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S1. Gate voltage dependence of resonant frequencies of 𝑹𝟏, 𝑹𝟐 and 𝑹𝟑 

The spectra of all three resonators are shown in Fig. S1. Each diagram shows a 

parabolic-like curve, indicating low built-in stress in our sampleS1. The avoided level 

crossings in Fig. S1 represent coupling between the corresponding resonator and other 

eigenmodes.  

 

Fig. S1 Gate voltage dependence of the three resonators’ spectra. The spectra of the 

three resonators versus their corresponding gate voltages. The data is acquired at 

driving power of ~ −40 dBm. 
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S2. Relaxation rate and quality factor of 𝑹𝟐 and 𝑹𝟑 

Similar to description in the main text for 𝑅1 , the relaxation rates as well as the 

quality factors are obtained by fitting the mixing current’s dependence on the driving 

frequency, for both 𝑅2 and 𝑅3. The data here is fitted with the equationS2 : 
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 Here 𝑓0  is the resonant frequency, and 𝛾/2𝜋  the relaxation rate. The extracted 

relaxation rates and quality factors are 𝛾2/2𝜋 ~ 1.16 kHz, 𝑄2 ~ 115,000 for 𝑅2, 

and 𝛾3/2𝜋 ~ 0.73 kHz, 𝑄3 ~ 196,000 for 𝑅3.  

 

Fig. S2 Mixing current spectra of 𝑹𝟐 and 𝑹𝟑 and the fitting of their relaxation 

rates and quality factors. a. Mixing current as a function of driving frequency at 

𝑉g2 = 8 V. Extracted line width 𝛾2/2𝜋 of resonator 𝑅2, is ~ 1.16 kHz, which gives a 

quality factor of ~ 115,000. b. Mixing current as a function of driving frequency at 

𝑉g3 = 30 V. Extracted line width 𝛾3/2𝜋 of resonator 𝑅3, is ~ 0.73 kHz, which gives 

a quality factor of ~ 196,000. The driving power here is ~ −60 dBm. 
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S3. Coupling between 𝑹𝟐 and 𝑹𝟑 

 An avoided level crossing is observed when tuning the resonant frequency of 𝑅3 

to approach that of 𝑅2, from which we obtain the coupling strength between 𝑅2 and 

𝑅3 to be 𝛺23/2𝜋 ~ 9 MHz, as shown in Fig. S3.  

 

Fig. S3 Mixing current spectrum of resonators 𝑹𝟐  and 𝑹𝟑 . Coupling strength 

𝛺23/2𝜋 as large as 9 MHz is observed. Here 𝑉g1= 0 V and 𝑉g2= 8 V. The driving 

power here is ~ −40 dBm. 
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S4. Maximum observed effective coupling strength between resonators 𝑹𝟏 and 

𝑹𝟑 

  Figs. S4 and S5 show the spectra of the three resonators. We observe a maximum 

effective coupling strength of 𝛺13 2𝜋⁄ ~ 3.3 MHz, as shown in Figs. S4a and S5a.  

 

Fig. S4 Spectra of the three resonators. Spectra of the three resonators at 𝑉g3= 15 V, 

with 𝑉g2 = 2 V, 6 V, and 10 V for a-c, respectively. The zoom-in regime of the white 

dashed boxes are shown in Fig. S5. The driving power here is ~ −40 dBm. 
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Fig. S5 Effective coupling between 𝑹𝟏 and 𝑹𝟑. Spectra of 𝑅1 and 𝑅3 at 𝑉g3= 15 

V, with 𝑉g2 = 2 V, 6 V, 10 V, and 14 V for a-d, respectively. a-c corresponds to the 

dashed white box regime in Fig. S4 a-c, respectively. d corresponds to the similar 

regime in Fig. 1e. Maximum coupling strength as large as 3.3 MHz is observed in a. 

The driving power here is ~ −45 dBm. 
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S5. Estimation of phonon number.  

  For undriven state, the phonon number can be estimated according to the 

measurement environment, i.e., the temperature of the dilution refrigerator with �̅�𝑡ℎ =

1 (𝑒ℏ𝜔/𝑘𝐵𝑇 − 1)⁄  ~ 1.61. Here, 𝑘𝐵 is Boltzmann constant, 𝑇 is around 10 mK, 𝜔 

is ~100 × 2𝜋 MHz. 

