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Supplementary Figure 1. Between- and within-subject variation in human sperm 479 

miRNA expression patterns over time. (a) To translationally probe our mouse model 480 

and examine the impact of prior stress experience and recovery on human sperm miRNA 481 

patterns, recruited healthy male subjects (N=15) completed monthly psychological 482 

inventories, including the Perceived Stress Scale (PSS), and donated sperm samples over 483 

6 months. (b) From self-reported PSS scores, we identified two phenotypic groups of 484 

subjects from which we could probe our mouse model findings: 1) One group of subjects, 485 

which best mimicked our mouse model, reported elevated perceived stress followed by 486 

an extended period of recovery (recovering-stress), defined as a drop in PSS score ! 10 487 

over the 6 months (blue bars, N=4), and 2) A comparison group with minimal variation in 488 

PSS score, regardless of the intensity of that stress (stable-stress) over 6 months (red bars, 489 

N=4). (c) Connections between subject sperm miRNA expression patterns are visualized 490 

in a heatmap of the 75 miRNA with the greatest between-subject variation (ranked by 491 

one-way ANOVA). Hierarchical clustering identified a single cluster that includes all 492 

subject samples (6 from each) from 3 of 4 subjects with a stable-stress dynamic, while 493 

excluding all others, and a second cluster was comprised of all samples from recovering-494 

stress subjects that also included one of the stable-stress subjects (N=24 samples from 495 

stable-stress and N=22 samples from recovering-stress groups). 496 

 497 

498 
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Supplementary Figure 2. Stress recovery impacts histone modifications during 499 

epididymal maturation. (a) Male mice experienced chronic stress from age 4-8 weeks 500 

and caput epididymal tissues were collected at 9- or 20-weeks. Histone post-translational 501 

modification (PTM) mass spectrometry was used to examine caput epididymal histone 502 

PTM profiles following stress and recovery. (b) Validation of age- (miR-741-3p and 503 

miR-881-3p) and stress- (miR-9-3p and miR-34c-5p) related differences in sperm 504 

miRNA and corticosterone-related differences in DC2 EVs (miR-22-3p and miR-34c-5p) 505 

by quantitative RT-PCR. See methods for Ns. Full statistics are provided in 506 

Supplementary Table 2. Error bars represent mean ± SEM. (c) Unbiased principle 507 

components analysis of caput epididymal tissues at 9- and 20-weeks based on all detected 508 

histone PTMs, showing divergence following recovery but not immediately following 509 

stress (ellipses are 95% confidence intervals). (d) Histone PTM ratios were analyzed by 510 

Random Forests, identifying the top ten histone PTMs that best described epididymal 511 

tissue maturation from 9-to-20-weeks (i.e. identify the top ten histone PTMs that 512 

contribute to accuracy of a control epididymal maturation model). Cross-validation over 513 

ten iterations, where 10 histone PTMs were the minimal necessary features for greatest 514 

model accuracy. (e) The top 10 histone PTMs plotted (white bars), ranked by importance 515 

to normal epididymal maturation. The black bars are the corresponding importance of 516 

each histone PTM from a stress epididymal maturation model, showing that these histone 517 

PTMs contribute less or no accuracy in epididymal tissues recovering from stress. 518 

Importance is % increase in mean-squared error of epididymal maturation model when 519 

PTM values were randomly permuted. (f) Cross-validation of the stress epididymal 520 

maturation model, where 10 histone PTMs were the minimal necessary features for 521 
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greatest model accuracy. (g) The top 10 histone PTMs, ranked by importance to stress 522 

recovery in epididymal tissue, demonstrating the top histone PTMs changing during 523 

stress recovery are largely distinct from those changing in control epididymal tissues, 524 

suggesting stress recovery programs a new allostatic set point in the caput epididymis. 525 

(d,f) Error bars represent mean ± SEM, N=10 iterations. (e,g) Error bars represent SD 526 

used to scale importance values, with Random Forests analysis performed on N=6 527 

epididymal tissues/treatment/age. 528 

529 
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Supplementary Figure 3. Validation of extracellular vesicles (EV) isolated from 530 

culture media of DC2 caput epididymal epithelial cells. (a) Representative western 531 

blot and (b) quantification of CD63, a known EV-enriched tetraspanin; Calnexin, an 532 

endoplasmic reticulum-associated protein; and Lamp1, a lysosome-associated protein. 533 

