	1479.05	739.02	492.34	X	X	X

Supplementary Table 23. CCS of B, Y, C and Z ions identified in hexasaccharide G-GlcNS6S-G GlcNS6S-I2S-GlcNS6S-R₁ structure, where R₁ is (CH₂)₅NH₂.

239 ¹ Columns represent different charge states.

² Each CCS is an average of independent measurements with the corresponding standard deviation

#34						
	G-GlcNS6	S-G-GlcNS3S-	I2S-GlcNS6S-F	R ₁		
[M-3H] ³⁻	557.06	282.4 (0.4)				
	$(1-)^1$	(2-)	(3-)	(1-)	(2-)	(3-)
B1	175.02	87.01	57.67	68.8 (0.2)	х	Х
B2	496.01	247.50	164.66	х	132.2 (0.5)	Х
B3	672.04	335.52	223.34	х	162.1 (0.4)	Х
B4	993.02	496.01	330.34	х	х	220.4 (0.5)
B5	1249.01	624.00	415.66	х	х	Х
B6	1569.99	784.49	522.66	х	х	Х
V0	102.00	50.54	33.36	v	v	v
10 V1	102.09	211.03	140.35	X	$\frac{\lambda}{1280(0.5)}$	X
11 V2	679.06	339.03	225.68	X v	128.9 (0.3) v	X V
12 V2	1000.05	400.52	223.08	A V	A V	A V
13 V/	1176.08	499.32 587.53	301 35	x x	x	A V
14 V5	1407.06	748.03	408.35	A V	A V	A V
15	1497.00	748.03	498.33	Λ	λ	Λ
C1	193.03	96.01	63.67	73.8 (0.4)	x	Х
C2	514.02	256.50	170.67	Х	133.9 (0.6)	Х
C3	690.05	344.52	229.34	X	x	X
C4	1011.03	505.01	336.34	X	x	X
C5	1267.02	633.01	421.67	X	x	X
C6	1588.00	793.50	528.66	Х	x	Х
70	84.08	41 54	27.36	x	x	x
<u>Z</u> 0	405.06	202.03	134.35	x	x	x
72	661.05	330.02	219.68	x	x	x
73	982.03	490 51	326.67	x	x	x
74	1158.07	578.53	385.35	x	x	x
Z5	1479.05	739.02	492.34	X	X	X
	-					

Supplementary Table 24. CCS of B, Y, C and Z ions identified in hexasaccharide G-GlcNS6S-G GlcNS3S-I2S-GlcNS6S-(CH₂)₅NH₂ structure, where R₁ is (CH₂)₅NH₂.

248

249 ¹ Columns represent different charge states.

² Each CCS is an average of independent measurements with the corresponding standard deviation

251

#35						
	G-GlcN	IS6S-G-GlcNS	6S3S-I2S-(GlcNS6S-R1		
[M-4H] ⁴⁻	437.51	328.3 (0.6)				
	$(1-)^1$	(2-)	(3-)	(1-)	(2-)	(3-)
B1	175.02	87.01	57.67	69.0 (0.2)	Х	Х
B2	496.01	247.50	164.66	Х	132.8 (0.4)	Х
B3	672.04	335.52	223.34	Х	162.4 (0.4)	Х
B4	1072.98	535.99	356.99	Х	Х	Х
B5	1328.97	663.98	442.32	Х	Х	Х
B6	1649.95	824.47	549.31	Х	Х	Х
V 0	102.09	50.54	33.36	v	v	v
Y1	423.07	211.03	140 35	x	x	x
Y2.	679.06	339.03	225.68	x	x	x
¥3	1080.00	539.50	359.33	x	x	x
Y4	1256.03	627.51	418.01	X	X	X
Y5	1577.02	788.00	525.00	Х	Х	Х
C1	193.03	96.01	63.67	X	X	X
C2	514.02	256.50	170.67	Х	Х	Х
C3	690.05	344.52	229.34	Х	Х	Х
C4	1090.99	544.99	362.99	X	X	X
C5	1346.98	672.98	448.32	Х	Х	Х
C6	1667.96	833.48	555.31	Х	Х	х
Z0	84.08	41.54	27.36	Х	X	Х
Z1	405.06	202.03	134.35	х	х	х
Z2	661.05	330.02	219.68	х	х	х
Z3	1061.99	530.49	353.33	х	x	х
Z4	1238.02	618.51	412.00	х	x	х
Z5	1559.01	779.00	519.00	Х	х	х

Supplementary Table 25. CCS of B, Y, C and Z ions identified in hexasaccharide G-GlcNS6S-G GlcNS6S3S-I2S-GlcNS6S-R₁, where R₁ is (CH₂)₅NH₂.

256 ¹ Columns represent different charge states.

² Each CCS is an average of independent measurements with the corresponding standard deviation

258

261	Supplementary Table 26. CCS of B, Y, C and Z ions identified in a dp7 + 1x2O-sulfate, Δ UA-GlcNS-I2S-GlcNS-G-GlcNS-G-R ₃ structure,
262	where R_3 is $C_6H_4NO_2$.

#36								
∆UA-Glc	NS-I2S-Glc	NS-G-GlcNS-G	-R3					
	$(1-)^1$	(2-)	(3-)	(4-)	(1-)	(2-)	(3-)	(4-)
B1	157.01	78.00	51.67	38.50	70.5 (0.76)	Х	х	х
B2	398.04	198.52	132.01	98.75	110.5 (0.8)	120.5 (0.5)	Х	х
B3	654.03	326.51	217.34	162.75	х	162.6 (0.5)	Х	х
B4	895.05	447.02	297.68	223.01	х	201.1 (0.5)	Х	х
B5	1071.09	535.04	356.36	267.02	х	211.7 (0.3)	246.2 (0.8)	х
B6	1312.11	655.55	436.70	327.27	x	Х	Х	Х
B7	1488.14	743.57	495.38	371.28	x	X	х	329.8 (0.1)
Y0	138.02	68.51	45.33	33.75	X	X	X	X
Y1	314.05	156.52	104.01	77.76	x	Х	X	х
Y2	555.08	277.03	184.35	138.01	х	Х	Х	х
Y3	731.11	365.05	243.03	182.02	х	Х	Х	Х
Y4	972.13	485.56	323.37	242.28	х	Х	Х	х
Y5	1228.12	613.56	408.70	306.27	х	Х	Х	х
Y6	1469.15	734.07	489.04	366.53	X	Х	X	x
C1	174.02	86.50	57.33	42.75	X	x	x	x
C2	415.04	207.02	137.68	103.00	х	Х	х	х
C3	671.03	335.01	223.01	167.00	х	Х	х	х
C4	912.06	455.52	303.35	227.26	x	Х	X	X
C5	1088.09	543.54	362.02	271.27	X	Х	X	X
C6	1329.11	664.05	442.37	331.52	X	X	X	X
C7	1505.15	752.07	501.04	375.53	X	X	x	X
Z0	120.01	59.50	39.33	29.25	X	X	Х	X

Z1	296.04	147.52	98.01	73.25	Х	Х	Х	Х
Z2	537.07	268.03	178.35	133.51	х	Х	Х	Х
Z3	713.10	356.05	237.03	177.52	Х	Х	Х	Х
Z4	954.12	476.56	317.37	237.78	х	Х	Х	Х
Z5	1210.11	604.55	402.70	301.77	Х	Х	Х	Х
Z6	1451.14	725.07	483.04	362.03	X	X	X	X

264 ¹ Columns represent different charge states.

² Each CCS is an average of independent measurements with the corresponding standard deviation

			#9		#10		#11		#13	
			G-GlcNAc6S GlcNAc6S-R	- G -	I-GlcNAc6S-I- GlcNAc6S-R ₁		G-GlcNAc6S-I GlcNAc6S-R ₁	[-	I-GlcNAc6S-C GlcNAc6S-R ₁	j-
			- 1SO ₃	- 1SO ₃	- 1SO3	- 1SO ₃	- 1SO3	- 1SO3	- 1SO ₃	- 2SO3
			$(1-)^1$	(2-)	(1-)	(2-)	(1-)	(2-)	(1-)	(2-)
B1	95.07	47.03	Х	Х	Х	Х	Х	Х	Х	Х
B2	378.10	188.55	112.04 (0.1)	Х	112.5 (0.3)	Х	112.41 (0.5)	Х	112.02 (0.2)	Х
B3	554.14	276.56	Х	Х	Х	Х	х	Х	х	х
B4	837.17	418.08	х	х	х	Х	х	Х	х	Х
Y0	22.14	10.56	х	х	Х	Х	х	Х	х	Х
Y1	305.17	152.08	Х	Х	Х	Х	X	Х	Х	Х
Y2	481.20	240.10	139.34 (0.2)	Х	137.09 (0.3)	Х	137.38 (0.6)	Х	139.3 (0.2)	Х
Y3	764.24	381.62	Х	Х	X	Х		Х	Х	Х
C1	113.08	56.04	X	X	X	Х	x	Х	x	Х
C2	396.11	197.55	115.2 (0.6)	X	115.7 (0.5)	Х	114.85 (0.4)	Х	114.88 (0.2)	Х
C3	572.15	285.57	Х	Х	Х	Х	Х	Х	Х	Х
C4	855.18	427.09	Х	Х	Х	Х	Х	Х	Х	Х
Z0	4.12	1.56	Х	Х	X	Х	X	Х	X	Х
Z1	287.16	143.08	Х	Х	X	Х	X	Х	X	Х
Z2	463.19	231.09	Х	Х	X	Х	X	Х	X	Х
Z3	746.23	372.61	Х	Х	Х	Х	Х	Х	Х	Х

267 **Supplementary Table 27.** CCS of B, Y, C and Z (-SO₃) ions identified in isomeric tetrasaccharide UA-GlcNAc6S-UA-GlcNAc6S-R_{\pm} structures, 268 where R₁ is (CH₂)₅NH₂.

269 ¹ Columns represent different charge states.

² Each CCS is an average of independent measurements with the corresponding standard deviation

#12						
G-Gl	cNS6S-I-	GlcNS6S-F	R ₁			
				- 1 SO 3	- 1 SO 3	- 1 SO ₃
				$(1-)^1$	(2-)	(3-)
B1	95.07	47.03	31.02	Х	Х	Х
B2	416.05	207.52	138.01	Х	122.4 (0.3)	Х
B3	592.08	295.54	196.69	139.6 (0.3)	Х	Х
B4	913.06	456.03	303.68	Х	Х	214.9 (0.2)
YO	22.14	10 56	671	X	X	X
Y1	343.12	171.05	113.70	X	X	X
Y2	519.15	259.07	172.38	Х	Х	Х
Y3	840.13	419.56	279.37	Х	Х	Х
C1	113.08	56.04	37.02	Х	Х	X
C2	434.06	216.53	144.01	Х	Х	Х
C3	610.09	304.54	202.69	х	Х	Х
C4	931.07	465.03	309.69	Х	Х	Х
Z0	4.12	1.56	0.70	Х	Х	Х
Z1	325.11	162.05	107.70	Х	Х	Х
Z2	501.14	250.07	166.37	Х	Х	Х
Z3	822.12	410.56	273.37	Х	Х	Х

Supplementary Table 28. CCS of B, Y, C and Z (-SO₃) ions identified in isomeric tetra-saccharide UA-

273 GlcNS6S-UA-GlcNS6S- R_1 structures, where R_1 is (CH₂)₅NH₂.

²⁷⁵ ¹ Columns represent different charge states.