For the microwave driven system, taking 𝑅1  as an example, from resonant 

frequency’s dependence on gate voltage, we can extract the effective massS3 of the 

graphene to be 𝑚𝑒𝑓𝑓  ≅ 1.43 ×  10−17 kg (which corresponds to 7.52 layers), see 

Fig. S6a. Meanwhile, we can obtain equilibrium position displacement 𝑧𝑒 to be ~12 

nm under gate voltage 𝑉𝑔1 ~ 15 V (Fig. S6b). Based on the resonant frequency and 

effective mass, spring constant of a single device is extracted to be 𝑘 = 𝑚𝑒𝑓𝑓𝜔2 ≅

 5.64 N/m, where 𝜔 ~100 × 2𝜋 MHz. Using a commercial finite-element analysis 

simulation software (COMSOL), we calculate gate capacitance 𝐶𝑔 as a function of 

equilibrium position displacement 𝑧𝑒  for the device architecture used in our 

experiment (2 μm in length and 2.2 μm in width), as shown in Fig. S6c and Fig. S6d. 

The deviation of gate capacitance 𝐶𝑔
′  remains almost unchanged (6.56 ×  10−10 F/m) 

within the range of 𝑧𝑒= 5 to 20 nm. We can also estimate the driving forceS4 according 

to geometry factor and driving power to be 𝐹𝑑𝑟𝑖𝑣𝑒 = 𝐶𝑔
′ 𝑉𝑔

𝐷𝐶δ𝑉𝑔 ≅ 1.97 ×  10−11 N, 

here 𝑉𝑔
𝐷𝐶 and δ𝑉𝑔 is roughly estimated to be 15 V and 2 mV. Here, δ𝑉𝑔 is microwave 

amplitude measured before the sample holder, while considering the absorption 

efficiency, the power actually sensed by the suspended graphene ribbon should be much 

lower than this value. With 𝐹𝑑𝑟𝑖𝑣𝑒 = 𝑘𝑥/𝑄 and driven state 𝑄~ 300, displacement of 
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the resonator 𝑥 can be estimated to be ≅  1.05 × 10−9 m. Using 
1

2
𝑘𝑥2~𝑛ℏ𝜔, we 

can estimate the phonon number under microwave driven to have the order of 

4.69 × 107.  

 

Fig. S6 Extraction of effective mass and gate capacitance of 𝑹𝟏 . a. Fitting of 

effective mass from spectra of 𝑅1, with data from Fig. S1a. b. Calculated equilibrium 

position displacement, 𝑧𝑒 , versus gate voltage 𝑉𝑔1 . c. Schematics of device 

architecture used in our experiments for COMSOL simulations. d. Calculated gate 

capacitance 𝐶𝑔 versus equilibrium position displacement, 𝑧𝑒. 𝐶𝑔
′  is estimated to be 

6.56 × 10−10 F/m.  
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S6. Fitting results of Rabi oscillations with different burst power in Fig. 2 

  We fitted the Rabi oscillations in Fig. 2 with a damped cosinusoidal function and 

listed the extracted 𝑇Rabi with the corresponding burst microwave amplitude in Table 

S1. 𝑇Rabi  increases with decreasing 𝑉pp . A possible explanation is that decreasing 

microwave perturbation helps to maintain a longer decoherence time. 

Burst Microwave Amplitude 𝑉pp (V) Extracted 𝑇Rabi (μs) 

0.60 11.67 ± 1.08 

0.54 11.90 ± 1.15 

0.48 14.75 ± 1.22 

0.42 12.89 ± 1.26 

0.36 14.34 ± 1.01 

0.30 24.34 ± 3.27 

0.24 25.76 ± 3.25 

Table S1 Extracted 𝑻𝐑𝐚𝐛𝐢 for different burst microwave amplitudes in Fig. 2. 
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S7. Eigenmodes 𝑨 and 𝑩 and their dynamics 

  Following our approach in the previous work and under the rotating-wave 

approximationS5, the effective coupling between resonators 𝑅1 and 𝑅3 can be written 

as 

𝐻𝐼 =
𝛺13

2
(𝛼1

∗𝛼3 + 𝛼3
∗𝛼1), 

where 𝛺13  is the effective coupling strength, the coherent amplitude 𝛼𝑖 =

(√𝜔𝑚𝑖 2⁄ 𝑥𝑖 + 𝑖√1 2𝜔𝑚𝑖⁄ 𝑝𝑖)  is related to the mechanical displacement 𝑥𝑖  and 

momentum 𝑝𝑖 , and 𝛼𝑖
∗  is the complex conjugate of 𝛼𝑖 . Under this coupling, the 

eigenmodes of the coupled system of 𝑅1 and 𝑅3 become 𝐴 and 𝐵, with an energy 

shift 𝛿𝐴 = − 𝛺13 2⁄   for mode 𝐴  and energy shift 𝛿𝐵 = 𝛺13 2⁄   for mode 𝐵 . We 

denote the coherent amplitudes for these eigenmodes as 𝛼𝐴 and 𝛼𝐵, respectively, with 

𝛼𝐴 = (𝛼1 + 𝛼3)/√2 and 𝛼𝐵 = (𝛼1 − 𝛼3)/√2. The Hamiltonian of this system in the 

eigenmode basis can be written as 

𝐻𝐼
(𝑒𝑛)

=
𝛺13

2
(𝛼𝐵

∗ 𝛼𝐵 − 𝛼𝐴
∗𝛼𝐴). 

