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Increasing N 

The rationale for increasing N is easy to understand assuming a binary world 

in which underlying effect sizes are categorically true (δ = μ) or categorically false (δ 

= 0). In that case, ignoring the extra cost of running more subjects, only good things 

would come from increasing N to increase power. For example, if we represent the 

prior probability of the null hypothesis being true as P(H0) and the prior probability 

of the alternative hypothesis being true as P(H1) such that P(H0) + P(H1) = 1, the 

equation specifying the relationship between PPV, power (1 – β) and alpha (α ) is: 

𝑃𝑃𝑃𝑃𝑃𝑃 =
𝑃𝑃(𝐻𝐻1)(1 − 𝛽𝛽)

𝑃𝑃(𝐻𝐻1)(1− 𝛽𝛽) + 𝑃𝑃(𝐻𝐻0)𝛼𝛼
                                                    

The prior odds, R, that the alternative hypothesis is true is given by R = P(H1)/P(H0), 

so this expression can be rewritten in the form used by Button et al. (2013): 

𝑃𝑃𝑃𝑃𝑃𝑃 =
𝑅𝑅(1 − 𝛽𝛽)

𝑅𝑅(1 − 𝛽𝛽) + 𝛼𝛼
                                                        (1) 

In our simplified example above, where half the tested hypotheses are true 

and half are false, P(H0) equals P(H1) such that R = 1 (i.e., the prior odds are even). In 

that case, Equation 1 simplifies to: 

PPV = [(1 – β)] ⁄ [(1− β) + α]          (2) 

Expressed in words: 

PPV = power ⁄ (power + alpha)           

From this equation, it is easy to see that as power decreases towards its minimum 

(i.e., as power approaches alpha), PPV decreases towards its minimum as well (i.e., 

PPV approaches 0.5 in the equal base-rate scenario). Because PPV decreases as 

power decreases, fields that typically conduct low-power experiments will have 
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many false positives in their p < .05 literature, which is to say that PPV will be low. 

Indeed, low power is widely suspected of being a contributing factor to the 36% 

replication rate reported by OSC2015. If so, then increasing power by increasing N 

would help to correct that problem. The reason is that increasing N would increase 

power without affecting alpha. 

Not only would PPV increase with higher power, but so would the average 

underlying effect size associated with p < .05 findings. From the binary true-vs.-false 

perspective, PPV and the average of the statistically significant effect sizes are two 

sides of the same coin. For example, continuing with the assumption that R = 1, if 

power were so low that it equals alpha (i.e., 1- β = α = .05), then half the published p 

< .05 results would have an underlying effect size of δ = μ (true) and half would have 

an underlying effect size of δ = 0 (false) such that PPV would equal .50, and the 

average effect size associated with significant findings would be PPV × μ = 0.50μ. By 

contrast, if power were equal to 80%, then (according to Equation 2) .94 of the 

published p < .05 results would have an underlying effect size of μ and .06 would 

have an underlying effect size of 0, so the average underlying effect size associated 

with significant findings would increase to 0.94μ. The implication is clear: increasing 

N (thereby increasing power) would lead to a more secure scientific literature in 

that both more significant findings would be true and the average underlying effect 

size associated with those findings would be larger as well. But if underlying effect 

sizes are continuously distributed, ever smaller effects would be detected with 

increasing N. 
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Quantifying effect sizes 

The effect sizes in OSC2015 are heterogeneous (e.g., some are based on 

studies that used a between-subject design, others a within-subject design) and are 

therefore not directly comparable to each other. Indeed, as described below, some 

may have been erroneously computed, making direct comparisons between the 

effect sizes for cognitive and social psychology (e.g., as shown in their tables) 

meaningless. Nevertheless, the effect-size values are distributed in some manner, 

and each effect size measure appears once as part of the original study and once 

again as part of a replicated study. Thus, while the effect sizes from different original 

experiments are not necessarily comparable to each other, the decrease from the 

original experiment to the replication experiment is meaningful. 