 2 Each CCS is an average of independent measurements with the corresponding standard deviation

#14				
	I-GlcNS65	S-G-GlcNS	$5S-R_1$	
	- 1SO ₃	- 1SO ₃	- 1SO ₃	- 1SO ₃
	(1-)	(2-)	(1-)	(2-)
B1	95.07	47.03	Х	x
B2	416.05	207.52	Х	x
B3	592.08	295.54	Х	х
B4	913.06	456.03	х	Х
Y0	22.14	10.56	Х	X
Y1	343.12	171.05	$108.9(0.1)^2$	X
Y2	519.15	259.07	133.7 (0.1)	149.8 (0.3)
Y3	840.13	419.56	x	175.7 (0.8)
C1	113.08	56.04	x	X
C2	434.06	216.53	х	х
C3	610.09	304.54	Х	х
C4	931.07	465.03	Х	х
70	4.10	1.50		
20	4.12	1.56	X	X
Z1	325.11	162.05	Х	Х
Z2	501.14	250.07	Х	X
Z3	822.12	410.56	X	х

279 Supplementary Table 29. CCS of B, Y, C and Z (-SO₃) ions identified in isomeric tetra-saccharide UA-

280 GlcNS6S-UA-GlcNS6S- R_1 structures, where R_1 is (CH₂)₅NH₂.

281

¹Columns represent different charge states.

 2 Each CCS is an average of independent measurements with the corresponding standard deviation

#15						
G-0	GlcNS6S-I2	S-GlcNS6S	$-R_1$			
	- 1SO ₃	- 1SO ₃	- 1SO ₃			
	$(1-)^1$	(2-)	(3-)			
B1	95.07	47.03	31.02	Х	Х	Х
B2	416.05	207.52	138.01	Х	$122.4 (0.1)^2$	Х
B3	672.04	335.52	223.34	X	167.1 (0.4)	х
B4	993.02	496.01	330.34	X	X	226.7 (0.2)
Y0	22.14	10.56	6.71	X	X	X
Y1	343.12	171.05	113.70	109.3 (0.6)	х	Х
Y2	599.11	299.05	199.03	х	Х	Х
Y3	920.09	459.54	306.02	Х	Х	Х
C1	113.08	56.04	37.02	X	X	X
C2	434.06	216.53	144.01	Х	Х	Х
C3	690.05	344.52	229.34	х	х	х
C4	1011.03	505.01	336.34	x	X	х
Z0	4.12	1.56	0.70	X	X	X
Z1	325.11	162.05	107.70	X	X	X
Z2	581.10	290.04	193.03	X	X	X
Z3	902.08	450.54	300.02	X	X	X

Supplementary Table 30. CCS of B, Y, C and Z (-SO₃) ions identified in isomeric tetra-saccharide G GlcNS6S-I2S-GlcNS6S-R₁ structures, where R₁ is (CH₂)₅NH₂.

287

288 ¹ Columns represent different charge states.

 2 Each CCS is an average of independent measurements with the corresponding standard deviation

#16						
G-Glc	NS6S-I-GlcNS	6S-G-GlcNS	6S-R ₁			
	- 1SO3	- 1SO3	- 1SO ₃	- 1SO3	- 1SO3	- 1SO3
	$(1-)^1$	(2-)	(3-)	(1-)	(2-)	(3-)
B1	95.07	47.03	31.02	Х	Х	Х
B2	416.05	207.52	138.01	х	$122.5 (0.2)^2$	Х
B3	592.08	295.54	196.69	140.2 (0.7)	Х	Х
B4	913.06	456.03	303.68	х	Х	214.8 (0.7)
B5	1089.10	544.04	362.36	Х	Х	247.4 (0.9)
B6	1410.08	704.54	469.35	Х	Х	х
Y0	22.14	10.56	6.71	X	X	Х
Y1	343.12	171.05	113.70	109.1 (0.1)	х	х
Y2	519.15	259.07	172.38	х	150.0 (0.8)	х
Y3	840.13	419.56	279.37	х	х	Х
Y4	1016.16	507.58	338.05	Х	Х	234.8 (0.2)
Y5	1337.15	668.07	445.04	Х	Х	X
C1	113.08	56.04	37.02	X	X	х
C2	434.06	216.53	144.01	114.8 (0.46)	х	х
C3	610.09	304.54	202.69	Х	х	х
C4	931.07	465.03	309.69	Х	Х	Х
C5	1107.11	553.05	368.36	Х	Х	Х
C6	1428.09	713.54	475.36	Х	Х	x
Z0	4.12	1.56	0.70	X	X	х
Z1	325.11	162.05	107.70	х	Х	Х
Z2	501.14	250.07	166.37	х	Х	Х
Z3	822.12	410.56	273.37	х	Х	Х
Z4	998.15	498.57	332.05	X	Х	X
Z5	1319.14	659.06	439.04	X	X	X

Supplementary Table 31. CCS of B, Y, C and Z (-SO₃) ions identified in a hexa-saccharide structure (R_1 292 is (CH₂)₅NH₂).

¹Columns represent different charge states.

² Each CCS is an average of independent measurements with the corresponding standard deviation

#17						
	GlcNAc68	S-[G-GlcNA	$(6S]_2-G-R_2$	2		
	- 1 SO ₃	- 1 SO ₃	- 1 SO ₃	- 1SO ₃	- 1SO ₃	- 1SO ₃
	$(1-)^1$	(2-)	(3-)	(1-)	(2-)	(3-)
B1	202.07	100.53	66.69	Х	Х	Х
B2	378.10	188.55	125.36	111.4 (0.2)	Х	Х
B3	661.14	330.07	219.71	160.1 (0.7)	Х	Х
B4	837.17	418.08	278.39	Х	Х	Х
B5	1120.21	559.60	372.73	Х	214.1 (0.7)	Х
B6	1296.24	647.62	431.41	Х	234.0 (0.4)	Х
Y0	42.08	20.54	13.35	X	Х	Х
Y1	219.12	109.06	72.37	Х	Х	Х
Y2	502.16	250.57	166.71	Х	Х	Х
Y3	678.19	338.59	225.39	Х	Х	Х
Y4	961.22	480.11	319.74	Х	Х	Х
Y5	1137.26	568.12	378.41	Х	Х	Х
C1	220.08	109.54	72.69	Х	Х	Х
C2	396.11	197.55	131.37	х	х	Х
C3	679.15	339.07	225.71	Х	х	Х
C4	855.18	427.09	284.39	Х	Х	Х
C5	1138.22	568.61	378.73	Х	Х	Х
C6	1314.25	656.62	437.41	Х	Х	Х
Z0	25.08	12.03	7.69	Х	Х	Х
Z1	201.11	100.05	66.36	Х	х	Х
Z2	484.15	241.57	160.71	X	X	X
Z3	660.18	329.58	219.39	х	Х	Х
Z4	943.21	471.10	313.73	х	Х	Х
Z5	1119.25	559.12	372.41	X	X	X

Supplementary Table 32. CCS of B, Y, C and Z (-SO₃) ions identified in a hexa-saccharide GlcNAc6S [G-GlcNAc6S]₂-G-R₂ structure, where R₂ is C₇H₇O.

300

301 ¹ Columns represent different charge states.

 2 Each CCS is an average of independent measurements with the corresponding standard deviation

303

#18						
GlcNAc6S-[I-GlcNAc6S]	2 -I-R 2				
	- 1SO ₃	- 1 SO ₃	- 1SO ₃	- 1SO ₃	- 1SO ₃	- 1SO3
	$(1-)^1$	(2-)	(3-)	(1-)	(2-)	(3-)
B1	202.07	100.53	66.69	х	Х	Х
B2	378.10	188.55	125.36	112.5 (0.1)	Х	х
B3	661.14	330.07	219.71	157.7 (0.3)	х	х
B4	837.17	418.08	278.39	х	179.8 (0.9)	х
B5	1120.21	559.60	372.73	х	215.6 (0.2)	х
B6	1296.24	647.62	431.41	Х	237.8 (0.4)	Х
Y0	42.08	20.54	13.35	X	X	X
Y1	219.12	109.06	72.37	х	х	х
Y2	502.16	250.57	166.71	х	х	х
Y3	678.19	338.59	225.39	х	х	х
Y4	961.22	480.11	319.74	х	х	х
Y5	1137.26	568.12	378.41	х	Х	Х
C1	220.08	109.54	72.69	X	Х	X
C2	396.11	197.55	131.37	Х	Х	х
C3	679.15	339.07	225.71	х	х	х
C4	855.18	427.09	284.39	х	х	х
C5	1138.22	568.61	378.73	Х	Х	х
C6	1314.25	656.62	437.41	х	Х	Х
Z0	25.08	12.03	7.69	X	Х	Х
Z1	201.11	100.05	66.36	х	Х	Х
Z2	484.15	241.57	160.71	X	X	X
Z3	660.18	329.58	219.39	X	X	Х
Z4	943.21	471.10	313.73	X	X	Х
Z5	1119.25	559.12	372.41	x	X	x

Supplementary Table 33. CCS of B, Y, C and Z (-SO₃) ions identified in a hexa-saccharide GlcNAc6S [I-GlcNAc6S]₂-I-R₂ structure, where R₂ is C₇H₇O.

308 ¹ Columns represent different charge states.