  During the coherent evolutions studied in our experiment, the initial excitation is set 

in mode 𝐴  with a finite amplitude 𝛼𝐴(0) = 𝛼0  and with 𝛼𝐵(0) = 0 . In a Rabi 

rotation, the external drive mixes the excitations in the eigenmodes. In the eigenmode 

basis, the driving Hamiltonian can be written as 

𝐻Rabi
(𝑒𝑛)

=
𝛺Rabi

2
(𝛼𝐴

∗𝛼𝐵 + 𝛼𝐵
∗ 𝛼𝐴) 

with 𝛺Rabi being the Rabi frequency. Using a Lagrangian approach, the equations of 

motion that govern this system are 

𝑑𝛼𝐴

𝑑𝑡
= −𝑖

𝛺Rabi

2
𝛼𝐵, 
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𝑑𝛼𝐵

𝑑𝑡
= −𝑖

𝛺Rabi

2
𝛼𝐴. 

The dynamics of the system can be understood by solving these equations. Similarly, 

during the Ramsey interference experiment, the dynamics can be analysed. 
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S8. Theoretical analysis of damping times 

  The open-system dynamics of the coupled (classical) resonators is different from that 

of the quantum two-level system. In a standard quantum two-level system, the 

decoherence rates determine the coherent dynamics are 1/𝑇1 and 1/𝑇2, respectively, 

with 1/𝑇2 = 1/2𝑇1 + 1/𝑇𝜑 . Here 1/𝑇1  is the relaxation rate between two normal 

modes 𝛼𝐴,𝐵 and 𝑇𝜑 is the pure dephasing rate between these two modes. As is well 

known, a Rabi oscillation decays with the rate (1/𝑇1 + 1/𝑇2)/2 , and a Ramsey 

oscillation decays with the rate 1/𝑇2. 

  The damping rates of our system is very different from that of the standard Bloch 

equation. We have two classical modes 𝑅1  and 𝑅3  coupled to each other via an 

effective coupling Ω13. Assume that the uncoupled mode 𝑅1(𝑅3) has a relaxation rate 

𝛾1(𝛾3). We also let �̅� = (𝛾1 + 𝛾3)/2 be the average of the two rates and 𝛾𝑑 = 𝛾1 −

𝛾3 be the difference. Without coupling, such relaxation causes the uncoupled modes to 

relax to their corresponding thermal equilibrium at finite temperature. This is in sharp 

contrast to the relaxation characterized by 1/𝑇1 in a quantum two-level system. This 

relaxation will bring the system out of the subspace that corresponds to the coherent 

oscillations between modes 𝑅1 and 𝑅3. 

  Let the system be prepared in the normal mode 𝛼𝐴 at time 𝑡 = 0, i.e., 𝛼𝐴(0) = 𝛼0 

and 𝛼𝐵(0) = 0 , with the excitation amplitude 𝛼0 . Under this condition, 𝛼1(0) =

𝛼3(0) = 𝛼0/√2. Without any pulse applied to this system, the time evolution of the 

amplitude can be written as 𝛼𝐴(𝑡) = [𝑒−𝛾1𝑡 2⁄ 𝛼1(0) + 𝑒−𝛾3𝑡 2⁄ 𝛼3(0)]/√2 . Hence, 

𝛼𝐴(𝑡) = 𝛼0(𝑒−𝛾1𝑡 2⁄ + 𝑒−𝛾3𝑡 2⁄ )/2. When �̅� ≫ 𝛾𝑑, this can be simplified as 𝛼𝐴(𝑡) =
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𝑒−
�̅�𝑡

2 𝛼0 . It can be shown this will add a damping term �̅�  in the Bloch equation, as 

discussed in Ref. S6.  

Because the intrinsic relaxation and the dephasing rates between the two modes are 

much less than 𝛾𝑖 (i =1,3), their effects can be neglected. This relaxation times in the 

coherent oscillations are hence 𝑇Rabi = 𝑇Ramsey = 2/�̅�. In the spectrum experiment, 

we obtained 𝛾𝑖/2𝜋 ≈ 300 kHz. The results indicates that the relaxation times are at 

the order of 1 μs, which is comparable with 𝑇Rabi and 𝑇Ramsey we extracted in the 

experiments.  
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