CD63 (unpaired two-tailed Student’s t-test, t(7)=13.96, ****p=2.2902x10-6) is typically 534 

found on EV membranes, while Calnexin (unpaired two-tailed Student’s t-test, 535 

t(7)=7.678, ***p=0.0001) and Lamp1 (unpaired two-tailed Student’s t-test, t(7)=3.138, 536 

*p=0.0164) are typically found from cell lysates, suggesting minimal cellular 537 

contamination in isolated EV populations. N=5 cellular lysate samples and 4 EV samples. 538 

Error bars represent mean ± SEM, with individual data points overlaid. Source data are 539 

provided as a Source Data file. 540 
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Supplementary Figure 4. Quantification of miRNA overlap between paternal stress 543 

sperm and baseline corticosterone treatment of DC2 EVs. (a) To quantify concordant 544 

miRNA overlap between our mouse model and cell culture, RRHO analysis was used. 545 

Following small RNA sequencing, the differential expression profiles of sperm 12-weeks 546 

post-stress were plotted against the differential expression miRNA profiles of secreted 547 

EVs 1, 4, or 8 days following baseline corticosterone treatment (left, middle, and right 548 

respectively). Overlap data are plotted as sperm miRNA ratios increasing down the y-axis 549 

and EV miRNA ratios increasing left along the x-axis, with each pixel representing the -550 

log10(nominal p-value) of overlapping miRNA via the hypergeometric distribution and 551 

the color coding according to degree of significance (as shown). Each RRHO heatmap is 552 

divided into four quadrants, where the bottom left and upper right squares represent 553 

concordant miRNA changes in both models as quantified below each heatmap. (b-d) To 554 

ensure RRHO-identified significant overlap between sperm and DC2 EV miRNA were 555 

detected above chance, EV miRNA samples were randomly assigned to groups and the 556 

same analysis was rerun on nominal p-values of all detected miRNA, where 557 

randomization occurred (b) using Vehicle and Stress Cort EV miRNA samples within 558 

time at 8 days post-treatment, (c) using Vehicle, Baseline Cort, and Stress Cort EV 559 

miRNA samples within time at 8 days post-treatment, and (d) using Vehicle and Stress 560 

Cort EV miRNA samples across time such that 1 Vehicle and 1 Stress Cort sample were 561 

randomly selected from 1, 4 and 8 days post-treatment. The samples included in each 562 

group for this randomized comparison are depicted under each heatmap. The number of 563 

concordant EV miRNA for each analysis was quantified and used to calculate the 564 

percentage of concordant miRNA over total identified miRNA (where total miRNA are 565 
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miRNA present in every sample in that comparison), showing that the percentage for 566 

each of these randomized analyses (0.8-8.8%) were below that identified at 8-days post-567 

treatment in the Stress Cort comparison with sperm (31.4%). (N=3-4 EVs/treatment/time, 568 

max -log10(p-value) = 4).  569 

 570 

571 
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Supplementary Figure 5. DC2 EV protein cargo 1-d following corticosterone 572 

treatment. (a) Heatmap and hierarchical clustering of all detected proteins from 573 

proteomics mass spectrometry of DC2 EVs collected acutely 1 day following 574 

corticosterone treatment (N=5 EVs/treatment), showing the effects of corticosterone 575 

treatment on EV protein content is greater at 8 days post-treatment (as shown in Figs. 2d, 576 

e).  577 
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Supplementary Figure 6. Imaging and quantification of tissues from naive male 580 

mice injected i.v. with DiR-labeled EVs secreted from DC2 caput epididymal 581 

epithelial cells. (a) To ensure EVs treated with stress corticosterone levels maintained 582 

tissue targeting specificity in vivo, we fluorescently labeled vehicle- and stress 583 

corticosterone-treated DC2 EVs with the near-infrared lipophilic DiR dye and injected 5 584 

x 107 EVs intravenously into naïve male mice. 24-hrs post-injection, tissues were 585 

removed and imaged to evaluate the bio-distribution of DC2 caput EEC EV targeting. (b) 586 

Representative images of the biodistribution of DC2 EVs following the i.v. infusion of 587 

DiR dye-labeled EVs collected 8 days after vehicle or stress corticosterone treatment, 588 

demonstrating that EVs retained their tissue targeting selectivity. (c) Liver, testes, caput 589 

and cauda epididymal tissue from mice injected with DC2 EVs collected 8-days after 590 

either vehicle or corticosterone treatment. (d) There were no statistically significant 591 

differences in total radiant efficiency of liver (unpaired two-tailed Student’s t-test, t(10) = 592 