 2 Each CCS is an average of independent measurements with the corresponding standard deviation

313	Supplementary Table 34.	CCS of B, Y, C and Z (-SO ₃) ions identified in an octa-saccharide Gl	cNAc6S-

•
)

#19						
Gle	cNAc6S-[I-G	lcNAc6S] ₃ -I	- R ₂			
	- 1SO ₃	- 1SO ₃	- 1SO ₃	- 1SO ₃	- 1SO ₃	- 1SO ₃
	$(1-)^1$	(2-)	(3-)	(1-)	(2-)	(3-)
B1	202.07	100.53	66.69	Х	Х	Х
B2	378.10	188.55	125.36	$112.0 (0.3)^2$	Х	Х
B3	661.14	330.07	219.71	158.2 (0.2)	Х	Х
B4	837.17	418.08	278.39	Х	Х	Х
B5	1120.21	559.60	372.73	Х	216.3 (0.7)	Х
B6	1296.24	647.62	431.41	Х	Х	Х
B7	1579.28	789.13	525.75	Х	Х	Х
B8	1755.31	877.15	584.43	Х	Х	
Y0	42.08	20.54	13.35	Х	Х	Х
Y1	219.12	109.06	72.37	Х	Х	Х
Y2	502.16	250.57	166.71	Х	Х	Х
Y3	678.19	338.59	225.39	Х	Х	Х
Y4	961.22	480.11	319.74	Х	Х	Х
Y5	1137.26	568.12	378.41	Х	Х	Х
Y6	1420.29	709.64	472.76	Х	Х	Х
Y7	1596.32	797.66	531.44	Х	Х	Х
C1	220.08	109.54	72.69	Х	Х	Х
C2	396.11	197.55	131.37	Х	Х	Х
C3	679.15	339.07	225.71	Х	Х	Х
C4	855.18	427.09	284.39	Х	Х	Х
C5	1138.22	568.61	378.73	Х	Х	Х
C6	1314.25	656.62	437.41	Х	Х	Х
C7	1597.29	798.14	531.76	Х	Х	Х
C8	1773.32	886.16	590.43	Х	Х	Х
ZO	25.08	12.03	7.69	X	х	Х
Z1	201.11	100.05	66.36	X	Х	Х
Z2	484.15	241.57	160.71	Х	Х	Х
Z3	660.18	329.58	219.39	Х	Х	Х
Z4	943.21	471.10	313.73	Х	Х	Х
Z5	1119.25	559.12	372.41	Х	Х	Х
Z6	1402.28	700.64	466.76	Х	Х	Х
Z7	1578.31	788.65	525.43	Х	Х	Х

¹ Columns represent different charge states. ² Each CCS is an average of independent measurements with the corresponding standard deviation

#20						
Gl	cNAc6S-[G-0	GlcNAc6S]3-	G-R ₂			
	- 1SO ₃	- 1 SO ₃	- 1 SO ₃	- 1SO ₃	- 1SO ₃	- 1SO ₃
	$(1-)^1$	(2-)	(3-)	(1-)	(2-)	(3-)
B1	202.07	100.53	66.69	х	Х	Х
B2	378.10	188.55	125.36	$111.5(0.1)^2$	х	Х
B3	661.14	330.07	219.71	160.4 (0.2)	Х	Х
B4	837.17	418.08	278.39	Х	185.4 (0.4)	Х
B5	1120.21	559.60	372.73	Х	214.9 (0.8)	Х
B6	1296.24	647.62	431.41	Х	Х	Х
B7	1579.28	789.13	525.75	Х	Х	Х
B8	1755.31	877.15	584.43	Х	Х	Х
Y0	42.08	20.54	13.35	X	Х	Х
Y1	219.12	109.06	72.37	Х	Х	X
Y2	502.16	250.57	166.71	Х	X	Х
Y3	678.19	338.59	225.39	Х	Х	Х
Y4	961.22	480.11	319.74	Х	199.7 (0.18)	Х
Y5	1137.26	568.12	378.41	Х	216.2 (0.1)	Х
Y6	1420.29	709.64	472.76	Х	Х	Х
Y7	1596.32	797.66	531.44	X	Х	Х
C1	220.08	109.54	72.69	X	Х	X
C2	396.11	197.55	131.37	Х	Х	Х
C3	679.15	339.07	225.71	х	Х	Х
C4	855.18	427.09	284.39	Х	Х	Х
C5	1138.22	568.61	378.73	Х	Х	Х
C6	1314.25	656.62	437.41	Х	Х	Х
C7	1597.29	798.14	531.76	Х	Х	Х
C8	1773.32	886.16	590.43	Х	Х	Х
Z0	25.08	12.03	7.69	X	Х	Х
Z1	201.11	100.05	66.36	Х	Х	Х
Z2	484.15	241.57	160.71	Х	Х	Х
Z3	660.18	329.58	219.39	X	X	Х
Z4	943.21	471.10	313.73	X	X	Х
Z5	1119.25	559.12	372.41	Х	Х	Х
Z6	1402.28	700.64	466.76	Х	Х	Х
Z7	1578.31	788.65	525.43	х	X	x

Supplementary Table 35. CCS of B, Y, C and Z (-SO₃) ions identified in an octa-saccharide GlcNAc6S-

318 $[G-GlcNAc6S]_3$ -G-R₂ structure, where R₂ is C₇H₇O.

¹ Columns represent different charge states.

#21						
(GlcNAc6S-G-	-GlcNac6S-C	G-GlcNAc6S	I-GlcNAc6S-I	-R ₂	
	- 1SO ₃	- 1SO3				
	$(1-)^1$	(2-)	(3-)	$(1-)^1$	(2-)	(3-)
B1	202.07	100.53	66.69	69 X X		Х
B2	378.10	188.55	125.36	$112.3 (0.3)^2$	Х	Х
B3	661.14	330.07	219.71	х	Х	Х
B4	837.17	418.08	278.39	х	Х	Х
B5	1120.21	559.60	372.73	х	213.8 (0.1)	Х
B6	1296.24	647.62	431.41	х	Х	Х
B7	1579.28	789.13	525.75	Х	Х	Х
B8	1755.31	877.15	584.43	Х	Х	Х
Y0	42.08 20.54		13.35	Х	Х	Х
Y1	219.12	109.06	72.37	х	Х	Х
Y2	502.16 250.57		166.71	Х	Х	Х
Y3	678.19	338.59	225.39	Х	Х	Х
Y4	961.22	480.11	319.74	Х	Х	Х
Y5	1137.26	568.12	378.41	Х	Х	Х
Y6	1420.29	709.64	472.76	Х	Х	Х
Y7	1596.32	797.66	531.44	Х	X X	
C1	220.08	109.54	72.69	Х	Х	Х
C2	396.11	197.55	131.37	х	Х	Х
C3	679.15	339.07	225.71	Х	Х	Х
C4	855.18	427.09	284.39	х	Х	х
C5	1138.22	568.61	378.73	х	Х	х
C6	1314.25	656.62	437.41	Х	Х	Х
C7	1597.29	798.14	531.76	Х	Х	Х
C8	1773.32	886.16	590.43	Х	Х	Х
Z0	25.08	12.03	7.69	X	Х	X
Z1	201.11	100.05	66.36	х	Х	Х
Z2	484.15	241.57	160.71	х	Х	х
Z3	660.18	329.58	219.39	х	Х	Х
Z4	943.21	471.10	313.73	X	X	Х
Z5	1119.25	559.12	372.41	Х	Х	Х
Z6	1402.28	700.64	466.76	X	Х	X
Z7	1578.31	788.65	525.43	X	Х	Х

Supplementary Table 36. CCS of B, Y, C and Z (-SO₃) ions identified in an octa-saccharide GlcNAc6S G-GlcNac6S-G-GlcNAc6S-I-GlcNAc6S-I-R₂ structure, where R₂ is C₇H₇O.

¹ Columns represent different charge states.

#22						
(GlcNAc6S-G	-GlcNac6S-I	-GlcNAc6S-	I-GlcNAc6S-C	b - R ₂	
	- 1SO ₃	- 1SO ₃				
	$(1-)^1$	(2-)	(3-)	$(1-)^1$	(2-)	(3-)
B1	202.07	100.53	66.69	Х	Х	Х
B2	378.10	188.55	125.36	$112.9 (0.6)^2$	Х	Х
B3	661.14	330.07	219.71	159.6 (0.5)	Х	Х
B4	837.17	418.08	278.39	Х	Х	Х
B5	1120.21	559.60	372.73	Х	216.3 (0.33)	Х
B6	1296.24	647.62	431.41	Х	Х	Х
B7	1579.28	789.13	525.75	Х	Х	Х
B8	1755.31	877.15	584.43	Х	Х	308.6 (0.5)
Y0	42.08	20.54	13.35	Х	Х	х
Y1	219.12	109.06	72.37	х	Х	Х
Y2	502.16	250.57	166.71	х	Х	Х
Y3	678.19	338.59	225.39	х	Х	Х
Y4	961.22	480.11	319.74	х	Х	х
Y5	1137.26	568.12	378.41	х	Х	Х
Y6	1420.29	709.64	472.76	Х	Х	Х
Y7	1596.32	797.66	531.44	Х	Х	Х
C1	220.08	109.54	72.69	Х	X	x
C2	396.11	197.55	131.37	х	Х	х
C3	679.15	339.07	225.71	х	Х	Х
C4	855.18	427.09	284.39	х	Х	х
C5	1138.22	568.61	378.73	х	Х	Х
C6	1314.25	656.62	437.41	Х	Х	Х
C7	1597.29	798.14	531.76	Х	Х	Х
C8	1773.32	886.16	590.43	Х	Х	Х
Z0	25.08	12.03	7.69	Х	Х	Х
Z1	201.11	100.05	66.36	Х	Х	X
Z2	484.15	241.57	160.71	Х	Х	Х
Z3	660.18	329.58	219.39	х	X	X
Z4	943.21	471.10	313.73	X	X	X
Z5	1119.25	559.12	372.41	X	X	X
Z6	1402.28	700.64	466.76	X	X	X
Z7	1578.31	788.65	525.43	Х	Х	х

Supplementary Table 37. CCS of B, Y, C and Z (-SO₃) ions identified in an octa-saccharide GlcNAc6S G-GlcNac6S-I-GlcNAc6S-G-R₂ structure, where R₂ is C₇H₇O.

¹ Columns represent different charge states.

#23						
	GlcNAc6S-I	-GlcNAc6S-	G-GlcNAc6S	-I-GlcNAc6S-	G-R ₂	
	- 1 SO ₃	- 1 SO ₃	- 1 SO ₃	- 1SO ₃	- 1SO3	- 1SO ₃
	$(1-)^1$	(2-)	(3-)	(1-) ¹	(2-)	(3-)
B1	202.07	100.53	66.69	Х	Х	Х
B2	378.10	188.55	125.36	$112.1 (0.3)^2$	Х	Х
B3	661.14	330.07	219.71	157.8 (0.2)	Х	Х
B4	837.17	418.08	278.39	Х	Х	Х
B5	1120.21	559.60	372.73	Х	215.1 (0.11)	Х
B6	1296.24	647.62	431.41	Х	Х	Х
B7	1579.28	789.13	525.75	Х	Х	Х
B8	1755.31	877.15	584.43	Х	Х	Х
Y0	42.08	20.54	13.35	X	Х	х
Y1	219.12	109.06	72.37	х	Х	Х
Y2	502.16	250.57	166.71	х	Х	Х
Y3	678.19	338.59	225.39	х	Х	Х
Y4	961.22	480.11	319.74	х	Х	Х
Y5	1137.26	568.12	378.41	Х	Х	Х
Y6	1420.29	709.64	472.76	Х	Х	Х
Y7	1596.32	797.66	531.44	Х	Х	Х
C1	220.08	109.54	72.69	X	Х	Х
C2	396.11	197.55	131.37	х	Х	Х
C3	679.15	339.07	225.71	х	Х	Х
C4	855.18	427.09	284.39	х	Х	Х
C5	1138.22	568.61	378.73	х	Х	Х
C6	1314.25	656.62	437.41	Х	Х	Х
C7	1597.29	798.14	531.76	X	X	X
C8	1773.32	886.16	590.43	X	Х	X
Z0	25.08	12.03	7.69	X	X	Х
Z1	201.11	100.05	66.36	х	X	Х
Z2	484.15	241.57	160.71	х	Х	Х
Z3	660.18	329.58	219.39	х	Х	Х
Z4	943.21	471.10	313.73	Х	Х	Х
Z5	1119.25	559.12	372.41	х	Х	Х
Z6	1402.28	700.64	466.76	Х	Х	Х
Z7	1578.31	788.65	525.43	X	X	Х

Supplementary Table 38. CCS of B, Y, C and Z (-SO₃) ions identified in an octa-saccharide GlcNAc6S I-GlcNAc6S-G-GlcNAc6S-I-GlcNAc6S-G-R₂ structure, where R₂ is C₇H₇O.