The effect sizes computed by OSC2015, reported as “r per degree of 

freedom,” were based on the reported test statistics from the original studies (e.g., 

the effect size for a comparison between two groups was computed from the 

reported t-score). This was done without regard for whether the study used a 

within-subject design or a between-subject design. The standard formula relating d 

to r is: 𝑑𝑑 = 2𝑟𝑟 √1 − 𝑟𝑟2⁄ . To instead compute d from a reported t score, the relevant 

formulas are d = 2t/√N for a between-subject design, d = t/√N for a one-sample 

design (as in our simulations), and dz = t/√N for a within-subject design, where dz is 

Cohen’s d computed from difference scores (1). When we previously converted the r 

effect sizes reported by OSC2015 to d effect sizes (2), we did not appreciate the fact 

that their r values had been computed the same way for both within- and between-

subject designs. Thus, because cognitive psychology uses within-subject designs 
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much more often than social psychology, this means that the cognitive effect sizes 

are often doubled compared to what they should be.  

Consider, for example, one of the studies replicated by OSC2015, which was 

originally reported by Farrell (3). On page 133 of that article, a paired-samples t-test 

is reported: t(39) = 3.77, p = .001, d = 0.60. Using the formula dz = t/√N to determine 

the effect size from the reported t, we have dz = 3.77 / √40 = 0.60, the correct value. 

This Cohen’s d of 0.60 translates to an r of about .287. Using the incorrect formula dz 

= 2t/√N (the formula that applies to the between-subject case) to determine the 

effect size from the reported t, we have dz = 2(3.77) / √40 = 1.20. This value 

translates into r = .516, which is the value reported by OSC2015. To us, this seems 

like an error. Whether or not it is an error, it means that the effect sizes for studies 

that used a within-subject design will be inflated relative to studies that used a 

between-subject design. 

Even without taking into account that issue, larger underlying effect sizes 

observed for cognitive psychology that used within-subject designs would arise for 

a second reason as well (4). Recall that 𝛿𝛿 = 𝑢𝑢2−𝑢𝑢1
𝜎𝜎

, where σ represents an aggregate 

error term, and note that the smaller σ is, the larger the underlying effect size will 

be. The aggregate error term in the denominator can be conceptualized as 𝜎𝜎 =

�𝜎𝜎𝑠𝑠2 + 𝜎𝜎𝑒𝑒2, where 𝜎𝜎𝑠𝑠2 represents unsystematic error due to differences across 

subjects and 𝜎𝜎𝑒𝑒2 represents unsystematic error due to measurement error over and 

above individual differences. This equation applies both to a one-sample t-test and 

to an independent-sample t-test. However, for a within-subject design, which is 

commonly used in cognitive psychology, the error term needs to be expanded to 
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include the correlation (ρ) between the underlying subject values across the two 

conditions: 𝜎𝜎 = �(1 − 𝜌𝜌)𝜎𝜎𝑠𝑠2 + 𝜎𝜎𝑒𝑒2. To the extent ρ is greater than 0, as it usually is in 

a within-subject design, it will reduce σ, thereby increasing underlying effect size 

(δ). Thus, the same fact that accounts for higher power in cognitive psychology 

(namely, a higher proportion of its studies use a within-subjects design) may also 

contribute to the larger underlying effect sizes observed in that field.   

 The upshot of all of this is that the effect sizes for cognitive and social 

psychology—either here or in OSC2015—are not directly comparable to each other 

(i.e., the difference between them is not meaningful). Indeed, still other issues 

complicate the comparison of effect sizes to each other even within the same field. 

For example, some effect sizes were based on mixed interactions, and the best 

method for putting effect sizes like that on a level playing field with a between-

subject t-test is not clear. Thus, instead of trying to put all of the effect sizes on a 

level playing field (an impossible task without having access to the original data), 

we focus on the change in the effect size from the original to the replication study. 

For the same reason, we do not attach theoretical meaning to the exponential form 

of the distribution of underlying effect sizes used in our simulation study. It is 

simply the distribution that is maximally noncommittal to unknown information. 

Simulating science 

Specifying the relevant distributions 

Because it is the maximum entropy distribution, we used the exponential as 

the prior distribution of underlying effect sizes. The mode of the exponential is 0, 

which means that for any fixed-size interval [a, a + b], where a ≥ 0 and b is a 



Running head: SCIENCE IS NOT SIGNAL DETECTION 7 

constant, a random variable is more likely to be sampled from the interval defined 

by [a = 0, b] than from any other interval defined by changing the value of a.1 The 

implication is that many tested effect sizes—most of which will yield a non-

significant result—are close to 0. 

