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Fig. 1. Plots of degree c vs ∆, for varying rank: For the Facebook social
network, for varying rank of embedding, we plot c versus the total number
of triangles only involving vertices of degree at most c. The embedding
is generated by taking the top eigenvectors. Observe how even a rank of
2000 does not suffice to match the true triangle values for low degree.
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1. Further empirical details4

Optimization for LRDP and LRHP: The fitting of the model was5

done using the Matlab function glmfit (Generalized Linear Model6

Regression Fit) (1). The distribution parameter was set to “binomial",7

since the total number of edges is distributed as a weighted binomial.8

NODE2VEC experimental details: We used the optimized C++9

implementation (2) for NODE2VEC, which is equivalent to the original10

implementation provided by the authors (3). For all our experiments,11

we use the default settings of walk length of 80, 10 walks per node,12

p=1 and q=1.13

A. Detailed relationship between rank and triangle structure.14

For the smallest Facebook graph, we were able to compute the15

entire set of eigenvalues. This allows us to determine how large a rank16

is required to recreate the low-degree triangle structure. In Figure 1,17

for varying rank of the embedding, we plot the corresponding triangle18

distribution. In this plot, we choose the embedding given by the eigen-19

decomposition (rather than SVD), since it is guaranteed to converge20

to the correct triangle distribution for an n-dimensional embedding21

(n is the number of vertices). The SVD and eigendecomposition are22

mostly identical for large singular/eigenvalues, but tend to be different23

(up to a sign) for negative eigenvalues.24

We observe that even a 1000 dimensional embedding does not25

capture the c vs ∆ plots for low degree. Even the rank 2000 embed-26

ding is off the true values, though it is correct to within an order of27

magnitude. This is strong corroboration of our main theorem, which28

says that near linear rank is needed to match the low-degree triangle29

structure.30

2. Full details of proof31

We provide all the mathematical details that are omitted from the32

main body. For ease of reading, we simply provide all proof (not just33

omitted proofs), potentially repeating text from the main body.34

For convenience, we restate the setting. Consider a set of vectors35

~v1, ~v2, . . . , ~vn ∈ Rd, that represent the vertices of a social network.36

We will also use the matrix V ∈ Rd×n for these vectors, where37

each column is one of the ~vis. Abusing notation, we will use V to38

represent both the set of vectors as well as the matrix. We will refer 39

to the vertices by the index in [n]. 40

Let GV denote the following distribution of graphs over the vertex 41

set [n]. For each index pair i, j, independently insert (undirected) 42

edge (i, j) with probability max(0,min(~vi · ~vj , 1)). 43

A. The basic tools. We now state some results that will be used in 44

the final proof. 45

Lemma 2.1. [Rank lemma (4)] Consider any square matrix A ∈
Rn×n. Then

|
∑

i

Ai,i|2 ≤ rank(A)

(∑
i

∑
j

|Ai,j |2
)

Lemma 2.2. Consider a set of s vectors ~w1, ~w2, . . . , ~ws in Rd.∑
(i,j)∈[s]×[s]