¹ Columns represent different charge states.

#24						
	GlcNAc6S-C	GlcNAc6S-	I-GlcNAc6S	-G-GlcNAc6S-	I- R ₂	
	- 1SO ₃	- 1SO ₃				
	$(1-)^1$	(2-)	(3-)	(1-)	(2-)	(3-)
B1	202.07	100.53	66.69	Х	х	Х
B2	378.10	188.55	125.36	111.64 (0.2)	Х	Х
B3	661.14	330.07	219.71	Х	Х	Х
B4	837.17	418.08	278.39	Х	Х	Х
B5	1120.21	559.60	372.73	Х	215.7 (0.6)	Х
B6	1296.24	647.62	431.41	Х	Х	Х
B7	1579.28	789.13	525.75	Х	Х	Х
B8	1755.31	877.15	584.43	Х	Х	Х
Y0	42.08	20.54	13.35	Х	Х	Х
Y1	219.12	109.06	72.37	Х	х	х
Y2	502.16	250.57	166.71	Х	Х	х
Y3	678.19	338.59	225.39	х	х	Х
Y4	961.22	480.11	319.74	х	х	Х
Y5	1137.26	568.12	378.41	Х	Х	Х
Y6	1420.29	709.64	472.76	Х	Х	Х
Y7	1596.32	797.66	531.44	Х	Х	Х
C1	220.08	109.54	72.69	Х	Х	Х
C2	396.11	197.55	131.37	Х	х	х
C3	679.15	339.07	225.71	х	х	Х
C4	855.18	427.09	284.39	Х	Х	х
C5	1138.22	568.61	378.73	Х	Х	Х
C6	1314.25	656.62	437.41	Х	Х	Х
C7	1597.29	798.14	531.76	Х	Х	Х
C8	1773.32	886.16	590.43	х	Х	Х
ZO	25.08	12.03	7.69	X	X	X
Z1	201.11	100.05	66.36	Х	х	х
Z2	484.15	241.57	160.71	Х	х	Х
Z3	660.18	329.58	219.39	Х	х	Х
Z4	943.21	471.10	313.73	X	Х	Х
Z5	1119.25	559.12	372.41	X	X	X
Z6	1402.28	700.64	466.76	X	X	X
Z7	1578.31	788.65	525.43	X	X	X

Supplementary Table 39. CCS of B, Y, C and Z (-SO₃) ions identified in an octa-saccharide GlcNAc6S G-GlcNAc6S-I-GlcNAc6S-G-GlcNAc6S-I-R₂ structure, where R₂ is C₇H₇O.

¹ Columns represent different charge states.

#25						
G-GlcN	NS-G-GlcNS-	-I-GlcNS-G-Glc	NS-G-R ₃			
	- 1SO ₃	- 1SO ₃	- 1SO ₃			
	$(1-)^1$	(2-)	(3-)	(1-)	(2-)	(3-)
B1	95.07	47.03	31.02	х	Х	х
B2	336.09	167.54	111.36	х	Х	х
B3	512.13	255.56	170.04	$132.30(0.5)^2$	Х	х
B4	753.15	376.07	250.38	х	Х	Х
B5	929.18	464.09	309.06	х	Х	Х
B6	1170.21	584.60	389.40	Х	227.58 (0.2)	х
B7	1346.24	672.62	448.07	Х	Х	Х
B8	1587.27	793.13	528.42	Х	Х	Х
B9	1763.30	881.15	587.09	Х	Х	Х
Y0	58.06	28.53	18.68	х	Х	х
Y1	234.09	116.54	77.36	х	Х	Х
Y2	475.12	237.06	157.70	х	Х	Х
Y3	651.15	325.07	216.38	х	Х	Х
Y4	892.18	445.58	296.72	Х	Х	Х
Y5	1068.21	533.60	355.40	Х	Х	Х
Y6	1309.24	654.11	435.74	Х	Х	Х
Y7	1485.27	742.13	494.42	х	Х	х
Y8	1726.29	862.64	574.76	х	Х	Х
C1	112.07	55.53	36.68	x	Х	Х
C2	353.10	176.04	117.03	х	Х	х
C3	529.13	264.06	175.70	х	Х	Х
C4	770.15	384.57	256.05	х	Х	х
C5	946.19	472.59	314.72	х	Х	Х
C6	1187.21	593.10	395.07	Х	Х	Х
C7	1363.24	681.12	453.74	х	Х	Х
C8	1604.27	801.63	534.08	Х	Х	Х
C9	1780.30	889.65	592.76	Х	Х	Х
ZO	40.05	19.52	12.68	X	Х	Х
Z1	216.08	107.54	71.36	x	X	х
Z2	457.11	228.05	151.70	х	Х	х
Z3	633.14	316.07	210.38	х	Х	х
Z4	874.17	436.58	290.72	х	Х	х
Z5	1050.20	524.60	349.39	х	Х	х
Z6	1291.22	645.11	429.74	x	Х	х
Z7	1467.26	733.12	488.41	X	Х	Х

Supplementary Table 40. CCS of B, Y, C and Z (-SO₃) ions identified in a 9mer, G-GlcNS-G-GlcNS-I-GlcNS-G-GlcNS-G-R₃ structure, where R_3 is $C_6H_4NO_2$.

	Z8	1708.28	853.64	568.76	Х	Х	х			
339				· · · · · · · · · · · · · · · · · · ·						
340	¹ Columns represent different charge states.									
341	² Each CCS is an average of independent measurements with the corresponding standard deviation									
342										
343										
344										
345										
346										
347										
348										
349										
350										

351	Supplementary Table 41. CCS of B, Y, C and Z (-SO ₃) ions identified in a dp9 + 1x2O-sulfate, G-
352	GlcNS-G-GlcNS-I2S-GlcNS-G-GlcNS-G-R ₃ structure, where R ₃ is C ₆ H ₄ NO ₂ .

#26						
G-GlcNS	-G-GlcNS-I2	S-GlcNS-G-G	lcNS-G-R ₃			
	- 1 SO ₃	- 1 SO ₃	- 1SO3	- 1SO3	- 1SO ₃	- 1SO3
	$(1-)^1$	(2-)	(3-)	(1-)	(2-)	(3-)
B1	95.07 47.03		31.02	X	Х	Х
B2	336.09	167.54	111.36	X	Х	Х
B3	512.13	255.56	170.04	$131.6 (0.5)^2$	Х	Х
B4	753.15	376.07	250.38	Х	Х	Х
B5	1009.14	504.07	335.71	х	234.21 (0.2)	Х
B6	1250.17	624.58	416.05	х	Х	Х
B7	1426.20	712.59	474.73	Х	Х	Х
B8	1667.22	833.11	555.07	х	Х	Х
B9	1843.25	921.12	613.75	X	Х	Х
Y0	58.06	28.53	18.68	Х	Х	x
Y1	234.09	116.54	77.36	X	Х	х
Y2	475.12	237.06	157.70	X	Х	Х
Y3	651.15	325.07	216.38	Х	Х	х
Y4	892.18	445.58	296.72	X	Х	Х
Y5	1148.17	573.58	382.05	х	Х	Х
Y6	1389.19	694.09	462.39	x	Х	Х
Y7	1565.22	782.11	521.07	x	Х	Х
Y8	1806.25	902.62	601.41	x	Х	Х
C1	112.07	55.53	36.68	X	Х	Х
C2	353.10	176.04	117.03	x	Х	Х
C3	529.13	264.06	175.70	x	Х	Х
C4	770.15	384.57	256.05	x	Х	Х
C5	1026.14	512.57	341.38	x	Х	Х
C6	1267.17	633.08	421.72	X	Х	x
C7	1443.20	721.10	480.39	X	Х	x
C8	1684.23	841.61	560.74	X	Х	x
C9	1860.26	929.62	619.41	Х	Х	Х
Z0	40.05	19.52	12.68	x	Х	Х
Z1	216.08	107.54	71.36	x	Х	Х
Z2	457.11	228.05	151.70	x	X	х
Z3	633.14	316.07	210.38	x	Х	х
Z4	874.17	436.58	290.72	x	Х	х
Z5	1130.16	564.57	376.05	x	Х	х
Z6	1371.18	685.09	456.39	x	Х	х
Z7	1547.21	773.10	515.07	х	Х	Х

	Z8	1788.24	893.62	595.41	Х	х	х
353							

- 354 ¹ Columns represent different charge states.
- 2 Each CCS is an average of independent measurements with the corresponding standard deviation

#27								
	GlcNAd	c6S-[I-GlcNAc	:6S] ₄ -I-R ₂					
	- 1 SO ₃	- 1 SO ₃	- 1SO ₃	- 1SO ₃	- 1 SO ₃	- 1SO ₃	- 1SO ₃	- 1SO ₃
	$(1-)^1$	(2-)	(3-)	(4-)	(1-)	(2-)	(3-)	(4-)
B1	202.07	100.53	66.69	49.76	Х	Х	Х	Х
B2	378.10	188.55	125.36	93.77	$112.38(0.2)^2$	Х	Х	Х
B3	661.14	330.07	219.71	164.53	Х	167.6 (0.5)	Х	Х
B4	837.17	418.08	278.39	208.54	Х	Х	Х	Х
B5	1120.21	559.60	372.73	279.30	Х	215.7 (0.2)	255.5 (0.4)	Х
B6	1296.24	647.62	431.41	323.30	Х	Х	283.0 (0.5)	Х
B7	1579.28	789.13	525.75	394.06	Х	Х	Х	Х
B8	1755.31	877.15	584.43	438.07	Х	Х	Х	Х
B9	2038.34	1018.67	678.78	508.83	Х	Х	Х	Х
B10	2214.38	1106.68	737.45	552.84	Х	Х	Х	Х
Y0	43.09	21.04	13.69	10.02	x	X	Х	X
Y1	219.12	109.06	72.37	54.02	Х	Х	Х	Х
Y2	502.16	250.57	166.71	124.78	Х	Х	Х	Х
Y3	678.19	338.59	225.39	168.79	Х	Х	Х	Х
Y4	961.22	480.11	319.74	239.55	Х	Х	Х	Х
Y5	1137.26	568.12	378.41	283.56	Х	Х	Х	Х
Y6	1420.29	709.64	472.76	354.32	Х	Х	Х	Х
Y7	1596.32	797.66	531.44	398.33	Х	Х	Х	Х
Y8	1879.36	939.18	625.78	469.08	Х	Х	Х	Х
Y9	2055.39	1027.19	684.46	513.09	Х	Х	Х	X
C1	220.08	109.54	72.69	54.26	Х	Х	Х	Х
C2	396.11	197.55	131.37	98.27	Х	Х	Х	Х
C3	679.15	339.07	225.71	169.03	Х	Х	Х	Х
C4	855.18	427.09	284.39	213.04	Х	Х	Х	Х
C5	1138.22	568.61	378.73	283.80	X	X	X	Х

Supplementary Table 42. CCS of B, Y, C and Z (-SO₃) ions identified in a dp10 GlcNAc6S-[I-GlcNAc6S]₄-I-R₂ structure, where R₂ is C₇H₇O.