Although a principled specification of the distribution of underlying effect 

sizes was relatively straightforward (i.e., the exponential is the maximum entropy 

distribution), a principled specification of the sample-size distribution was harder 

to come by. The minimum value of the sample-size distribution must be 2 because, 

as described below, our simulated t-tests had N – 1 degrees of freedom. We could 

have used the geometric distribution for the sample-size distribution (the discrete 

analog of the exponential, with a range of 0 to ∞), adding 2 to avoid sample sizes of 

0 or 1. However, in actual practice, the mode of the true sample-size distribution is 

unlikely to be the smallest value of 2, yet that would be the mode if we used the 

geometric distribution. We therefore created a more realistic sample-size 

distribution with a mode greater than 2 by summing two random draws from a 

geometric distribution and adding 2 to the result. Doing so resulted in a one-

parameter sample-size distribution with the appropriate range of 2 to ∞ and a mode 

greater than 2, like the one shown in Fig. 3 of the main article.  

 

 

                                                        
1 Although the mode is zero, all values drawn from the exponential, though possibly infinitesimal, are 
greater than 0. This might seem odd given that it is possible to dream up hypotheses that 
undoubtedly have an effect size of absolute zero. However, the effect size of interest is the hypothesis 
as tested, not the hypothesis itself. It seems reasonable to suppose that no experiment is so perfectly 
unbiased that the effect size would be absolute zero. 
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Original experiments 

As illustrated in Fig. 3 of the main article, a given simulated experiment, i, 

involved (1) a random draw, δi, from an underlying exponential effect-size 

distribution with mean 𝛿𝛿̅ and (2) a random draw from a sample-size distribution 

governed by a parameter g, which yielded a sample size, Ni. Those two 

independently sampled values (δi and Ni) determined the statistical power of a given 

simulated experiment. 

To create simulated data for a given experiment, random error drawn from a 

unit normal distribution was independently added to δi for each of the Ni scores. As 

a concrete example, for Experiment i, suppose that random draws from the 

distributions shown in Fig. 3 yielded δi = 0.36 and Ni = 18. Without measurement 

error, the experiment would consist of 18 scores of 0.36.  In actuality, the simulated 

experiment involved 18 scores of 0.36 + eij, where j is the subject index and e ~ 

N(0,1). That is, eij (the error score in Experiment i for subject j) was a random draw 

from a normal distribution with a mean of 0 and standard deviation of 1. A one-

sample t-test was then computed from these simulated data, and the observed 

Cohen’s d effect size was derived from that value using the formula 𝑑𝑑𝑖𝑖 = 𝑡𝑡𝑖𝑖
�𝑁𝑁𝑖𝑖

. This 

process was repeated for a large number of simulated experiments. 

In practice, instead of actually creating each individual score and computing 

t-score, we accomplished the equivalent by drawing a t-score from the non-central 

t-distribution using the MATLAB function nctrnd with parameters equal to 𝛿𝛿𝑖𝑖�𝑁𝑁𝑖𝑖 

(the non-centrality parameter) and Ni – 1 (degrees of freedom). On a very small 

percentage of trials, some statistically significant ti values (and, therefore, the 
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corresponding di values) ended up being inconceivably large. These values have a 

disproportionate effect on the estimate the expected value of d given a significant 

outcome. For our initial simulation, we took no steps to exclude these values so that 

we could accurately compute that expected value. However, it is not unreasonable 

to assume that, in actual practice, di values that are extremely large (e.g., greater 

than 30) would never be reported because, for example, the experimenter would 

assume that the result could not be accurate. Thus, we later discuss the implications 

of trimming the observed distribution of di scores, which has the effect of reducing 

expected regression to the mean.  

The two free parameters, 𝛿𝛿̅ and g, governed the two relevant distributions 

(Fig. 3), and they were manually adjusted separately for the cognitive and social 

psychology studies until the simulated p < .05 data approximately matched (1) the 

p-curves for the original experiments replicated by OSC2015 (Fig. S1) and (2) the 

mean of the observed Cohen’s d effect size distributions for the p < .05 original 

experiments replicated by OSC2015 (Fig. S2). For cognitive psychology, the 

parameter settings we settled on were 𝛿𝛿�̅�𝐶𝐶𝐶𝐶𝐶= 0.53 and gCog = .11, and the 

corresponding values for social psychology were 𝛿𝛿�̅�𝑆𝐶𝐶𝑆𝑆 = 0.22 and gSoc =.08.  

