Identification of non-invasive biomarkers for predicting the radiosensitivity of nasopharyngeal carcinoma from serum microRNAs

Kaiguo Li¹, Xiaodong Zhu^{1,2}, Ling Li¹, Ruiling Ning¹, Zhongguo Liang¹, Fanyan Zeng¹, Fang Su¹, Shiting Huang¹, Xiaohui Yang¹, Song Qu^{1,2,*}

Patient	Sex	Age(y)	Stage	Therapeutic regime	Radiosensitivity
S-1-1	male	24	Ι	radiotherapy	radiosensitive
S-1-2	female	44	Ι	radiotherapy	radiosensitive
S-2-1	male	32	II	radiotherapy	radiosensitive
S-2-2	male	49	II	radiotherapy	radiosensitive
S-2-3	female	47	II	radiotherapy	radiosensitive
S-2-4	male	34	II	radiotherapy	radiosensitive
S-2-5	male	60	II	radiotherapy	radiosensitive
S-2-6	female	52	II	radiotherapy	radiosensitive
S-2-7	male	44	II	radiotherapy	radiosensitive
S-2-8	male	56	II	radiotherapy	radiosensitive
S-2-9	male	51	II	radiotherapy	radiosensitive
S-2-10	female	49	II	radiotherapy	radiosensitive
S-2-11	female	53	II	radiotherapy	radiosensitive
S-2-12	male	56	II	radiotherapy	radiosensitive
S-3-1	male	68	III	radiotherapy	radiosensitive
S-3-2	male	65	III	radiotherapy	radiosensitive
S-4-1	male	41	IV	radiotherapy	radiosensitive
S-4-2	female	36	IV	radiotherapy	radiosensitive
S-4-3	female	64	IV	radiotherapy	radiosensitive
R-2-1	male	28	II	radiotherapy	radioresistant
R-2-2	female	31	II	concurrent chemoradiotherapy	radioresistant
R-3-1	male	37	III	radiotherapy	radioresistant
R-3-2	female	70	III	radiotherapy	radioresistant
R-4-1	male	59	IV	concurrent chemoradiotherapy	radioresistant
R-4-2	male	30	IV	concurrent chemoradiotherapy	radioresistant
R-4-3	female	50	IV	concurrent chemoradiotherapy	radioresistant

Table-S1. Clinical data of the study population

R-4-4	female	66	IV	radiotherapy	radioresistant
D 4 5	,	4.4	117	induction chemotherapy +	1
K-4-5	male	44	IV	concurrent radiochemotherapy	radioresistant
R-4-6	male	50	IV	concurrent chemoradiotherapy	radioresistant
D 4 7	- / /-	117	induction chemotherapy +	1· · · /	
R-4-7	male	45	IV	concurrent radiochemotherapy	radioresistant
R-4-8 male	50	induction chemotherapy +	1		
	male	59	IV	concurrent radiochemotherapy	radioresistant
R-4-9	male	47	IV	concurrent chemoradiotherapy	radioresistant
R-4-10	male	36	IV	concurrent chemoradiotherapy	radioresistant

T 11 CA	C1 · C	T (C	C (1		1 /
Table-N7-a	(hi-Sollare	Lests of sex	for the	fraining	cohort
10010 02 u.	On Dyuare	10010 01 001	101 the	uannig	conort

			Asymptotic Significance	Exact Sig.	Exact Sig.
	Value	df	(2-sided)	(2-sided)	(1-sided)
Pearson Chi-Square	.686ª	1	.408		
Continuity Correction ^b	.043	1	.836		
Likelihood Ratio	.712	1	.399		
Fisher's Exact Test				.576	.424
Linear-by-Linear Association	.629	1	.428		
N of Valid Cases	12				

a. 4 cells (100.0%) have expected count less than 5. The minimum expected count is 1.67.

b. Computed only for a 2x2 table

			Asymptotic Significance	Exact Sig.	Exact Sig.
	Value	df	(2-sided)	(2-sided)	(1-sided)
Pearson Chi-Square	.114ª	1	.735		
Continuity Correction ^b	.000	1	1.000		
Likelihood Ratio	.116	1	.733		
Fisher's Exact Test				1.000	.636
Linear-by-Linear Association	.105	1	.746		
N of Valid Cases	12				

Table-S2-b. Chi-Square Tests of age for the training cohort

a. 3 cells (75.0%) have expected count less than 5. The minimum expected count is 1.25.

b. Computed only for a 2x2 table

			Asymptotic Significance	Exact Sig.	Exact Sig.
	Value	df	(2-sided)	(2-sided)	(1-sided)
Pearson Chi-Square	1.656 ^a	1	.198		
Continuity Correction ^b	.480	1	.488		
Likelihood Ratio	1.736	1	.188		
Fisher's Exact Test				.293	.247
Linear-by-Linear Association	1.518	1	.218		
N of Valid Cases	12				

Table-52-c. Chi-Square Tests of stage for the train

a. 4 cells (100.0%) have expected count less than 5. The minimum expected count is 2.08.