~wi·~wj <0

|~wi · ~wj | ≤
∑

(i,j)∈[s]×[s]
~wi·~wj >0

|~wi · ~wj |

Proof. Note that (
∑

i≤s
~wi)·(

∑
i≤s

~wi) ≥ 0. Expand and rearrange 46

to complete the proof. 47

Recall that an independent set is a collection of vertices that induce 48

no edge. 49

Lemma 2.3. Any graph with h vertices and maximum degree b has 50

an independent set of at least h/(b+ 1). 51

Proof. Intuitively, one can incrementally build an independent set, by 52

adding one vertex to the set, and removing at most b+ 1 vertices from 53

the graph. This process can be done at least h/(b+ 1) times. 54

Formally, we prove by induction on h. First we show the base case. 55

If h ≤ b+ 1, then the statement is trivially true. (There is always an 56

independent set of size 1.) For the induction step, let us construct an 57

independent set of the desired size. Pick an arbitrary vertex x and add 58

it to the independent set. Remove x and all of its neighbors. By the 59

induction hypothesis, the remaining graph has an independent set of 60

size at least (h− b− 1)/(b+ 1) = h/(b+ 1)− 1. 61

Claim 2.4. Consider the distribution GV . Let Di denote the degree 62

of vertex i ∈ [n]. E[D2
i ] ≤ E[Di] + E[Di]2. 63

Proof. (of Claim 2.4) Fix any vertex i ∈ [n]. Observe that Di = 64∑
j 6=i

Xj , where Xj is the indicator random variable for edge (i, j) 65

being present. Furthermore, all the Xjs are independent. 66

E[D2
i ] = E[(

∑
j 6=i

Xj)2] = E[
∑
j 6=i

X2
j + 2

∑
j 6=j′

XjXj′ ] 67

= E[
∑
j 6=i

Xj ] + 2
∑
j 6=j′

E[Xj ]E[Xj′ ] 68

≤ E[Di] + (
∑
j 6=i

E[Xj ])2 = E[Di] + E[Di]2 69

70

A key component of dealing with arbitrary length vectors is the 71

following dot product lemma. This is inspired by results of Alon (5) 72

and Tao (6), who get a stronger lower bound of 1/
√
d for absolute 73

values of the dot products. 74

Lemma 2.5. Consider any set of 4d unit vectors ~u1, ~u2, . . . , ~u4d in 75

Rd. There exists some i 6= j such that ~ui · ~uj ≥ 1/4d. 76
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Proof. (of Lemma 2.5) We prove by contradiction, so assume ∀i 6=77