C6	1314.25	656.62	437.41	327.81	Х	Х	Х	Х
C7	1597.29	798.14	531.76	398.57	Х	Х	Х	Х
C8	1773.32	886.16	590.43	442.57	Х	Х	Х	Х
C9	2056.35	1027.67	684.78	513.33	Х	Х	Х	Х
C10	2232.39	1115.69	743.46	557.34	Х	Х	Х	Х
Z0	25.08	12.03	7.69	5.51	Х	Х	Х	Х
Z1	201.11	100.05	66.36	49.52	Х	Х	Х	Х
Z2	484.15	241.57	160.71	120.28	Х	Х	Х	Х
Z3	660.18	329.58	219.39	164.29	Х	Х	Х	Х
Z4	943.21	471.10	313.73	235.05	Х	Х	Х	Х
Z5	1119.25	559.12	372.41	279.06	Х	Х	Х	Х
Z6	1402.28	700.64	466.76	349.81	Х	Х	Х	Х
Z7	1578.31	788.65	525.43	393.82	Х	Х	Х	Х
Z8	1861.35	930.17	619.78	464.58	Х	Х	Х	Х
Z9	2037.38	1018.19	678.46	508.59	Х	Х	Х	Х

¹ Columns represent different charge states.

#28								
	GlcNAc6S	G-[G-GlcNAc6S]]4-G-R ₂					
	$(1-)^1$	(2-)	(3-)	(4-)	(1-)	(2-)	(3-)	(4-)
B1	202.07	100.53	66.69	49.76	х	Х	Х	Х
B2	378.10	188.55	125.36	93.77	$111.3 (0.2)^2$	Х	Х	Х
B3	661.14	330.07	219.71	164.53	159.9 (0.2)	Х	Х	Х
B4	837.17	418.08	278.39	208.54	Х	Х	Х	Х
B5	1120.21	559.60	372.73	279.30	Х	214.4 (0.8)	Х	Х
B6	1296.24	647.62	431.41	323.30	Х	Х	Х	Х
B7	1579.28	789.13	525.75	394.06	Х	Х	300.8 (0.5)	Х
B8	1755.31	877.15	584.43	438.07	X	х	x	х
B9	2038.34	1018.67	678.78	508.83	Х	Х	Х	Х
B10	2214.38	1106.68	737.45	552.84	Х	Х	X	Х
Y0	43.09	21.04	13.69	10.02	X	X	X	Х
Y1	219.12	109.06	72.37	54.02	х	х	х	х
Y2	502.16	250.57	166.71	124.78	Х	Х	X	Х
Y3	678.19	338.59	225.39	168.79	Х	Х	Х	Х
Y4	961.22	480.11	319.74	239.55	Х	Х	Х	Х
Y5	1137.26	568.12	378.41	283.56	Х	Х	Х	Х
Y6	1420.29	709.64	472.76	354.32	Х	Х	Х	Х
Y7	1596.32	797.66	531.44	398.33	Х	х	х	х
Y8	1879.36	939.18	625.78	469.08	Х	Х	Х	Х
Y9	2055.39	1027.19	684.46	513.09	x	x	x	x
C1	220.08	109 54	72 69	54.26	x	x	x	x
C2	396.11	197 55	131.37	98.27	x	x	x	x
C3	679.15	339.07	225.71	169.03	X	X	X	X
C4	855.18	427.09	284.39	213.04	X	Х	X	Х
C5	1138.22	568.61	378.73	283.80	х	Х	x	Х

Supplementary Table 43. CCS of B, Y, C and Z (-SO₃) ions identified in a dp10 GlcNAc6S-[G-GlcNAc6S]₄-G-R₂ structure, where R₂ is C₇H₇O.

C6	1314.25	656.62	437.41	327.81	Х	Х	Х	Х
C7	1597.29	798.14	531.76	398.57	х	х	Х	Х
C8	1773.32	886.16	590.43	442.57	Х	Х	Х	Х
C9	2056.35	1027.67	684.78	513.33	Х	Х	Х	Х
C10	2232.39	1115.69	743.46	557.34	Х	X	Х	Х
ZO	25.08	12.03	7.69	5.51	Х	X	Х	Х
Z1	201.11	100.05	66.36	49.52	Х	Х	Х	Х
Z2	484.15	241.57	160.71	120.28	Х	Х	Х	Х
Z3	660.18	329.58	219.39	164.29	Х	Х	Х	Х
Z4	943.21	471.10	313.73	235.05	х	Х	Х	Х
Z5	1119.25	559.12	372.41	279.06	Х	Х	Х	Х
Z6	1402.28	700.64	466.76	349.81	х	х	Х	Х
Z7	1578.31	788.65	525.43	393.82	Х	X	Х	X
Z8	1861.35	930.17	619.78	464.58	Х	X	Х	X
Z9	2037.38	1018.19	678.46	508.59	Х	X	Х	X

362 ¹ Columns represent different charge states.

 2 Each CCS is an average of independent measurements with the corresponding standard deviation

- **Supplementary Table 44.** CCS of B, Y, C and Z -SO₃ ions identified in disaccharide Δ UA2S-
- 370 GlcNS3S6S structure.

#29				
ΔUA	A2S-GlcNS3S6	S		
	- 1 SO ₃	- 1SO ₃	- 1SO ₃	- 1 SO ₃
	$(1-)^1$	(2-)	(1-)	(2-)
B1	157.01	78.00	$69.4 (0.1)^2$	Х
Y0	337.99	168.49	Х	106 (0.5)
C1	175.02	87.01	Х	Х
Z0	319.97	159.48	х	х

- ¹ Columns represent different charge states.
- ² Each CCS is an average of independent measurements with the corresponding standard deviation

374

Supplementary Table 45. CCS of B, Y, C and Z -SO₃ ions identified in tetraaccharide Δ UA-GlcNS-

377 IdoA2S-GlcNS3S structure.

#30				
ΔUA-				
	- 1SO ₃	- 1SO ₃	- 1SO ₃	- 1SO ₃
	$(1-)^1$	(2-)	(1-)	(2-)
B1	77.06	38.02	Х	Х
B2	318.08	158.54	99.5 $(0.5)^2$	Х
B3	574.07	286.53	141.4 (0.1)	150.5 (0.1)
Y0	258.03	128.51	85.3 (0.1)	Х
Y1	514.02	256.50	Х	133.0 (0.5)
Y2	755.04	377.02	Х	172.8 (0.1)
C1	95.07	47.03	Х	Х
C2	336.09	167.54	X	X
C3	592.08	295.54	X	148.5 (0.4)

378

¹ Columns represent different charge states.

 2 Each CCS is an average of independent measurements with the corresponding standard deviation

381
Supplementary Table 46. CCS of B, Y, C and Z -SO₃ ions identified in tetrasaccharide Δ UA-GlcNS6S-

384 GlcA-GlcNS3S6S structure.

#31				
UA-GlcNS6	5S-G-GlcN	S3S6S		
	- 1SO ₃	- 1 SO ₃	- 1SO ₃	- 1SO ₃
	$(1-)^1$	(2-)	(1-)	(2-)
B1	77.06	38.02	Х	Х
B2	398.04	198.52	Х	Х
B3	574.07	286.53	$140.9 (0.5)^2$	151.1 (0.3)
YO	337.99	168.49	X	105.8 (0.3)
Y1	514.02	256.50	Х	133.5 (0.5)
Y2	835.00	417.00	Х	Х
C1	95.07	47.03	X	X
C2	416.05	207.52	Х	Х
C3	592.08	295.54	133.5 (0.5)	Х
Z0	319.97	159.48	X	X
Z1	496.01	247.50	Х	Х
Z2	816.99	407.99	Х	Х

385

386 ¹ Columns represent different charge states.

 2 Each CCS is an average of independent measurements with the corresponding standard deviation

388

Supplementary Table 47. CCS of B, Y, C and Z -SO₃ ions identified in tetrasaccharide Δ UA-

391 GlcNAc6S-GlcA-GlcNS3S6S structure.

#32				
ΔUA- (
	- 1SO ₃	- 1 SO ₃	- 1SO ₃	- 1SO ₃
	$(1-)^1$	(2-)	(1-)	(2-)
B1	77.06	38.02	Х	х
B2	360.09	179.54	Х	х
B3	536.13	267.56	$136.7 (0.2)^2$	х
Y0	337.99	168.49	X	X
Y1	514.02	256.50	х	х
Y2	797.05	398.02	Х	Х
C1	05.07	47.02		
CI	95.07	47.03	X	X
C2	378.10	188.55	X	Х
C3	554.14	276.56	138.13 (0.2)	Х
ZO	319.97	159.48	Х	Х
Z1	496.01	247.50	Х	х
Z2	779.04	389.02	Х	х

392

¹Columns represent different charge states.

 2 Each CCS is an average of independent measurements with the corresponding standard deviation

Supplementary Table 48. CCS of B, Y, C and Z (-SO₃) ions identified in a hexasaccharide G-GlcNS6S-G-GlcNS6S-I2S-GlcNS6S-R₁ structure, where R_1 is (CH₂)₅NH₂.

#33						
G-GlcNS6	S-G-GlcNS	6S-I2S-Glo	NS6S-R ₁			
	- 1SO3	- 1SO3	- 1SO3	- 1SO3	- 1SO3	- 1 SO ₃
	$(1-)^1$	(2-)	(3-)	(1-)	(2-)	(3-)
B1	95.07	47.03	31.02	Х	Х	х
B2	416.05	207.52	138.01	х	$122.2 (0.6)^2$	х
B3	592.08	295.54	196.69	Х	152.5 (0.2)	Х
B4	913.06	456.03	303.68	Х	Х	216.5 (0.3)
B5	1169.05	584.02	389.01	Х	Х	Х
B6	1490.04	744.51	496.01	х	Х	х
YO	22.14	10.56	671	x	x	x
Y1	343.12	171.05	113.70	109.1 (0.3)	x	x
Y2	599.11	299.05	199.03	X	157.0 (0.2)	X
Y3	920.09	459.54	306.02	Х	X	Х
Y4	1096.12	547.56	364.70	х	Х	246.3 (0.6)
Y5	1417.10	708.05	471.70	Х	Х	Х
C1	112.08	56.04	37.02	v	v	v
C^2	134.06	216.53	144.01	X	X	X
C2	610.00	304 54	202.69	x	X V	x x
C4	931.07	465.03	309.69	x	X	x
C5	1187.06	593.03	395.02	x	x	x
C6	1508.05	753 52	502.01	x	x	x
	1000.00	100102	002.01			
ZO	4.12	1.56	0.70	X	Х	X
Z1	325.11	162.05	107.70	Х	Х	Х
Z2	581.10	290.04	193.03	Х	Х	Х
Z3	902.08	450.54	300.02	х	Х	х
Z4	1078.11	538.55	358.70	x	X	x
Z5	1399.09	699.04	465.69	Х	Х	х

¹ Columns represent different charge states.