As shown in Fig. S1, the simulation results closely approximate the p-curves 

for both cognitive and social psychology, and, as shown in Fig. S2, the same is true 

for the corresponding Cohen’s d scores. The mean observed effect sizes in OSC2015 

for original cognitive psychology experiments and social psychology experiments 

were �̅�𝑑𝑂𝑂(𝑆𝑆𝐶𝐶𝐶𝐶) = 1.25 and �̅�𝑑𝑂𝑂(𝑠𝑠𝐶𝐶𝑆𝑆) = 0.77. The corresponding values from our 

simulation were also �̂�𝑑𝑂𝑂(𝑆𝑆𝐶𝐶𝐶𝐶) = 1.25 and �̂�𝑑𝑂𝑂(𝑠𝑠𝐶𝐶𝑆𝑆) = 0.77.  
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Fig S1: Observed and simulated p-curve data for original experiments from cognitive 
psychology and social psychology. A p-curve shows the distribution of p-values less than .05. 
The higher percentage of significant p-values below .01 for cognitive psychology (~70%) 
compared to social psychology (~55%) likely reflects the fact that power is higher for 
cognitive psychology, which relies on within-subject designs more so than social psychology. 
The empirical p-curves (upper row) show no obvious signs of QRPs such as p-hacking, though 
a typical-looking p-curve does not necessarily rule out other QRPs (5). 
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Fig S2. The top panels show the originally reported effects sizes for the cognitive psychology 
experiments (left) and social psychology experiments (right) from OSC (2015). The subscript 
“O(cog)” and “O(soc)” on the mean effect-size symbols mean “original-cognitive” and “original-
social,” respectively. The bottom panels show the corresponding statistically significant effect 
sizes from the simulation with the parameters set to 𝜹𝜹� = .53 and g = .11 for cognitive 
psychology and 𝜹𝜹� = .22 and g = .08 for social psychology. For the simulated data, the mean 
values reflect expected values (hence the symbol 𝒅𝒅�). Note that all of the simulated effect sizes 
are reported here as positive even if they were, in truth, opposite in direction relative to the 
underlying effect size. In that case, the reported effect would be a sign error (such errors were 
rare in our simulated results). 
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Replication experiments 

For the subset of simulated original experiments yielding observed effect 

sizes (di) that were statistically significant (p < .05, two-tailed), we performed 

simulated replication experiments, generating a second set of observed effect sizes. 

A simulated replication experiment was based on the same underlying effect size 

(δi) used for the corresponding original experiment. However, instead of drawing it 

from a sample-size distribution, Ni for the replication experiment was chosen to 

yield 90% power based on the observed effect size (di) of the simulated original 

study (following the practice used for real data in OSC2015). In the end, we had one 

set of (inflated) di values from the original studies and a corresponding set of 

(necessarily smaller) di values from the replication experiments. The results showed 

that about 70% of the observed decrease in effect sizes (original to replication) in 

OSC2015 is attributable to regression to the mean.  

Next, we again simulated replication experiments but this time in an effort to 

capture the full decrease in observed effect sizes (original to replication). As in 

OSC2015, the simulated replication experiments were powered to .90 by choosing 

an N based on the observed Cohen’s d from the original simulated experiments that 

achieved p < .05. The underlying effect size used for a given replication study (δRi) 

was the underlying effect size for the corresponding original study (δi) multiplied by 

an imprecision factor (γ). The imprecision factor is intended to capture QRPs in the 

original studies, low-fidelity replications, or a combination of the two. With γ set 

to .73, the means of the simulated effect-size distributions for the replication studies 

(�̂�𝑑𝑅𝑅) are now similar to the actual means (�̅�𝑑𝑅𝑅). More specifically, �̂�𝑑𝑅𝑅(𝑆𝑆𝐶𝐶𝐶𝐶) = 0.76, 
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�̅�𝑑𝑅𝑅(𝑆𝑆𝐶𝐶𝐶𝐶) = 0.75 and �̂�𝑑𝑅𝑅(𝑠𝑠𝐶𝐶𝑆𝑆) = 0.33, �̅�𝑑𝑅𝑅(𝑠𝑠𝐶𝐶𝑆𝑆) = 0.34 (Fig. S3). In addition, in the 

simulated results for cognitive psychology, 52% of the simulated original p < .05 

findings replicated at p < .05 (similar to the actual value of 50%), whereas for social 

psychology, 38% of the simulated original p < .05 findings replicated at p < .05 

(somewhat higher than the actual value of 25%).   