0.1691, p = 0.8691), testes (unpaired two-tailed Student’s t-test, t(10) = 0.007625, p = 593 

0.9941), caput epididymis (unpaired two-tailed Student’s t-test, t(10) = 0.005991, p = 594 

0.9953), or cauda epididymis (unpaired two-tailed Student’s t-test, t(10) = 0.01103, p = 595 

0.9914), showing no changes to EV tissue targeting selectivity by DC2 treatment. N=6 596 

mice/EV treatment. Error bars represent mean ± SEM. 597 
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Supplementary Figure 7. ICSI of sperm incubated with corticosterone-treated DC2 600 

EVs alter the embryonic brain transcriptome. (a) Following RNA sequencing 601 

analysis, total GO terms significantly enriched and (b) decreased in CortEV E12.5 brains 602 

determined by GSEA were grouped under parent terms. (N=6 embryos/EV treatment, 603 

FDR< 0.05). The top three significant clusters of GO terms enriched in EVCort E12.5 604 

brains are presented in Figure 3d. (c) Proportion of significant child GO terms collapsed 605 

into parent terms, showing that Synaptic Signaling (19.3%) encompasses the majority of 606 

significantly altered gene sets in the E12.5 brain by ICSI of sperm incubated with EVs 607 

secreted 8-days following corticosterone treatment of DC2 cells. 608 
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Supplementary Figure 8. ICSI of sperm incubated with corticosterone-treated DC2 611 

EVs alters the placenta transcriptome. (a) To assess a causal relationship between the 612 

significant changes to secreted EV bioactive cargo and intergenerational transmission, we 613 

utilized the assisted reproductive technology, ICSI, to inject caput epididymal sperm 614 

from naïve adult male mice. Prior to injection, sperm samples were divided into two 615 

pools and briefly incubated with secreted EVs isolated 8 days post vehicle or 616 

corticosterone treatment (EVVeh sperm or EVCort sperm). Sperm were then microinjected 617 

into super-ovulated oocytes obtained from the same donor females. Cleaved 2-cell 618 

zygotes from both EV-treatment groups were then transferred into the designated right or 619 

left side of the same naïve foster females, and changes to offspring neurodevelopment 620 

were assessed at mid-gestation (E12.5). Therefore, sperm, oocytes and intrauterine 621 

environments for offspring development were the same for both treatment groups, with 622 

the only difference being the EV population the sperm were incubated with prior to ICSI. 623 

Resulting placentas were collected at E12.5 for transcriptional analysis. GO terms, 624 

clustered under parent group terms to reduce redundancy, were (b) enriched and (c) 625 

decreased in CortEV placentas compared to VehEV placentas (N=6 placentas/EV 626 

treatment, FDR < 0.05), showing caput epididymal epithelial cell-secreted EVs can 627 

impact placental regulation/function as well as embryo development. (d) Pie chart 628 

showing proportion of significantly enriched child gene sets under each parent term in 629 

total significant gene sets, showing Chromatin Remodeling and Chromosome 630 

Segregation encompass the majority of gene sets altered in the E12.5 placenta by ICSI of 631 

Cort DC2 EVs.  632 

 633 

634 
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Supplementary Figure 9. ICSI of sperm incubated with corticosterone-treated DC2 635 

EVs produce offspring with normal litter characteristics but altered physiological 636 

outcomes. (a) Litter sizes and (b) sex ratios produced from ICSI of sperm incubated with 637 

vehicle- or corticosterone-treated EVs, with average values indicated (N=2 litters/EV 638 

treatment). (c) There was a significant effect of both EV treatment and sex on body 639 

weights at 4 weeks (two-way ANOVA, main effect of sex (F(1, 11) = 14.34, p = 0.003), 640 

main effect of EV treatment (F(1, 11) = 5.845, *p = 0.0341). N=2-3 males and 4-5 641 

females/EV treatment. (d) Adults weights were no longer different in both male and 642 

female offspring at 15 weeks of age (two-way ANOVA, main effect of sex (F(1, 11) = 643 

31.73, p = 0.0002), effect of EV treatment (F(1, 11) = 1.771, p = 0.2102). N=2 males for 644 

EVVeh, 3 males for EVCort, 5 females for EVVeh and 4 females for EVCort. Error bars 645 

represent mean ± SEM. 646 