² Each CCS is an average of independent measurements with the corresponding standard deviation

Supplementary Table 49. CCS of B, Y, C and Z (-SO₃) ions identified in a hexasaccharide G-GlcNS6S-G-GlcNS3S-I2S-GlcNS6S-R₁ structure, where R_1 is (CH₂)₅NH₂.

#34						
G-GlcNS6S	-G-GlcNS3S-	I2S-GlcNS6S	-R ₁			
	- 1SO3	- 1SO ₃	- 1SO3	- 1SO3	- 1 SO ₃	- 1 SO 3
	$(1-)^1$	(2-)	(3-)	(1-)	(2-)	(3-)
B1	95.07	47.03	31.02	Х	х	Х
B2	416.05	207.52	138.01	х	$121.8 (0.4)^2$	Х
B3	592.08	295.54	196.69	139.1 (0.3)	Х	Х
B4	913.06	456.03	303.68	Х	Х	Х
B5	1169.05	584.02	389.01	Х	Х	Х
B6	1490.04	744.51	496.01	х	х	Х
YO	22.14	10.56	671	x	x	x
Y1	343.12	171.05	113.70	109.5 (0.3)	x	x
Y2	599.11	299.05	199.03	X	156.4 (0.1)	X
¥3	920.09	459.54	306.02	х	X	Х
Y4	1096.12	547.56	364.70	Х	209.9 (0.5)	Х
Y5	1417.10	708.05	471.70	Х	Х	Х
C1	113.08	56.04	37.02	X	Х	Х
C2	434.06	216.53	144.01	Х	Х	Х
C3	610.09	304.54	202.69	х	х	Х
C4	931.07	465.03	309.69	х	х	Х
C5	1187.06	593.03	395.02	х	х	Х
C6	1508.05	753.52	502.01	Х	Х	Х
Z0	4.12	1.56	0.70	x	x	x
Z1	325.11	162.05	107.70	x	x	X
Z2	581.10	290.04	193.03	X	X	X
Z3	902.08	450.54	300.02	X	X	X
Z4	1078.11	538.55	358.70	х	х	Х
Z5	1399.09	699.04	465.69	Х	Х	Х

¹ Columns represent different charge states.

² Each CCS is an average of independent measurements with the corresponding standard deviation

Supplementary Table 50. CCS of B, Y, C and Z (-SO₃) ions identified in a hexasaccharide G-GlcNS6S-G-GlcNS6S3S-I2S-GlcNS6S-R₁ structure, where R_1 is $(CH_2)_5NH_2$.

#35						
(G-GlcNS6S-G-					
	- 1SO ₃	- 1SO ₃	- 1SO ₃	- 1SO ₃	- 1 SO ₃	- 1SO ₃
	$(1-)^1$	(2-)	(3-)	(1-)	(2-)	(3-)
B1	95.07	47.03	31.02	Х	Х	х
B2	416.05	207.52	138.01	Х	122.4 (0.2)	х
B3	592.08	295.54	196.69	139.3 (0.3)	Х	х
B4	993.02	496.01	330.34	Х	Х	х
B5	1249.01	624.00	415.66	Х	Х	х
B6	1569.99	784.49	522.66	Х	Х	Х
Y0	22.14	10.56	6.71	X	X	X
Y1	343.12	171.05	113.70	109.8 (0.2)	Х	х
Y2	599.11	299.05	199.03	X	х	х
Y3	1000.05	499.52	332.68	x	х	x
Y4	1176.08	587.53	391.35	х	х	242.3 (0.5)
Y5	1497.06	748.03	498.35	Х	Х	Х
C1	113.08	56.04	37.02	x	x	x
C2	434.06	216.53	144.01	X	X	X
C3	610.09	304.54	202.69	Х	Х	х
C4	1011.03	505.01	336.34	x	х	x
C5	1267.02	633.01	421.67	x	х	x
C6	1588.00	793.50	528.66	Х	Х	Х
70	4.12	1.56	0.70	x	x	x
<u>Z1</u>	325.11	162.05	107.70	x	x	x
72	581.10	290.04	193.03	x	x	x
Z3	982.03	490.51	326.67	x	X	X
 Z4	1158.07	578.53	385.35	X	X	x
Z5	1479.05	739.02	492.34	X	Х	Х

¹ Columns represent different charge states.

² Each CCS is an average of independent measurements with the corresponding standard deviation

Supplementary Table 51. CCS of B, Y, C and Z (-SO₃) ions identified in a septa-saccharide G-GlcNS-G-GlcNS-I2S-GlcNS-G-GlcNS-G-R₃ structure.

11 0 4						
#36						
G-GlcNS-G-	GlcNS-I2S-G	lcNS-G-GlcNS-				
	$G-R_3$	100	100	100	100	100
	- 1SO ₃					
	$(1-)^1$	(2-)	(3-)	(1-)	(2-)	(3-)
B1	77.06	38.02	25.01	Х	Х	Х
B2	318.08	158.54	105.36	Х	Х	Х
B3	574.07	286.53	190.69	Х	Х	Х
B4	815.10	407.04	271.03	Х	Х	Х
B5	991.13	495.06	329.70	Х	Х	Х
B6	1232.15	615.57	410.05	Х	Х	Х
B7	1408.19	703.59	468.72	Х	Х	Х
B8	1546.21	772.60	514.73	Х	Х	Х
Y0	58.06	28.53	18.68	Х	Х	Х
Y1	234.09	116.54	77.36	Х	Х	Х
Y2	475.12	237.06	157.70	Х	Х	Х
Y3	651.15	325.07	216.38	Х	Х	Х
Y4	892.18	445.58	296.72	Х	Х	Х
Y5	1148.17	573.58	382.05	Х	Х	Х
Y6	1389.19	694.09	462.39	Х	Х	Х
Y7	1547.21	773.10	515.07	Х	Х	Х
C1	94.06	46.53	30.68	Х	Х	X
C2	335.09	167.04	111.02	Х	Х	х
C3	591.07	295.03	196.35	Х	Х	Х
C4	832.10	415.55	276.69	Х	Х	х
C5	1008.13	503.56	335.37	Х	Х	Х
C6	1249.16	624.07	415.71	Х	Х	Х
C7	1425.19	712.09	474.39	Х	Х	Х
C8	1563.21	781.10	520.40	Х	Х	Х
Z0	40.05	19.52	12.68	Х	Х	X
Z1	216.08	107.54	71.36	Х	Х	Х
Z2	457.11	228.05	151.70	Х	Х	Х
Z3	633.14	316.07	210.38	Х	Х	Х
Z4	874.17	436.58	290.72	Х	Х	Х
Z5	1130.16	564.57	376.05	Х	Х	Х
Z6	1371.18	685.09	456.39	Х	Х	Х
Z7	1546.21	772.60	514.73	х	Х	Х

¹ Columns represent different charge states.

² Each CCS is an average of independent measurements with the corresponding standard deviation

Supplementary Table 52. Summary of B, Y, C and Z ions theoretically identified from one of the six

428 possible hexasaccharide sequences ($dp6 + 3SO_3 + 1NAc$) as a result of one glycosidic bond cleavage in 429 the structure ΔUA -GlcNS-UA-GlcNAc-UA2S-GlcNS.

∆UA-GlcN	IS-UA-GlcNA	Ac-UA2S-Glo	cNS	
	(1-)	(2-)	(1-)	(2-)
B1	157.014	78.003	\checkmark	Х
B2	398.039	198.516	Х	\checkmark
B3	574.071	286.532	\checkmark	\checkmark
B4	777.151	388.071	Х	Х
B5	1033.140	516.066	Х	Х
Y0	258.028	128.510	x	X
Y1	514.017	256.505	Х	Х
Y2	717.097	358.044	Х	Х
Y3	893.129	446.060	Х	х
Y4	1134.154	566.573	х	Х
C1	175.024	87.008	✓	X
C2	416.050	207.521	~	✓
C3	592.082	295.537	~	✓
C4	795.161	397.077	Х	Х
C5	1051.150	525.071	х	Х
Z0	240.018	119.505	✓	Х
Z1	496.007	247.499	Х	✓
Z2	699.086	349.039	Х	Х
Z3	875.118	437.055	Х	Х
Z4	1116.144	557.568	Х	Х
			Total	8

Supplementary Table 53. Summary of B, Y, C and Z ions theoretically identified from one of the six possible hexasaccharide sequences (dp6 + $3SO_3$ + 1NAc) as a result of one glycosidic bond cleavage in the structure ΔUA -GlcNS-UA2S-GlcNS-UA-GlcNAc.

∆UA-GlcNS-	-UA2S-GlcNS-	-UA-GlcNAc		
	(1-)	(2-)	(1-)	(2-)
B1	157.014	78.003	✓	Х
B2	398.039	198.516	✓	✓
B3	654.028	326.510	Х	✓
B4	895.054	447.023	Х	Х
B5	1071.086	535.039	Х	✓
Y0	220.082	109.537	X	X
Y1	396.114	197.553	\checkmark	х
Y2	637.140	318.066	✓	х
Y3	893.129	446.060	х	~
Y4	1134.154	566.573	Х	Х
C1	175.024	87.008	✓	X
C2	416.050	207.521	✓	✓
C3	672.039	335.515	X	Х
C4	913.064	456.028	х	х
C5	1089.096	544.044	X	Х
Z0	202.072	100.532	x	X
Z1	378.104	188.548	✓	х
Z2	619.129	309.061	✓	Х
Z3	875.118	437.055	х	Х
Z4	1116.144	557.568	х	Х
-	•	•	Total	11

Supplementary Table 54. Summary of B, Y, C and Z ions theoretically identified from one of the six possible hexasaccharide sequences (dp6 + $3SO_3$ + 1NAc) as a result of one glycosidic bond cleavage in the structure ΔUA -GlcNAc-UA-GlcNS-UA2S-GlcNS

ALLA CLON	A a U.A. ClaN		NIC	
DUA-GICNA	AC-UA-GICN	5-UA25-GIC	ND	
	(1-)	(2-)	(1-)	(2-)
B1	157.014	78.003	✓	Х
B2	360.093	179.543	Х	Х
B3	536.125	267.559	\checkmark	Х
B4	777.151	388.071	Х	Х
B5	1033.140	516.066	х	Х
Y0	258.028	128.510	X	Х
Y1	514.017	256.505	Х	Х
Y2	755.043	377.017	Х	Х
Y3	931.075	465.034	Х	Х
Y4	1134.154	566.573	X	Х
C1	175.024	87.008	✓	Х
C2	378.104	188.548	\checkmark	Х
C3	554.136	276.564	Х	Х
C4	795.161	397.077	Х	Х
C5	1051.150	525.071	Х	Х
Z0	240.018	119.505	✓	X
Z1	496.007	247.499	Х	✓
Z2	737.032	368.012	Х	Х
Z3	913.064	456.028	X	X
Z4	1116.144	557.568	X	X
			Total	6

Supplementary Table 55. Summary of B, Y, C and Z ions theoretically identified from one of the six possible hexasaccharide sequences (dp6 + $3SO_3$ + 1NAc) as a result of one glycosidic bond cleavage in the structure ΔUA -GlcNAc-UA2S-GlcNS-UA-GlcNS.