Earlier, we noted that, in our simulations of the original experiments, when 

the number of simulated experiments was large, a very small fraction of di values 

ended up being inconceivably large (e.g., di = 500), thereby exerting a 

disproportionate effect on the estimated mean observed effect size. It seems 

reasonable to suppose that these huge values would never end up in the scientific 

literature. Removing the top .0005 of the distribution largely eliminated that issue 

such that the maximum di was more in line with the maximum observed in the 

psychology literature (6). Taking this approach also reduced our overall estimate of 

regression to the mean to ~45%. Trimming observed effect sizes, while perfectly 

reasonable, involves the introduction of subjective exploratory assumptions that we 

tried to avoid as much as possible in our original simulation. In the future, efforts to 

quantify regression to the mean may find a principled way to deal with this issue 

while still managing to accurately characterize the effect-size distributions and p-

curves from OSC2015. 
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Fig S3. The two graphs in the top row show the results from the OSC (2015) replication study 
for the cognitive experiments (left) and social experiments (right). The two graphs in the 
bottom row show the corresponding results from the simulation study. Negative values mean 
that the corresponding original p < .05 effect sizes were in the wrong direction, so the 
replication studies would have effects in the opposite direction. 
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Implications for Cognitive vs. Social Psychology 

In our simulations and in the OSC2015 data, significant findings from 

cognitive psychology were associated with larger effect sizes and were more likely 

to replicate compared to significant findings from social psychology. It is tempting 

to interpret these findings to mean that cognitive psychology is therefore a stronger 

science than social psychology. However, upon reflection, this is not obviously the 

case (2). It is certainly true that, as a general rule, large effects are more useful to 

both science (e.g., other scientists can readily reproduce the effect in their own 

research) and society (e.g., the effect can potentially have a meaningful impact on 

addressing a real-world problem) than small effects. However, large effects are also 

more likely to already be in the “encyclopedia of knowledge” than small effects. For 

example, the effect of depriving people of a night’s sleep on how tired they are the 

next day would undoubtedly be large, but an experiment need not be performed to 

test this hypothesis because we already know it is true. Thus, a scientific discipline 

that focuses only on large and easily replicated effects may not be appreciably 

advancing knowledge despite publishing highly replicable findings (2). This why the 

replication rate, on its own, cannot serve as a measure of the quality of a scientific 

discipline. using that measure alone, the highest quality scientific discipline might 

the one that fails to advance knowledge at all.   

Another important consideration is that OSC2015 computed effect sizes from 

cognitive and social psychology based on the reported test statistic in the original 

study (e.g., based on its reported t statistic). Using that approach, then, given equal 

effect sizes measured on a level playing field, experiments using within-subject 
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designs would have larger observed effect sizes than experiments using between-

subject designs. The experiments using within-subject designs would, of course, also 

tend to have higher power.  

Almost certainly, social psychologists are more likely to investigate 

inherently between-subject questions (e.g., the effect of gender on cooperation and 

competition) than cognitive psychologists (e.g., the effect of word-frequency on 

recognition memory). Moreover, even when a within-subject design is technically 

feasible in social psychology (e.g., comparing the effect of anger vs. fear on decision-

making), carryover effects often make it infeasible in practice, thereby necessitating 

a between-subject design. Thus, given equal resources across fields, the between-

subject designs widely used in social psychology are likely to yield smaller 

measured effect sizes and have lower power compared to the within-subject designs 

more commonly used in cognitive psychology.  

Because they were associated with lower power, the originally reported p 

< .05 effect sizes in social psychology were necessarily more inflated compared to 

cognitive psychology. Thus, when the replication studies are powered based on the 

originally reported effect size, as they were in OSC2015 and in our simulation study, 

the social psychology replications will necessarily be under-powered relative to the 

cognitive psychology replications. Indeed, this is precisely why, in our simulation 

study, cognitive experiments were more likely to replicate at p < .05 than social 

experiments. Had we powered the simulated social replications to compensate for 

the fact that the original Cohen’s d scores were more inflated than the cognitive 

Cohen’s d scores, the replication rates for the two fields would have been the same. 
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Thus, as we see it, the OSC2015 results do not have differential implications for the 

strength of cognitive vs. social psychology. 