j, ~ui·~uj < 1/4d. We partition the set [4d]×[4d] intoN = {(i, j)|~ui·78

~uj < 0} and P = {(i, j)|~ui · ~uj ≥ 0}. The proof goes by providing79

(inconsistent) upper and lower bounds for
∑

(i,j)∈N |~ui · ~uj |2. First,80

we upper bound
∑

(i,j)∈N |~ui · ~uj |2 by:81

≤
∑

(i,j)∈N

|~ui · ~uj | (~uis are unit vectors)82

≤
∑
i≤4d

‖~ui‖2
2 +

∑
1≤i6=j≤4d

(i,j)∈P

|~ui · ~uj | (Lemma 2.2)83

< 4d+ 16d2/4d = 8d (by assumption, ~ui · ~uj < 1/4d)[1]84

For the lower bound, we invoke the rank bound of Lemma 2.1 on the85

4d × 4d Gram matrix M of ~u1, . . . , ~u4d. Note that rank(M) ≤ d,86

Mi,i = 1, and Mi,j = ~ui · ~uj . By Lemma 2.1,
∑

(i,j)∈[4d]×[4d] |~ui ·87

~uj |2 ≥ (4d)2/d = 16d. We bound88 ∑
(i,j)∈P

|~ui · ~uj |2 =
∑
i≤4d

‖~ui‖2
2 +

∑
(i,j)∈P,i 6=j

|~ui · ~uj |2 [2]89

≤ 4d+ (4d)2/(4d)2 ≤ 5d [3]90

Thus,
∑

(i,j)∈N |~ui · ~uj |2 ≥ 16d− 5d = 11d. This contradicts the91

bound of Eqn. (1).92

93

B. The main argument. We prove by contradiction. We assume94

that the expected number of triangles contained in the set of vertices95

of expected degree at most c, is at least ∆n. We remind the reader96

that n is the total number of vertices. For convenience, we simply97

remove the vectors corresponding to vertices with expected degree at98

least c. Let V̂ be the matrix of the remaining vectors, and we focus99

on GV̂ . The expected number of triangles in G ∼ GV̂ is at least ∆n.100

The overall proof can be thought of in three parts.101

Part 1, remove extremely long vectors: Our final aim is to use the102

rank lemma (Lemma 2.1) to lower bound the rank of V . The first103

problem we encounter is that extremely long vectors can dominate the104

expressions in the rank lemma, and we do not get useful bounds. We105

show that the number of such long vectors is extremely small, and they106

can removed without affecting too many triangles. In addition, we can107

also remove extremely small vectors, since they cannot participate in108

many triangles.109

Part 2, find a “core" of sufficiently long vectors that contains110

enough triangles: The previous step gets a “cleaned" set of vectors.111

Now, we bucket these vectors by length. We show that there is a112

large bucket, with vectors that are sufficiently long, such that there113

are enough triangle contained in this bucket.114

Part 3, apply the rank lemma to the “core": We now focus on this115

core of vectors, where the rank lemma can be applied.116

Now for the formal proof. For the sake of contradiction, we assume117

that d = rank(V̂ ) < α(∆4/c9)·n/ lg2 n (for some sufficiently small118

constant α > 0).119

Part 1: Removing extremely long (and extremely short) vec-120

tors121

We begin by showing that there cannot be many long vectors in V̂ .122

Lemma 2.6. There are at most 5cd vectors of length at least 2
√
n.123

Proof. Let L be the set of “long" vectors, those with length at least124

2
√
n. Let us prove by contradiction, so assume there are more than125

5cd long vectors. Consider a graph H = (L, E), where vectors126

~vi, ~vj ∈ L (i 6= j) are connected by an edge if ~vi
‖~vi‖2

· ~vj

‖~vj‖2
≥ 1/4n. 127

We choose the 1/4n bound to ensure that all edges in H are edges in 128

G. 129

Formally, for any edge (i, j) in H , ~vi · ~vj ≥ ‖~vi‖2‖~vj‖2/4n ≥ 130

(2
√
n)2/4n = 1. So (i, j) is an edge with probability 1 in G ∼ GV . 131

The degree of any vertex inH is at most c. By Lemma 2.3,H contains 132

an independent set I of size at least 5cd/(c + 1) ≥ 4d. Consider 133

an arbitrary sequence of 4d (normalized) vectors in I ~u1, . . . , ~u4d. 134

Applying Lemma 2.5 to this sequence, we deduce the existence of 135

(i, j) in I (i 6= j) such that ~vi
‖~vi‖2

· ~vj

‖~vj‖2
≥ 1/4d ≥ 1/4n. Then, the 136

edge (i, j) should be present in H , contradicting the fact that I is an 137

independent set. 138

Denote by V ′ the set of all vectors in V̂ with length in the range 139

[n−2, 2
√
n]. 140

Claim 2.7. The expected degree of every vertex in G ∼ GV ′ is at 141

most c, and the expected number of triangles in G is at least ∆n/2. 142

Proof. Since removal of vectors can only decrease the degree, the 143

expected degree of every vertex in GV ′ is naturally at most c. It 144

remains to bound the expected number of triangles in G ∼ GV ′ . By 145

removing vectors in V \ V ′, we potentially lose some triangles. Let 146

us categorize them into those that involve at least one “long" vector 147

(length ≥ 2
√
n) and those that involve at least one “short" vector 148

(length ≤ n−2) but no long vector. 149

We start with the first type. By Lemma 2.6, there are at most 150

5cd long vectors. For any vertex, the expected number of triangles 151

incident to that vertex is at most the expected square of the degree. 152

By Claim 2.4, the expected degree squares is at most c+ c2 ≤ 2c2. 153

Thus, the expected total number of triangles of the first type is at most 154

5cd× 2c2 ≤ ∆n/ lg2 n. 155

Consider any triple of vectors (~u,~v, ~w) where ~u is short and nei- 156

ther of the others are long. The probability that this triple forms a 157

triangle is at most 158

min(~u · ~v, 1) ·min(~u · ~w, 1) ≤ min(‖~u‖2‖~v‖2, 1) ·min(‖~u‖2‖~w‖2, 1)159

≤ (n−2 · 2
√
n)2 ≤ 4n−3

160

Summing over all such triples, the expected number of such triangles 161

is at most 4. 162

Thus, the expected number of triangles in G ∼ GV ′ is at least 163

∆n−∆n/ lg2 n− 4 ≥ ∆n/2. 164

Part 2: Finding core of sufficiently long vectors with enough 165

triangles 166

For any integer r, let Vr be the set of vectors {~v ∈ V ′|‖~v‖2 ∈ 167

[2r, 2r+1)}. Observe that the Vrs form a partition of V ′. Since all 168

lengths in V ′ are in the range [n−2, 2
√
n], there are at most 3 lgn 169

non-empty Vrs. Let R be the set of indices r such that |Vr| ≥ 170

(∆/60c2)(n/ lgn). Furthermore, let V ′′ be
⋃

r∈R
Vr . 171

Claim 2.8. The expected number of triangles in G ∼ GV ′′ is at least 172

∆n/8. 173

Proof. The total number of vectors in
⋃

r /∈R
Vr is at most 3 lgn × 174

(∆/60c2)(n/ lgn) ≤ (∆/20c2)n. By Claim 2.4 and linearity of 175

expectation, the expected sum of squares of degrees of all vectors 176

in
⋃

r /∈R
Vr is at most (d+ c2)× (∆/20c2)n ≤ ∆n/10. Since the 177

expected number of triangles inG ∼ GV ′ is at least ∆n/2 (Claim 2.7) 178

and the expected number of triangles incident to vectors in V ′ \ V ′′ 179

is at most ∆n/10, the expected number of triangles in G ∼ GV ′′ is 180

at least ∆n/2−∆n/10 ≥ ∆n/8. 181
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We now come to an important claim. Because the expected number182

of triangles in G ∼ GV ′′ is large, we can prove that V ′′ must contain183

vectors of at least constant length.184

Claim 2.9. maxr∈R 2r ≥
√

∆/4c.185

Proof. Suppose not. Then every vector in V ′′ has length at most√
∆/4c. By Cauchy-Schwartz, for every pair ~u,~v ∈ V ′′, ~u · ~v ≤

∆/16c2. Let I denote the set of vector indices in V ′′ (this corresponds
to the vertices in G ∼ GV ′′ ). For any two vertices i 6= j ∈ I , let Xi,j

be the indicator random variable for edge (i, j) being present. The
expected number of triangles incident to vertex i in G ∼ GV ′′ is