ΔUA-GlcNAc-UA2S-GlcNS-UA-GlcNS					
	(1-)	(2-)	(1-)	(2-)	
B1	157.014	78.003	\checkmark	х	
B2	360.093	179.543	Х	Х	
B3	616.082	307.537	Х	✓	
B4	857.107	428.050	Х	Х	
B5	1033.140	516.066	X	X	
Y0	258.028	128.510	Х	x	
Y1	434.060	216.526	Х	Х	
Y2	675.086	337.039	Х	Х	
Y3	931.075	465.034	Х	х	
Y4	1134.154	566.573	Х	X	
C1	175.024	87.008	✓	X	
C2	378.104	188.548	\checkmark	Х	
C3	634.092	316.542	Х	х	
C4	875.118	437.055	Х	Х	
C5	1051.150	525.071	Х	Х	
Z0	240.018	119.505	✓	x	
Z1	416.050	207.521	✓	✓	
Z2	657.075	328.034	✓	✓	
Z3	913.064	456.028	Х	Х	
Z4	1116.144	557.568	Х	Х	
			Total	7	

Supplementary Table 56. Summary of B, Y, C and Z ions theoretically identified from one of the six possible hexasaccharide sequences (dp6 + $3SO_3$ + 1NAc) as a result of one glycosidic bond cleavage in the structure $\Delta UA2S$ -GlcNS-UA-GlcNS-UA-GlcNAc.

ΔUA2S-GlcNS-UA-GlcNS-UA-GlcNAc					
	(1-)	(2-)	(1-)	(2-)	
B1	236.970	117.981	Х	Х	
B2	477.996	238.494	Х	Х	
B3	654.028	326.510	Х	\checkmark	
B4	895.054	447.023	Х	Х	
B5	1071.086	535.039	Х	Х	
Y0	220.082	109.537	Х	Х	
Y1	396.114	197.553	\checkmark	Х	
Y2	637.140	318.066	\checkmark	Х	
Y3	813.172	406.082	Х	\checkmark	
Y4	1054.197	526.595	Х	\checkmark	
C1	254.981	126.987	Х	X	
C2	496.007	247.499	Х	✓	
C3	672.039	335.515	Х	Х	
C4	913.064	456.028	Х	Х	
C5	1089.096	544.044	Х	Х	
Z0	202.072	100.532	Х	X	
Z1	378.104	188.548	\checkmark	Х	
Z2	619.129	309.061	\checkmark	Х	
Z3	795.161	397.077	Х	Х	
Z4	1036.187	517.590	Х	Х	
			Total	8	

Supplementary Table 57. Summary of B, Y, C and Z ions theoretically identified from one of the six possible hexasaccharide sequences (dp6 + $3SO_3$ + 1NAc) as a result of one glycosidic bond cleavage in the structure $\Delta UA2S$ -GlcNS-UA-GlcNAc-UA-GlcNS.

∆UA2S-Glc	NS-UA-GlcN	Ac-UA-GlcNS	5	
	(1-)	(2-)	(1-)	(2-)
B1	236.970	117.981	Х	Х
B2	477.996	238.494	Х	Х
B3	654.028	326.510	Х	✓
B4	857.107	428.050	Х	Х
B5	1033.140	516.066	Х	Х
Y0	258.028	128.510	Х	X
Y1	434.060	216.526	Х	Х
Y2	637.140	318.066	\checkmark	Х
Y3	813.172	406.082	Х	✓
Y4	1054.197	526.595	Х	✓
C1	254.981	126.987	X	X
C2	496.007	247.499	Х	✓
C3	672.039	335.515	Х	Х
C4	875.118	437.055	Х	Х
C5	1051.150	525.071	Х	Х
Z0	240.018	119.505	✓	X
Z1	416.050	207.521	✓	✓
Z2	619.129	309.061	✓	Х
Z3	795.161	397.077	Х	Х
Z4	1036.187	517.590	Х	Х
			Total	9

Supplementary Table 58. Summary overview of the B, Y, C and Z ions theoretically identified from one glycosidic bond cleavage in the purified hexasaccharide.

	B/C/Y/Z
Possible structures	ions
ΔUA-GlcNS-UA-GlcNAc-UA2S-GlcNS	8
ΔUA-GlcNS-UA2S-GlcNS-UA-GlcNAc	11
ΔUA-GlcNAc-UA-GlcNS-UA2S-GlcNS	6
ΔUA-GlcNAc-UA2S-GlcNS-UA-GlcNS	7
ΔUA2S-GlcNS-UA-GlcNS-UA-GlcNAc	8
ΔUA2S-GlcNS-UA-GlcNAc-UA-GlcNS	9

#HS1				
ΔUA-GlcNS-I2S	S-GlcNS-G-GlcN	Ac		
[M-3H] ³⁻	430.05	274.0 (0.6)		
	$(1-)^1$	(2-)	(1-)	(2-)
B1	157.014	78.003	70.5 (0.9)	Х
B2	398.039	198.516	110.1 (0.8)	119.6 (0.4)
B3	654.028	326.510	Х	162.0 (0.7)
B4	895.054	447.023	Х	201.0 (0.7)
B5	1071.086	535.039	Х	Х
Y0	220.082	109.537	Х	Х
Y1	396.114	197.553	116.1 (0.5)	х
Y2	637.140	318.066	151.8 (0.5)	Х
Y3	893.129	446.060	Х	х
Y4	1134.154	566.573	Х	X
C1	175.024	87.008	71.0 (0.6)	Х
C2	416.050	207.521	113.6 (0.4)	х
C3	672.039	335.515	Х	164.0 (0.8)
C4	913.064	456.028	Х	х
C5	1089.096	544.044	Х	Х
Z0	202.072	100.532	Х	Х
Z1	378.104	188.548	113.8 (0.6)	х
Z2	619.129	309.061	149.2 (0.2)	X
Z3	875.118	437.055	X	156.2 (0.6)
Z4	1116.144	557.568	Х	Х

484 Supplementary Table 59. CCS of B, Y, C and Z ions identified in a ΔUA-GlcNS-I2S-GlcNS-G-GlcNAc
485 structure.

486 ¹ Columns represent different charge states.

 2 Each CCS is an average of independent measurements with the corresponding standard deviation

489	Supplementary Table 60	CCS of B, Y, C and Z	(-SO ₃) ions identified in a	hexasaccharide ∆UA-GlcNS-
-----	------------------------	----------------------	--	---------------------------

490 I2S-GlcNS-G-GlcNAc structure.

#HS1									
∆UA-Glcl	ΔUA-GlcNS-I2S-GlcNS-G-GlcNAc								
[M-2H] ²⁻	605.6	225.05 (0.4)							
[M-3H] ³⁻	403.4	255.39 (0.1)							
	- 1SO ₃	- 1SO ₃	- 1SO ₃	- 1SO ₃					
	$(1-)^1$	(2-)	(1-)	(2-)					
B1	77.06	38.02	Х	Х					
B2	318.08	158.54	Х	Х					
B3	574.07	286.53	Х	$150.3 (0.8)^2$					
B4	815.10	407.04	Х	Х					
B5	991.13	495.06	Х	200.1 (0.6)					
Y0	140.13	69.56	Х	Х					
Y1	316.16	157.57	Х	Х					
Y2	557.18	278.09	Х	Х					
Y3	813.17	406.08	Х	181.47 (0.5)					
Y4	1054.20	526.59	Х	Х					
C1	95.07	47.03	Х	Х					
C2	336.09	167.54	Х	Х					
C3	592.08	295.54	Х	Х					
C4	833.11	416.05	Х	179.5 (0.5)					
C5	1009.14	504.07	Х	Х					
Z0	122.12	60.55	Х	Х					
Z1	298.15	148.57	Х	Х					
Z2	539.17	269.08	Х	Х					
Z3	795.16	397.08	Х	Х					
Z4	1036.19	517.59	X	X					

492 ¹ Columns represent different charge states.

² Each CCS is an average of independent measurements with the corresponding standard deviation

Supplementary Table 61. Summary of B, Y, C and Z ions theoretically identified from one of the six 498 possible hexasaccharide sequences ($dp6 + 5SO_3 + 1NAc$) as a result of one glycosidic bond cleavage in

499 the structure Δ UA-GlcNS-UA-GlcNAc6S-UA2S-GlcNS6S.

ΔUA	A-GlcNS-UA-G					
	(1-)	(2-)	(3-)	(1-)	(2-)	(3-)
B1	157.014	78.003	51.666	\checkmark	Х	х
B2	398.039	198.516	132.008	\checkmark	\checkmark	х
B3	574.071	286.532	190.685	✓	\checkmark	х
B4	857.107	428.050	285.031	х	Х	х
B5	1113.096	556.044	370.360	х	Х	x
Y0	337.985	168.489	111.990	x	х	X
Y1	593.974	296.483	197.319	X	Х	Х
Y2	877.010	438.001	291.665	х	Х	\checkmark
Y3	1053.042	526.017	350.342	х	Х	\checkmark
Y4	1294.068	646.530	430.684	х	Х	✓
C1	175.024	87.008	57.670	✓	х	X
C2	416.050	207.521	138.011	✓	Х	х
C3	592.082	295.537	196.689	X	Х	x
C4	875.118	437.055	291.034	х	Х	Х
C5	1131.107	565.050	376.364	х	Х	x
ZO	319.974	159.483	105.986	x	х	x
Z1	575.963	287.478	191.316	х	х	х
Z2	858.999	428.996	285.661	х	Х	х
Z3	1035.031	517.012	344.339	х	х	х
Z4	1276.057	637.525	424.680	X	Х	
				Total	9	

Supplementary Table 62. Summary of B, Y, C and Z ions theoretically identified from one of the six 504 possible hexasaccharide sequences ($dp6 + 5SO_3 + 1NAc$) as a result of one glycosidic bond cleavage in 505 the structure ΔUA -GlcNS-UA2S-GlcNS6S-UA-GlcNAc6S.