Optimizing N 

When planning an original experiment that will involve NHST, power 

calculations designed to choose an appropriate value of N to ensure high power are 

based on faulty assumptions. As noted earlier, if underlying effect sizes are 

continuously distributed, then increasing power by increasing N is not the 

unambiguously good thing it would be if underlying effect sizes were categorically 

distributed. Indeed, if underlying effect sizes are continuously distributed, then 

increasing N too much will result in a statistically significant literature associated 

with underlying effects that are less true (i.e., closer to 0) than they are now. This 

seems like an important consideration because the underlying effect sizes in the 

current p < .05 literature are regarded by many to be so untrue that psychological 

science is in a state of a crisis.  

If underlying effect sizes are continuously distributed, an alternative goal 

when choosing N might be to test the number of subjects required to maximize the 

mean of the distribution of underlying effect sizes associated with p < .05 findings. 

Critically, this goal would not be achieved by either minimizing or maximizing N 

because both of those approaches serve to reduce the mean underlying effect size 

associated with p < .05 findings. The goal of maximizing the mean underlying effect 

size would instead be achieved by optimizing N.  

Assuming an exponential distribution similar to the one shown in Fig. 2C 

coupled with a p < .05 selection rule, increasing N would have different effects on 
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the expected values for observed and underlying effect sizes. Fig. 5 in the main 

article shows the expected results assuming the mean of the underlying exponential 

distribution of effect sizes set to 𝛿𝛿̅= .22. With regard to the underlying effect size 

associated with p < .05 outcomes, an inverted-U function is apparent, which means 

that its expected value would be maximized using an intermediate value of N (Fig. 5 

in the main article and reproduced here in Fig. S4A). In addition, as is already well 

known, the average of the statistically significant reported effect sizes—that is, the 

average of statistically significant |𝑑𝑑𝑖𝑖| values—is highly inflated relative to the 

average δi when N is small (low power) and become less inflated as N increases (Fig. 

S4B).  
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Fig S4. Expected p < .05 effect sizes with the mean of the underlying prior distribution of effect 
sizes set to 𝜹𝜹 �= .22 and N varied from 2 to 100. (A) Expected underlying effect size (δ) given a p 
< .05 outcome. (B) Expected observed effect size (d) given a p < .05 outcome. 
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The values depicted in Fig. S4 were computed as follows. For a given sample size, N, we 

want the expected value of δ given a significant (p < .05) outcome: 

 

𝐸𝐸[(𝛿𝛿|𝑝𝑝 < .05] = � 𝛿𝛿 ∙
∞

0
𝑃𝑃(𝛿𝛿|𝑝𝑝 < .05)                                                      (3) 

 

After computing this value for a given N, we can compute it for values of N ranging from 

N = 2 (the minimum given that df = N – 1) to some large value like N = 100 and then 

determine the N that yields the maximum 𝐸𝐸[(𝛿𝛿|𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠]. The question of interest is this: 

which value of N yields the maximum expected value of δ given a significant (p < .05) 

outcome?  

According to Bayes theorem: 
 

𝑃𝑃(𝐴𝐴|𝐵𝐵) =
𝑃𝑃(𝐵𝐵|𝐴𝐴) ∙ 𝑃𝑃(𝐴𝐴)

𝑃𝑃(𝐵𝐵)
 

For our purposes: 
 
𝐴𝐴 = 𝛿𝛿 

𝐵𝐵 = 𝑝𝑝 < .05 

Thus: 
 

𝑃𝑃(𝛿𝛿|𝑝𝑝 < .05) =
𝑃𝑃(𝑝𝑝 < .05|𝛿𝛿) ∙ 𝑃𝑃(𝛿𝛿)

𝑃𝑃(𝑝𝑝 < .05)
                                                          (4) 

 

Substituting the right side of Equation 4 for 𝑃𝑃(𝛿𝛿|𝑝𝑝 < .05) in Equation 3, the value of 

interest, 𝐸𝐸[(𝛿𝛿|𝑝𝑝 < .05], is: 
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𝐸𝐸[(𝛿𝛿|𝑝𝑝 < .05] = � 𝛿𝛿 ∙
∞

0

𝑃𝑃(𝑝𝑝 < .05|𝛿𝛿) ∙ 𝑃𝑃(𝛿𝛿)
𝑃𝑃(𝑝𝑝 < .05)                                                    (5) 

 