E[
∑

j 6=k∈I

Xi,jXi,kXj,k] =
∑

j 6=k∈I

E[Xi,jXi,k]E[Xj,k]

Observe that E[Xj,k] is at most ~vj · ~vk ≤ ∆/16c2. Furthermore,186 ∑
j 6=k∈I

E[Xi,jXi,k] = E[D2
i ] (recall thatDi is the degree of vertex187

i.) By Claim 2.4, this is at most c+ c2 ≤ 2c2. The expected number188

of triangles in G ∼ GV ′′ is at most n × 2c2 × ∆/16c2 = ∆n/8.189

This contradicts Claim 2.8.190

Part 3: Applying the rank lemma to the core191

We are ready to apply the rank bound of Lemma 2.1 to prove the192

final result. The following lemma contradicts our initial bound on193

the rank d, completing the proof. We will omit some details in the194

following proof, and provide a full proof in the SI.195

Lemma 2.10. rank(V ′′) ≥ (α∆4/c9)n/ lg2 n.196

Proof. It is convenient to denote the index set of V ′′ be I .197

Let M be the Gram Matrix (V ′′)T (V ′′), so for i, j ∈ I ,198

Mi,j = ~vi · ~vj By Lemma 2.1, rank(V ′′) = rank(M) ≥199

(
∑

i∈I
Mi,i)2/

∑
i,j∈I

|Mi,j |2. Note that Mi,i is ‖~vi‖2
2, which is200

at least 22r for ~vi ∈ Vr . Let us denote maxr∈R 2r by L, so all vec-201

tors in V ′′ have length at most 2L. By Cauchy-Schwartz, all entries202

in M are at most 4L2.203

We lower bound the numerator.204 (∑
i∈I

‖~vi‖2
2
)2 ≥

(∑
r∈R

22r|Vr|
)2

205

≥
(

max
r∈R

22r(∆/60c2)(n/ lgn)
)2 = L4(∆2/3600c4)(n2/ lg2 n)206

Now for the denominator. We split the sum into four parts and207

bound each separately.208 ∑
i,j∈I

|Mi,j |2 =
∑
i∈I

|Mi,i|2 +
∑
i,j∈I

i 6=j,Mi,j∈[0,1]

|Mi,j |2209

+
∑
i,j∈I

i 6=j,Mi,j >1

|Mi,j |2 +
∑
i,j∈I

Mi,j <0

|Mi,j |2 [4]210

Since |Mi,i| ≤ L2, the first term is at most 4nL4. For i 6= j and211

Mi,j ∈ [0, 1], the probability that edge (i, j) is present is precisely212

Mi,j . Thus, for the second term,213 ∑
i,j∈I

i 6=j,Mi,j∈[0,1]

|Mi,j |2 ≤
∑
i,j∈I

i 6=j,Mi,j∈[0,1]

Mi,j ≤ 2cn [5]214

For the third term, we observe that when Mi,j > 1 (for i 6= j), then215

(i, j) is an edge with probability 1. There can be at most 2cn pairs216

(i, j), i 6= j, such that Mi,j > 1. Thus, the third term is at most217

2cn · (4L2)2 = 32cnL4.218

Now for the fourth term. Note that M is a Gram matrix, so we can 219

invoke Lemma 2.2 on its entries. 220∑
i,j∈I

Mi,j <0

|Mi,j |2 ≤ L2
∑
i,j∈I

Mi,j <0

|Mi,j | 221

≤ L2(
∑
i∈I

|Mi,i|+
∑
i,j∈I

Mi,j >0

|Mi,j |) 222

≤ 4nL4 + L2
∑
i,j∈I

Mi,j∈[0,1]

|Mi,j |+ 4L4
∑
i,j∈I

Mi,j >1

1 223

≤ 4nL4 + 2cnL2 + 8cnL4 [6] 224

Putting all the bounds together, we get that
∑

i,j∈I
|Mi,j |2 ≤ 225

n(4L4 + 2c + 32cL4 + 4L4 + 2cL2 + 8cL4) ≤ 32n(L4 + c(1 + 226

L2 + L4)). If L ≤ 1, we can upper bound by 128cn. If L ≥ 1, we 227

can upper bound by 128cnL4. In either case, 128cn(1 + L4) is a 228

valid upper bound. 229

Crucially, by Claim 2.9, L ≥
√

∆/4c. Thus, 44c4L4/∆2 ≥ 1. 230

Combining all the bounds (and setting α < 1/(128 · 3600 · 44)), 231

rank(V ′′) ≥ L4(∆2/3600c4)(n2/ lg2 n)
128cn(1 + 16L4) 232

≥ L4(∆2/3600c4)(n/ lg2 n)
128cn(44c4L4/∆2 + 16L4) ≥ (α∆4/c9)(n/ lg2 n)233
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