ΔUA	A-GlcNS-UA28	5				
	(1-)	(2-)	(3-)	(1-)	(2-)	(3-)
B1	157.014	78.003	51.666	✓	Х	х
B2	398.039	198.516	132.008	✓	\checkmark	х
B3	654.028	326.510	217.338	\checkmark	\checkmark	х
B4	975.011	487.001	324.332	х	\checkmark	Х
B5	1151.043	575.017	383.009	Х	Х	✓
Y0	300.039	149.516	99.341	✓	Х	x
Y1	476.071	237.532	158.018	~	\checkmark	х
Y2	797.053	398.023	265.013	х	Х	\checkmark
Y3	1053.042	526.017	350.342	х	Х	\checkmark
Y4	1294.068	646.530	430.684	Х	Х	\checkmark
C1	175.024	87.008	57.670	✓	Х	х
C2	416.050	207.521	138.011	✓	Х	х
C3	672.039	335.515	223.341	✓	Х	х
C4	993.021	496.007	330.335	х	Х	х
C5	1169.053	584.023	389.013	Х	\checkmark	Х
Z0	282.028	140.510	93.338	✓	Х	х
Z1	458.060	228.526	152.015	✓	\checkmark	Х
Z2	779.043	389.018	259.009	х	Х	\checkmark
Z3	1035.032	517.012	344.339	х	Х	х
Z4	1276.057	637.525	424.681	х	Х	\checkmark
				Total	18	

Supplementary Table 63. Summary of B, Y, C and Z ions theoretically identified from one of the six possible hexasaccharide sequences (dp6 + $5SO_3$ + 1NAc) as a result of one glycosidic bond cleavage in the structure ΔUA -GlcNAc6S-UA-GlcNS-UA2S-GlcNS6S

ΔUA	A-GlcNAc6S-U	5				
	(1-)	(2-)	(3-)	(1-)	(2-)	(3-)
B1	157.014	78.003	51.666	✓	х	Х
B2	440.050	219.521	146.011	х	х	Х
B3	616.082	307.537	204.689	х	\checkmark	Х
B4	857.107	428.050	285.031	х	✓	Х
B5	1113.096	556.044	370.360	Х	Х	Х
Y0	337.985	168.489	111.990	X	х	x
Y1	593.974	296.483	197.319	х	Х	Х
Y2	835.000	416.996	277.661	х	Х	Х
Y3	1011.032	505.012	336.339	х	Х	Х
Y4	1294.068	646.530	430.684	Х	Х	Х
C1	175.024	87.008	57.670	✓	х	X
C2	458.060	228.526	152.015	\checkmark	\checkmark	Х
C3	634.092	316.542	210.692	х	х	Х
C4	875.118	437.055	291.034	Х	Х	Х
C5	1131.107	565.050	376.364	Х	Х	Х
Z0	319.975	159.483	105.986	х	х	X
Z1	575.963	287.478	191.316	х	х	Х
Z2	816.989	407.991	271.658	х	х	Х
Z3	993.021	496.007	330.335	х	X	X
Z4	1276.057	637.525	424.681	х	X	Х
				Total	5	

Supplementary Table 64. Summary of B, Y, C and Z ions theoretically identified from one of the six possible hexasaccharide sequences (dp6 + $5SO_3$ + 1NAc) as a result of one glycosidic bond cleavage in the structure ΔUA -GlcNAc6S-UA2S-GlcNS6S-UA-GlcNS

ΔUA-GlcNAc6S-UA2S-GlcNS6S-UA-GlcNS						
	(1-)	(2-)	(3-)	(1-)	(2-)	(3-)
B 1	157.014	78.003	51.666	\checkmark	Х	Х
B2	440.050	219.521	146.011	х	Х	Х
B3	696.039	347.515	231.341	х	Х	х
B4	1017.021	508.007	338.335	х	Х	Х
B5	1193.053	596.023	397.013	х	Х	х
Y0	258.028	128.510	85.338	Х	Х	X
Y1	434.060	216.526	144.015	✓	\checkmark	Х
Y2	755.043	377.018	251.009	х	Х	Х
Y3	1011.032	505.012	336.339	х	Х	Х
Y4	1294.068	646.530	430.684	х	Х	Х
C1	175.024	87.008	57.670	✓	х	X
C2	458.060	228.526	152.015	✓	\checkmark	Х
C3	714.049	356.521	237.345	х	Х	Х
C4	1035.032	517.012	344.339	х	\checkmark	х
C5	1211.064	605.028	403.016	Х	Х	х
Z0	240.018	119.505	79.334	✓	Х	X
Z1	416.050	207.521	138.011	✓	\checkmark	Х
Z2	737.032	368.012	245.006	х	Х	\checkmark
Z3	993.021	496.007	330.335	х	Х	Х
Z4	1276.057	637.525	424.681	х	Х	Х
				Total	8	

Supplementary Table 65. Summary of B, Y, C and Z ions theoretically identified from one of the six possible hexasaccharide sequences (dp6 + $5SO_3$ + 1NAc) as a result of one glycosidic bond cleavage in the structure $\Delta UA2S$ -GlcNS6S-UA-GlcNS-UA-GlcNAc6S

ΔUA2S-GlcNS6S-UA-GlcNS-UA-GlcNAc6S						
	(1-)	(2-)	(3-)	(1-)	(2-)	(3-)
B1	236.970	117.981	78.318	Х	Х	Х
B2	557.953	278.473	185.312	Х	Х	Х
B3	733.985	366.489	243.990	Х	Х	Х
B4	975.011	487.001	324.332	Х	Х	Х
B5	1151.043	575.017	383.009	Х	\checkmark	Х
Y0	300.039	149.516	99.341	✓	Х	Х
Y1	476.071	237.532	158.018	✓	\checkmark	Х
Y2	717.097	358.044	238.360	✓	\checkmark	Х
Y3	893.129	446.060	297.038	Х	~	Х
Y4	1214.111	606.552	404.032	Х	Х	Х
C1	254.981	126.987	84.322	✓	Х	Х
C2	575.963	287.478	191.316	х	Х	Х
C3	751.996	375.494	249.993	х	Х	Х
C4	993.021	496.007	330.335	х	\checkmark	Х
C5	1169.053	584.023	389.013	х	\checkmark	\checkmark
Z0	282.028	140.510	93.338	~	X	X
Z1	458.060	228.526	152.015	✓	✓	Х
Z2	699.086	349.039	232.357	х	✓	Х
Z3	875.118	437.055	291.034	х	х	х
Z4	1196.101	597.546	398.028	Х	Х	Х
				Total	11	

Supplementary Table 66. Summary of B, Y, C and Z ions theoretically identified from one of the six possible hexasaccharide sequences (dp6 + $5SO_3$ + 1NAc) as a result of one glycosidic bond cleavage in the structure $\Delta UA2S$ -GlcNS6S-UA-GlcNAc6S-UA-GlcNS

ΔUA	A2S-GlcNS6S-	5				
	(1-)	(2-)	(3-)	(1-)	(2-)	(3-)
B1	236.970	117.981	78.318	х	Х	х
B2	557.953	278.473	185.312	х	Х	Х
B3	733.985	366.489	243.990	х	Х	х
B4	1017.021	508.007	338.335	х	х	Х
B5	1193.053	596.023	397.013	Х	Х	Х
Y0	258.028	128.510	85.338	х	х	X
Y1	434.060	216.526	144.015	\checkmark	\checkmark	Х
Y2	717.097	358.044	238.360	~	✓	Х
Y3	893.129	446.060	297.038	х	~	Х
Y4	1214.111	606.552	404.032	Х	Х	Х
C1	254.981	126.987	84.322	Х	х	X
C2	575.963	287.478	191.316	х	Х	Х
C3	751.996	375.494	249.993	х	х	Х
C4	1035.032	517.012	344.339	х	✓	Х
C5	1211.064	605.028	403.016	Х	х	Х
Z0	240.018	119.505	79.334	✓	х	X
Z1	416.050	207.521	138.011	~	✓	Х
Z2	699.086	349.039	232.357	х	✓	Х
Z3	875.118	437.055	291.034	х	X	X
Z4	1196.101	597.546	398.028	х	Х	Х
				Total	7	

- **Supplementary Table 67.** Summary overview of the B, Y, C and Z ions theoretically identified from one glycosidic bond cleavage in the purified oligosaccharide.

Possible structures	B/Y/C/Z ions
ΔUA-GlcNS-UA-GlcNAc6S-UA2S-GlcNS6S	9
ΔUA-GlcNS-UA2S-GlcNS6S-UA-GlcNAc6S	18
ΔUA-GlcNAc6S-UA-GlcNS-UA2S-GlcNS6S	5
ΔUA-GlcNAc6S-UA2S-GlcNS6S-UA-GlcNS	8
∆UA2S-GlcNS6S-UA-GlcNS-UA-GlcNAc6S	11
ΔUA2S-GlcNS6S-UA-GlcNAc6S-UA-GlcNS	7

540 Supplementary Table 68. CCS of B, Y, C and Z ions identified in a ΔUA-GlcNS-I2S-GlcNS6S-UA-

541 GlcNAc6S structure.

#HS2						
ΔUA-GlcNS	S-I2S-GlcNS6	S-G-GlcNAc6S				
[M-2H] ²⁻	362.26	$331.0(0.2)^2$				
[M-3H] ³⁻	483.35	265.7 (0.4)				
	$(1-)^1$	(2-)	(3-)	(1-)	(2-)	(3-)
B1	157.014	78.003	51.666	70.4 (0.8)	Х	x
B2	398.039	198.516	132.008	110.3 (0.5)	Х	Х
B3	654.028	326.510	217.338	х	162.4 (0.2)	х
B4	975.011	487.001	324.332	X	225.3 (0.5)	X
B5	1151.043	575.017	383.009	x	Х	272.9 (0.4)
Y0	300.039	149.516	99.341	94.7 (0.3)	Х	X
Y1	476.071	237.532	158.018	123.2 (0.5)	134.1 (0.5)	Х
Y2	797.053	398.023	265.013	Х	Х	199.6 (0.6)
Y3	1053.042	526.017	350.342	Х	Х	250.4 (0.5)
Y4	1294.068	646.530	430.684	X	Х	276.9 (0.4)
C1	175.024	87.008	57 670	70.4 (0.6)	v	v
C2	416.050	207 521	138.011	70.4 (0.0) x	x	x
C3	672.039	335.515	223.341	146.9 (0.7)	x	x
C4	993.021	496.007	330.335	X	X	X
C5	1169.053	584.023	389.013	Х	Х	Х
Z0	282.028	140.510	93.338	93.2 (0.5)	Х	X
Z1	458.060	228.526	152.015	120.5 (0.3)	X	X
Z2	779.043	389.018	259.009	X	Х	Х
Z3	1035.032	517.012	344.339	X	Х	X
Z4	1276.057	637.525	424.681	х	Х	х

¹ Columns represent different charge states.

544

² Each CCS is an average of independent measurements with the corresponding standard deviation

#HS2				
ΔUA-GlcNS-I2S-GlcNS6S-G-GlcNAc6S				
[M-3H] ³⁻	342.27	318.8 (0.5)		
	- 1SO ₃	- 1 SO 3	- 1SO ₃	- 1SO ₃
	$(1-)^1$	(2-)	(1-)	(2-)
B1	77.06	38.02	Х	х
B2	318.08	158.54	Х	Х
B3	574.07	286.53	х	Х
B4	895.05	447.02	Х	Х
B5	1071.09	535.04	Х	Х
Y0	220.08	109.54	Х	Х
Y1	396.11	197.55	Х	Х
Y2	717.10	358.04	Х	Х
Y3	973.09	486.04	Х	Х
Y4	1214.11	606.55	Х	Х
C1	95.07	47.03	Х	Х
C2	336.09	167.54	X	Х
C3	592.08	295.54	$145.7 (0.6)^2$	Х
C4	913.06	456.03	Х	Х
C5	1089.10	544.04	Х	Х
ZO	202.07	100.53	Х	Х
Z1	378.10	188.55	Х	Х
Z2	699.09	349.04	Х	Х
Z3	955.08	477.03	Х	Х
Z4	1196.10	597.55	Х	Х

Supplementary Table 69. CCS of B, Y, C and Z (-SO₃) ions identified in a hexasaccharide Δ UA-GlcNS-I2S-GlcNS6S-G-GlcNAc6S structure.

¹ Columns represent different charge states.

² Each CCS is an average of independent measurements with the corresponding standard deviation