We used MATLAB code to compute 𝐸𝐸[(𝛿𝛿|𝑝𝑝 < .05] from the integral on the right 

side of Equation 5 (Fig. S4A). To do so, we first had to specify the numerator and 

denominator of Equation 4 (i.e., the rightmost term of the integral in Equation 5) more 

precisely, beginning with 𝑃𝑃(𝑝𝑝 < .05|𝛿𝛿) in the numerator. For a given N, 𝑃𝑃(𝑝𝑝 < .05|𝛿𝛿) is 

the probability of p < .05 given δ. It is equal to the probability that a t-score (T) drawn 

from a non-central t distribution (with degrees of freedom ν = N - 1 and non-centrality 

parameter 𝜂𝜂 = 𝛿𝛿√𝑁𝑁) is statistically significant. With 𝑇𝑇~𝑠𝑠(𝜐𝜐, 𝜂𝜂), and for a 2-tailed t-test, 

𝑃𝑃(𝑝𝑝 < .05|𝛿𝛿) is the probability that T exceeds either the high criterion (tc) or falls below 

the low criterion (-tc) under the null hypothesis for α = .05: 

 

𝑃𝑃(𝑝𝑝 < .05|𝛿𝛿) = � 𝑠𝑠(𝜐𝜐,
∞

𝑡𝑡𝑐𝑐
𝜂𝜂) + � 𝑠𝑠(𝜐𝜐, 𝜂𝜂)

−𝑡𝑡𝑐𝑐

−∞
                                                      (6) 

 

In MATLAB, the cumulative density function (cdf) for the non-central t distribution 

(nctcdf) can be used to compute each part of this integral. For use with that cdf function, 

Equation 6 can be expressed as follows: 

𝑃𝑃(𝑝𝑝 < .05|𝛿𝛿) = �1 −� 𝑠𝑠(𝜐𝜐,
𝑡𝑡𝑐𝑐

−∞
𝜂𝜂)� + � 𝑠𝑠(𝜐𝜐, 𝜂𝜂)

−𝑡𝑡𝑐𝑐

−∞
 

The second term in the numerator of Equation 4, 𝑃𝑃(𝛿𝛿), represents the probability of 

drawing δ from the exponential prior distribution of underlying effect sizes, that is:  

𝑃𝑃(𝛿𝛿) = (1 𝜏𝜏⁄ )𝑒𝑒−𝜏𝜏𝜏𝜏                                                                                (7) 
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where 𝜏𝜏 = 𝛿𝛿̅. In MATLAB code, this is simply the probability density function for the 

exponential, exppdf(x,tau), where x = δ and tau = 𝛿𝛿�. 

Finally, the denominator of Equation 4 is: 
 

𝑃𝑃(𝑝𝑝 < .05) = � 𝑃𝑃(𝛿𝛿) ∙
∞

0
 𝑃𝑃(𝑝𝑝 < .05|𝛿𝛿) 

where the first term in the integral is given by Equation 7 and the second term is given by 

Equation 6. Again, MATLAB code was used to compute this value (i.e., the denominator 

of Equation 5) in the manner described above. To compute 𝐸𝐸[(𝛿𝛿|𝑝𝑝 < .05], the MATLAB 

program computed the value on the right side of Equation 5 for each value of N ranging 

from 2 to 100, with the result plotted in Fig. S4.  

A similar approach was used to compute the expected value of the observed 

Cohen’s d, 𝐸𝐸[(𝑑𝑑|𝑝𝑝 < .05], for each value of N ranging from 2 to 100 (Fig. S4B). We first 

computed 𝐸𝐸[(𝑠𝑠|𝑝𝑝 < .05] and then divided that expected t by the square root of N to yield 

an expected d given a statistically significant outcome. The relevant equations are similar 

to those above, but there are a few notable differences. Now, for example, the 

denominator of Equation 4 is a double integral consisting of the probability of drawing δ 

from the exponential prior times the probability of drawing an observed t from the pdf of 

the non-central t distribution (with degrees of freedom ν = N - 1 and non-centrality 

parameter 𝜂𝜂 = 𝛿𝛿√𝑛𝑛𝑁𝑁) times the probability that the observed t falls above tc or below –tc 

(integrated from -∞ to +∞ with respect to t and from 0 to ∞ with respect to δ). The 

numerator involves a similar double integral except also multiplied by the absolute value 

of t. We use the absolute value of t on the assumption that a scientist publishing a 
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significant finding as a new discovery would be unaware of any sign error that might 

exist.  
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