b. Computed only for a 2x2 table

			Asymptotic Significance	Exact Sig.	Exact Sig.
	Value	df	(2-sided)	(2-sided)	(1-sided)
Pearson Chi-Square	.268ª	1	.605		
Continuity Correction ^b	.017	1	.897		
Likelihood Ratio	.269	1	.604		
Fisher's Exact Test				.709	.450
Linear-by-Linear Association	.259	1	.611		
N of Valid Cases	30				

a. 1 cells (25.0%) have expected count less than 5. The minimum expected count is 4.67.

b. Computed only for a 2x2 table

			Asymptotic Significance	Exact Sig.	Exact Sig.
	Value	df	(2-sided)	(2-sided)	(1-sided)
Pearson Chi-Square	.107ª	1	.743		
Continuity Correction ^b	.000	1	1.000		
Likelihood Ratio	.108	1	.743		
Fisher's Exact Test				1.000	.567
Linear-by-Linear Association	.104	1	.748		
N of Valid Cases	30				

Table-S2-e. Chi-Square Tests of age for the validation cohort

a. 2 cells (50.0%) have expected count less than 5. The minimum expected count is 2.33.

b. Computed only for a 2x2 table

ruore 52 n em square resis er suge for me vanaaren eenere					
			Asymptotic Significance	Exact Sig.	Exact Sig.
	Value	df	(2-sided)	(2-sided)	(1-sided)
Pearson Chi-Square	9.020 ^a	1	.003		
Continuity Correction ^b	6.938	1	.008		
Likelihood Ratio	9.696	1	.002		
Fisher's Exact Test				.004	.004
Linear-by-Linear Association	8.719	1	.003		
N of Valid Cases	30				

Table-S2-f. Chi-Square Tests of stage for the validation cohort

a. 0 cells (0.0%) have expected count less than 5. The minimum expected count is 6.07.

b. Computed only for a 2x2 table

miRNA	Expression	Fold	P value	Mature sequence	Forward primer
	level	change			
hsa-miR-3610	Ť	19.38883	7.10E-05	GAAUCGGAAAGGAGGCGCCG	GAATCGGAAAGGAGGCGCC
hsa-miR-1281	Ļ	4.036213	0.000106	UCGCCUCCUCCUCUCCC	TCGCCTCCTCCTCTCCC
hsa-miR-6732-3p	Ļ	12.70422	0.000364	UAACCCUGUCCUCUCCCUCCCAG	TAACCCTGTCCTCTCCCTCC
hsa-miR-425-3p	Ļ	22.41298	0.000487	AUCGGGAAUGUCGUGUCCGCCC	ATCGGGAATGTCGTGTCCG
hsa-miR-6840-3p	Ť	14.2069	0.000556	GCCCAGGACUUUGUGCGGGGGUG	GCCCAGGACTTTGTGCGG
hsa-miR-6865-3p	Ļ	16.71123	0.000559	ACACCCUCUUUCCCUACCGCC	ACACCCTCTTTCCCTACCG
hsa-miR-4634	¢	13.63916	0.000976	CGGCGCGACCGGCCCGGGG	attaCGGCGCGACCGGCCCGG
hsa-miR-7111-3p	Ļ	12.27265	0.001328	AUCCUCUUUCCCUCCUCCAG	ATCCTCTCTCCCCCCAG
hsa-miR-3195	ſ	9.770501	0.001664	CGCGCCGGGCCCGGGUU	atatttCGCGCCGGGCCCGGGTT
hsa-miR-1908-3p	Ļ	7.889484	0.004336	CCGGCCGCCGGCUCCGCCCCG	atattCCGGCCGCCGGCTCCGC
hsa-miR-4763-3p	Ť	13.91462	0.004562	AGGCAGGGGCUGGUGCUGGGCGGG	atAGGCAGGGGCTGGTGCT
hsa-miR-1825	Ļ	7.464135	0.005255	UCCAGUGCCCUCCUCUCC	No. CD201-0078 (TIANGEN Biotech)

Table-S3. Summary of selected 12 miRNAs in NPC with different radiosensitivity

 \uparrow : upregulated; \downarrow : downregulated.

Figure-S1: Melting curves of candidate miRNAs (a.hsa-miR-1281; b.hsa-miR-1825; c.hsa-miR-6732-3p; d.hsa-miR-6865-3p; e.U6)

Figure-S2: Amplification curves of candidate miRNAs (a.hsa-miR-1281; b.hsa-miR-1825; c.hsa-miR-6732-3p; d.hsa-miR-6865-3p; e.U6)

Figure-S3: Some melting curves of other selected miRNAs whose products were unacceptable (a. hsa-miR-4634; b. hsa-miR-425-3p; c. hsa-miR-3610; d. hsa-miR-6840-3p; e. hsa-miR-7111-3p; f. hsa-miR-3195; g. hsa-miR-1908-3p; h. hsa-miR-4763-3p)